mirror of
https://github.com/godotengine/godot.git
synced 2025-01-06 17:37:18 +08:00
7acf697479
Fixes #62225, supersedes #62227
328 lines
11 KiB
C++
328 lines
11 KiB
C++
/*************************************************************************/
|
|
/* basis.h */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#ifndef BASIS_H
|
|
#define BASIS_H
|
|
|
|
#include "core/math/quaternion.h"
|
|
#include "core/math/vector3.h"
|
|
|
|
struct _NO_DISCARD_ Basis {
|
|
Vector3 rows[3] = {
|
|
Vector3(1, 0, 0),
|
|
Vector3(0, 1, 0),
|
|
Vector3(0, 0, 1)
|
|
};
|
|
|
|
_FORCE_INLINE_ const Vector3 &operator[](int axis) const {
|
|
return rows[axis];
|
|
}
|
|
_FORCE_INLINE_ Vector3 &operator[](int axis) {
|
|
return rows[axis];
|
|
}
|
|
|
|
void invert();
|
|
void transpose();
|
|
|
|
Basis inverse() const;
|
|
Basis transposed() const;
|
|
|
|
_FORCE_INLINE_ real_t determinant() const;
|
|
|
|
enum EulerOrder {
|
|
EULER_ORDER_XYZ,
|
|
EULER_ORDER_XZY,
|
|
EULER_ORDER_YXZ,
|
|
EULER_ORDER_YZX,
|
|
EULER_ORDER_ZXY,
|
|
EULER_ORDER_ZYX
|
|
};
|
|
|
|
void from_z(const Vector3 &p_z);
|
|
|
|
void rotate(const Vector3 &p_axis, real_t p_angle);
|
|
Basis rotated(const Vector3 &p_axis, real_t p_angle) const;
|
|
|
|
void rotate_local(const Vector3 &p_axis, real_t p_angle);
|
|
Basis rotated_local(const Vector3 &p_axis, real_t p_angle) const;
|
|
|
|
void rotate(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ);
|
|
Basis rotated(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ) const;
|
|
|
|
void rotate(const Quaternion &p_quaternion);
|
|
Basis rotated(const Quaternion &p_quaternion) const;
|
|
|
|
Vector3 get_euler_normalized(EulerOrder p_order = EULER_ORDER_YXZ) const;
|
|
void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const;
|
|
void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const;
|
|
Quaternion get_rotation_quaternion() const;
|
|
|
|
void rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction);
|
|
|
|
Vector3 rotref_posscale_decomposition(Basis &rotref) const;
|
|
|
|
Vector3 get_euler(EulerOrder p_order = EULER_ORDER_YXZ) const;
|
|
void set_euler(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ);
|
|
static Basis from_euler(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ) {
|
|
Basis b;
|
|
b.set_euler(p_euler, p_order);
|
|
return b;
|
|
}
|
|
|
|
Quaternion get_quaternion() const;
|
|
void set_quaternion(const Quaternion &p_quaternion);
|
|
|
|
void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const;
|
|
void set_axis_angle(const Vector3 &p_axis, real_t p_angle);
|
|
|
|
void scale(const Vector3 &p_scale);
|
|
Basis scaled(const Vector3 &p_scale) const;
|
|
|
|
void scale_local(const Vector3 &p_scale);
|
|
Basis scaled_local(const Vector3 &p_scale) const;
|
|
|
|
void scale_orthogonal(const Vector3 &p_scale);
|
|
Basis scaled_orthogonal(const Vector3 &p_scale) const;
|
|
|
|
void make_scale_uniform();
|
|
float get_uniform_scale() const;
|
|
|
|
Vector3 get_scale() const;
|
|
Vector3 get_scale_abs() const;
|
|
Vector3 get_scale_local() const;
|
|
|
|
void set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale);
|
|
void set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale, EulerOrder p_order = EULER_ORDER_YXZ);
|
|
void set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale);
|
|
|
|
// transposed dot products
|
|
_FORCE_INLINE_ real_t tdotx(const Vector3 &v) const {
|
|
return rows[0][0] * v[0] + rows[1][0] * v[1] + rows[2][0] * v[2];
|
|
}
|
|
_FORCE_INLINE_ real_t tdoty(const Vector3 &v) const {
|
|
return rows[0][1] * v[0] + rows[1][1] * v[1] + rows[2][1] * v[2];
|
|
}
|
|
_FORCE_INLINE_ real_t tdotz(const Vector3 &v) const {
|
|
return rows[0][2] * v[0] + rows[1][2] * v[1] + rows[2][2] * v[2];
|
|
}
|
|
|
|
bool is_equal_approx(const Basis &p_basis) const;
|
|
|
|
bool operator==(const Basis &p_matrix) const;
|
|
bool operator!=(const Basis &p_matrix) const;
|
|
|
|
_FORCE_INLINE_ Vector3 xform(const Vector3 &p_vector) const;
|
|
_FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vector) const;
|
|
_FORCE_INLINE_ void operator*=(const Basis &p_matrix);
|
|
_FORCE_INLINE_ Basis operator*(const Basis &p_matrix) const;
|
|
_FORCE_INLINE_ void operator+=(const Basis &p_matrix);
|
|
_FORCE_INLINE_ Basis operator+(const Basis &p_matrix) const;
|
|
_FORCE_INLINE_ void operator-=(const Basis &p_matrix);
|
|
_FORCE_INLINE_ Basis operator-(const Basis &p_matrix) const;
|
|
_FORCE_INLINE_ void operator*=(const real_t p_val);
|
|
_FORCE_INLINE_ Basis operator*(const real_t p_val) const;
|
|
|
|
int get_orthogonal_index() const;
|
|
void set_orthogonal_index(int p_index);
|
|
|
|
bool is_orthogonal() const;
|
|
bool is_diagonal() const;
|
|
bool is_rotation() const;
|
|
|
|
Basis lerp(const Basis &p_to, const real_t &p_weight) const;
|
|
Basis slerp(const Basis &p_to, const real_t &p_weight) const;
|
|
void rotate_sh(real_t *p_values);
|
|
|
|
operator String() const;
|
|
|
|
/* create / set */
|
|
|
|
_FORCE_INLINE_ void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
|
|
rows[0][0] = xx;
|
|
rows[0][1] = xy;
|
|
rows[0][2] = xz;
|
|
rows[1][0] = yx;
|
|
rows[1][1] = yy;
|
|
rows[1][2] = yz;
|
|
rows[2][0] = zx;
|
|
rows[2][1] = zy;
|
|
rows[2][2] = zz;
|
|
}
|
|
_FORCE_INLINE_ void set_columns(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) {
|
|
set_column(0, p_x);
|
|
set_column(1, p_y);
|
|
set_column(2, p_z);
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector3 get_column(int p_index) const {
|
|
// Get actual basis axis column (we store transposed as rows for performance).
