godot/servers/rendering/rasterizer_rd/shaders/ssao_blur.glsl
Rémi Verschelde c74d65cec8 GLSL: Change shader type specifier from [vertex] to #[vertex]
The added `#` prevents clang-format from misinterpreting the meaning
of this statement and thus messing up the formatting of the next
lines up until the first `layout` statement.

Similarly, a semicolon is now enforced on `versions` defines to
prevent clang-format from messing up formatting and putting them
all on a single line. Note: In its current state the code will
ignore chained statements on a single line separated by a semicolon.

Also removed some extraneous lines missed in previous style changes
or added by mistake with said changes (e.g. after uniform definitions
that clang-format messes up somewhat too, but we live with it).
2020-05-18 10:58:14 +02:00

154 lines
4.9 KiB
GLSL

#[compute]
#version 450
VERSION_DEFINES
layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
layout(set = 0, binding = 0) uniform sampler2D source_ssao;
layout(set = 1, binding = 0) uniform sampler2D source_depth;
#ifdef MODE_UPSCALE
layout(set = 2, binding = 0) uniform sampler2D source_depth_mipmaps;
#endif
layout(r8, set = 3, binding = 0) uniform restrict writeonly image2D dest_image;
//////////////////////////////////////////////////////////////////////////////////////////////
// Tunable Parameters:
layout(push_constant, binding = 1, std430) uniform Params {
float edge_sharpness; /** Increase to make depth edges crisper. Decrease to reduce flicker. */
int filter_scale;
float z_far;
float z_near;
bool orthogonal;
uint pad0;
uint pad1;
uint pad2;
ivec2 axis; /** (1, 0) or (0, 1) */
ivec2 screen_size;
}
params;
/** Filter radius in pixels. This will be multiplied by SCALE. */
#define R (4)
//////////////////////////////////////////////////////////////////////////////////////////////
// Gaussian coefficients
const float gaussian[R + 1] =
//float[](0.356642, 0.239400, 0.072410, 0.009869);
//float[](0.398943, 0.241971, 0.053991, 0.004432, 0.000134); // stddev = 1.0
float[](0.153170, 0.144893, 0.122649, 0.092902, 0.062970); // stddev = 2.0
//float[](0.111220, 0.107798, 0.098151, 0.083953, 0.067458, 0.050920, 0.036108); // stddev = 3.0
void main() {
// Pixel being shaded
ivec2 ssC = ivec2(gl_GlobalInvocationID.xy);
if (any(greaterThanEqual(ssC, params.screen_size))) { //too large, do nothing
return;
}
#ifdef MODE_UPSCALE
//closest one should be the same pixel, but check nearby just in case
float depth = texelFetch(source_depth, ssC, 0).r;
depth = depth * 2.0 - 1.0;
if (params.orthogonal) {
depth = ((depth + (params.z_far + params.z_near) / (params.z_far - params.z_near)) * (params.z_far - params.z_near)) / 2.0;
} else {
depth = 2.0 * params.z_near * params.z_far / (params.z_far + params.z_near - depth * (params.z_far - params.z_near));
}
vec2 pixel_size = 1.0 / vec2(params.screen_size);
vec2 closest_uv = vec2(ssC) * pixel_size + pixel_size * 0.5;
vec2 from_uv = closest_uv;
vec2 ps2 = pixel_size; // * 2.0;
float closest_depth = abs(textureLod(source_depth_mipmaps, closest_uv, 0.0).r - depth);
vec2 offsets[4] = vec2[](vec2(ps2.x, 0), vec2(-ps2.x, 0), vec2(0, ps2.y), vec2(0, -ps2.y));
for (int i = 0; i < 4; i++) {
vec2 neighbour = from_uv + offsets[i];
float neighbour_depth = abs(textureLod(source_depth_mipmaps, neighbour, 0.0).r - depth);
if (neighbour_depth < closest_depth) {
closest_uv = neighbour;
closest_depth = neighbour_depth;
}
}
float visibility = textureLod(source_ssao, closest_uv, 0.0).r;
imageStore(dest_image, ssC, vec4(visibility));
#else
float depth = texelFetch(source_depth, ssC, 0).r;
#ifdef MODE_FULL_SIZE
depth = depth * 2.0 - 1.0;
if (params.orthogonal) {
depth = ((depth + (params.z_far + params.z_near) / (params.z_far - params.z_near)) * (params.z_far - params.z_near)) / 2.0;
} else {
depth = 2.0 * params.z_near * params.z_far / (params.z_far + params.z_near - depth * (params.z_far - params.z_near));
}
#endif
float depth_divide = 1.0 / params.z_far;
//depth *= depth_divide;
/*
if (depth > params.z_far * 0.999) {
discard; //skybox
}
*/
float sum = texelFetch(source_ssao, ssC, 0).r;
// Base weight for depth falloff. Increase this for more blurriness,
// decrease it for better edge discrimination
float BASE = gaussian[0];
float totalWeight = BASE;
sum *= totalWeight;
ivec2 clamp_limit = params.screen_size - ivec2(1);
for (int r = -R; r <= R; ++r) {
// We already handled the zero case above. This loop should be unrolled and the static branch optimized out,
// so the IF statement has no runtime cost
if (r != 0) {
ivec2 ppos = ssC + params.axis * (r * params.filter_scale);
float value = texelFetch(source_ssao, clamp(ppos, ivec2(0), clamp_limit), 0).r;
ivec2 rpos = clamp(ppos, ivec2(0), clamp_limit);
float temp_depth = texelFetch(source_depth, rpos, 0).r;
#ifdef MODE_FULL_SIZE
temp_depth = temp_depth * 2.0 - 1.0;
if (params.orthogonal) {
temp_depth = ((temp_depth + (params.z_far + params.z_near) / (params.z_far - params.z_near)) * (params.z_far - params.z_near)) / 2.0;
} else {
temp_depth = 2.0 * params.z_near * params.z_far / (params.z_far + params.z_near - temp_depth * (params.z_far - params.z_near));
}
//temp_depth *= depth_divide;
#endif
// spatial domain: offset gaussian tap
float weight = 0.3 + gaussian[abs(r)];
//weight *= max(0.0, dot(temp_normal, normal));
// range domain (the "bilateral" weight). As depth difference increases, decrease weight.
weight *= max(0.0, 1.0 - params.edge_sharpness * abs(temp_depth - depth));
sum += value * weight;
totalWeight += weight;
}
}
const float epsilon = 0.0001;
float visibility = sum / (totalWeight + epsilon);
imageStore(dest_image, ssC, vec4(visibility));
#endif
}