2
0
mirror of https://github.com/godotengine/godot.git synced 2024-12-09 10:09:20 +08:00
godot/doc/classes/Transform2D.xml

284 lines
11 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Transform2D" version="4.0">
<brief_description>
2D transformation (2×3 matrix).
</brief_description>
<description>
2×3 matrix (2 rows, 3 columns) used for 2D linear transformations. It can represent transformations such as translation, rotation, or scaling. It consists of three [Vector2] values: [member x], [member y], and the [member origin].
For more information, read the "Matrices and transforms" documentation article.
</description>
<tutorials>
<link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link>
<link title="Matrices and transforms">$DOCS_URL/tutorials/math/matrices_and_transforms.html</link>
<link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
<link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link>
</tutorials>
<constructors>
<constructor name="Transform2D">
<return type="Transform2D" />
<description>
Constructs a default-initialized [Transform2D] set to [constant IDENTITY].
</description>
</constructor>
<constructor name="Transform2D">
<return type="Transform2D" />
<argument index="0" name="from" type="Transform2D" />
<description>
Constructs a [Transform2D] as a copy of the given [Transform2D].
</description>
</constructor>
<constructor name="Transform2D">
<return type="Transform2D" />
<argument index="0" name="rotation" type="float" />
<argument index="1" name="position" type="Vector2" />
<description>
Constructs the transform from a given angle (in radians) and position.
</description>
</constructor>
<constructor name="Transform2D">
<return type="Transform2D" />
<argument index="0" name="rotation" type="float" />
<argument index="1" name="scale" type="Vector2" />
<argument index="2" name="skew" type="float" />
<argument index="3" name="position" type="Vector2" />
<description>
Constructs the transform from a given angle (in radians), scale, skew (in radians) and position.
</description>
</constructor>
<constructor name="Transform2D">
<return type="Transform2D" />
<argument index="0" name="x_axis" type="Vector2" />
<argument index="1" name="y_axis" type="Vector2" />
<argument index="2" name="origin" type="Vector2" />
<description>
Constructs the transform from 3 [Vector2] values representing [member x], [member y], and the [member origin] (the three column vectors).
</description>
</constructor>
</constructors>
<methods>
<method name="affine_inverse" qualifiers="const">
<return type="Transform2D" />
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
</description>
</method>
<method name="basis_xform" qualifiers="const">
<return type="Vector2" />
<argument index="0" name="v" type="Vector2" />
<description>
Returns a vector transformed (multiplied) by the basis matrix.
This method does not account for translation (the origin vector).
</description>
</method>
<method name="basis_xform_inv" qualifiers="const">
<return type="Vector2" />
<argument index="0" name="v" type="Vector2" />
<description>
Returns a vector transformed (multiplied) by the inverse basis matrix.
This method does not account for translation (the origin vector).
</description>
</method>
<method name="get_origin" qualifiers="const">
<return type="Vector2" />
<description>
Returns the transform's origin (translation).
</description>
</method>
<method name="get_rotation" qualifiers="const">
<return type="float" />
<description>
Returns the transform's rotation (in radians).
</description>
</method>
<method name="get_scale" qualifiers="const">
<return type="Vector2" />
<description>
Returns the scale.
</description>
</method>
<method name="get_skew" qualifiers="const">
<return type="float" />
<description>
Returns the transform's skew (in radians).
</description>
</method>
<method name="interpolate_with" qualifiers="const">
<return type="Transform2D" />
<argument index="0" name="xform" type="Transform2D" />
<argument index="1" name="weight" type="float" />
<description>
Returns a transform interpolated between this transform and another by a given [code]weight[/code] (on the range of 0.0 to 1.0).
</description>
</method>
<method name="inverse" qualifiers="const">
<return type="Transform2D" />
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use [method affine_inverse] for transforms with scaling).
</description>
</method>
<method name="is_equal_approx" qualifiers="const">
<return type="bool" />
<argument index="0" name="xform" type="Transform2D" />
<description>
Returns [code]true[/code] if this transform and [code]transform[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
</description>
</method>
<method name="looking_at" qualifiers="const">
<return type="Transform2D" />
<argument index="0" name="target" type="Vector2" default="Vector2(0, 0)" />
<description>
Returns a copy of the transform rotated such that it's rotation on the X-axis points towards the [code]target[/code] position.
Operations take place in global space.
</description>
</method>
<method name="orthonormalized" qualifiers="const">
<return type="Transform2D" />
<description>
Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors (scale of 1 or -1).
</description>
</method>
<method name="rotated" qualifiers="const">
<return type="Transform2D" />
<argument index="0" name="phi" type="float" />
<description>
Rotates the transform by the given angle (in radians), using matrix multiplication.
</description>
</method>
<method name="scaled" qualifiers="const">
<return type="Transform2D" />
<argument index="0" name="scale" type="Vector2" />
<description>
Scales the transform by the given scale factor, using matrix multiplication.
</description>
</method>
<method name="set_rotation">
<return type="void" />
<argument index="0" name="rotation" type="float" />
<description>
Sets the transform's rotation (in radians).
</description>
</method>
<method name="set_scale">
<return type="void" />
<argument index="0" name="scale" type="Vector2" />
<description>
Sets the transform's scale.
</description>
</method>
<method name="set_skew">
<return type="void" />
<argument index="0" name="skew" type="float" />
<description>
Sets the transform's skew (in radians).
</description>
</method>
<method name="translated" qualifiers="const">
<return type="Transform2D" />
<argument index="0" name="offset" type="Vector2" />
<description>
Translates the transform by the given offset, relative to the transform's basis vectors.
Unlike [method rotated] and [method scaled], this does not use matrix multiplication.
</description>
</method>
</methods>
<members>
<member name="origin" type="Vector2" setter="" getter="" default="Vector2(0, 0)">
The origin vector (column 2, the third column). Equivalent to array index [code]2[/code]. The origin vector represents translation.
</member>
<member name="x" type="Vector2" setter="" getter="" default="Vector2(1, 0)">
The basis matrix's X vector (column 0). Equivalent to array index [code]0[/code].
</member>
<member name="y" type="Vector2" setter="" getter="" default="Vector2(0, 1)">
The basis matrix's Y vector (column 1). Equivalent to array index [code]1[/code].
</member>
</members>
<constants>
<constant name="IDENTITY" value="Transform2D(1, 0, 0, 1, 0, 0)">
The identity [Transform2D] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
</constant>
<constant name="FLIP_X" value="Transform2D(-1, 0, 0, 1, 0, 0)">
The [Transform2D] that will flip something along the X axis.
</constant>
<constant name="FLIP_Y" value="Transform2D(1, 0, 0, -1, 0, 0)">
The [Transform2D] that will flip something along the Y axis.
</constant>
</constants>
<operators>
<operator name="operator !=">
<return type="bool" />
<description>
</description>
</operator>
<operator name="operator !=">
<return type="bool" />
<argument index="0" name="right" type="Transform2D" />
<description>
Returns [code]true[/code] if the transforms are not equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
</description>
</operator>
<operator name="operator *">
<return type="PackedVector2Array" />
<argument index="0" name="right" type="PackedVector2Array" />
<description>
Transforms (multiplies) each element of the [Vector2] array by the given [Transform2D] matrix.
</description>
</operator>
<operator name="operator *">
<return type="Rect2" />
<argument index="0" name="right" type="Rect2" />
<description>
Transforms (multiplies) the [Rect2] by the given [Transform2D] matrix.
</description>
</operator>
<operator name="operator *">
<return type="Transform2D" />
<argument index="0" name="right" type="Transform2D" />
<description>
Composes these two transformation matrices by multiplying them together. This has the effect of transforming the second transform (the child) by the first transform (the parent).
</description>
</operator>
<operator name="operator *">
<return type="Vector2" />
<argument index="0" name="right" type="Vector2" />
<description>
Transforms (multiplies) the [Vector2] by the given [Transform2D] matrix.
</description>
</operator>
<operator name="operator *">
<return type="Transform2D" />
<argument index="0" name="right" type="float" />
<description>
This operator multiplies all components of the [Transform2D], including the origin vector, which scales it uniformly.
</description>
</operator>
<operator name="operator *">
<return type="Transform2D" />
<argument index="0" name="right" type="int" />
<description>
This operator multiplies all components of the [Transform2D], including the origin vector, which scales it uniformly.
</description>
</operator>
<operator name="operator ==">
<return type="bool" />
<description>
</description>
</operator>
<operator name="operator ==">
<return type="bool" />
<argument index="0" name="right" type="Transform2D" />
<description>
Returns [code]true[/code] if the transforms are exactly equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
</description>
</operator>
<operator name="operator []">
<return type="Vector2" />
<argument index="0" name="index" type="int" />
<description>
Access transform components using their index. [code]t[0][/code] is equivalent to [code]t.x[/code], [code]t[1][/code] is equivalent to [code]t.y[/code], and [code]t[2][/code] is equivalent to [code]t.origin[/code].
</description>
</operator>
</operators>
</class>