|
|
return Vector3(rows[0][p_index], rows[1][p_index], rows[2][p_index]);
|
|
}
|
|
|
|
_FORCE_INLINE_ void set_column(int p_index, const Vector3 &p_value) {
|
|
// Set actual basis axis column (we store transposed as rows for performance).
|
|
rows[0][p_index] = p_value.x;
|
|
rows[1][p_index] = p_value.y;
|
|
rows[2][p_index] = p_value.z;
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector3 get_main_diagonal() const {
|
|
return Vector3(rows[0][0], rows[1][1], rows[2][2]);
|
|
}
|
|
|
|
_FORCE_INLINE_ void set_zero() {
|
|
rows[0].zero();
|
|
rows[1].zero();
|
|
rows[2].zero();
|
|
}
|
|
|
|
_FORCE_INLINE_ Basis transpose_xform(const Basis &m) const {
|
|
return Basis(
|
|
rows[0].x * m[0].x + rows[1].x * m[1].x + rows[2].x * m[2].x,
|
|
rows[0].x * m[0].y + rows[1].x * m[1].y + rows[2].x * m[2].y,
|
|
rows[0].x * m[0].z + rows[1].x * m[1].z + rows[2].x * m[2].z,
|
|
rows[0].y * m[0].x + rows[1].y * m[1].x + rows[2].y * m[2].x,
|
|
rows[0].y * m[0].y + rows[1].y * m[1].y + rows[2].y * m[2].y,
|
|
rows[0].y * m[0].z + rows[1].y * m[1].z + rows[2].y * m[2].z,
|
|
rows[0].z * m[0].x + rows[1].z * m[1].x + rows[2].z * m[2].x,
|
|
rows[0].z * m[0].y + rows[1].z * m[1].y + rows[2].z * m[2].y,
|
|
rows[0].z * m[0].z + rows[1].z * m[1].z + rows[2].z * m[2].z);
|
|
}
|
|
Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
|
|
set(xx, xy, xz, yx, yy, yz, zx, zy, zz);
|
|
}
|
|
|
|
void orthonormalize();
|
|
Basis orthonormalized() const;
|
|
|
|
void orthogonalize();
|
|
Basis orthogonalized() const;
|
|
|
|
#ifdef MATH_CHECKS
|
|
bool is_symmetric() const;
|
|
#endif
|
|
Basis diagonalize();
|
|
|
|
operator Quaternion() const { return get_quaternion(); }
|
|
|
|
static Basis looking_at(const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0));
|
|
|
|
Basis(const Quaternion &p_quaternion) { set_quaternion(p_quaternion); };
|
|
Basis(const Quaternion &p_quaternion, const Vector3 &p_scale) { set_quaternion_scale(p_quaternion, p_scale); }
|
|
|
|
Basis(const Vector3 &p_axis, real_t p_angle) { set_axis_angle(p_axis, p_angle); }
|
|
Basis(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_angle, p_scale); }
|
|
static Basis from_scale(const Vector3 &p_scale);
|
|
|
|
_FORCE_INLINE_ Basis(const Vector3 &row0, const Vector3 &row1, const Vector3 &row2) {
|
|
rows[0] = row0;
|
|
rows[1] = row1;
|
|
rows[2] = row2;
|
|
}
|
|
|
|
_FORCE_INLINE_ Basis() {}
|
|
|
|
private:
|
|
// Helper method.
|
|
void _set_diagonal(const Vector3 &p_diag);
|
|
};
|
|
|
|
_FORCE_INLINE_ void Basis::operator*=(const Basis &p_matrix) {
|
|
set(
|
|
p_matrix.tdotx(rows[0]), p_matrix.tdoty(rows[0]), p_matrix.tdotz(rows[0]),
|
|
p_matrix.tdotx(rows[1]), p_matrix.tdoty(rows[1]), p_matrix.tdotz(rows[1]),
|
|
p_matrix.tdotx(rows[2]), p_matrix.tdoty(rows[2]), p_matrix.tdotz(rows[2]));
|
|
}
|
|
|
|
_FORCE_INLINE_ Basis Basis::operator*(const Basis &p_matrix) const {
|
|
return Basis(
|
|
p_matrix.tdotx(rows[0]), p_matrix.tdoty(rows[0]), p_matrix.tdotz(rows[0]),
|
|
p_matrix.tdotx(rows[1]), p_matrix.tdoty(rows[1]), p_matrix.tdotz(rows[1]),
|
|
p_matrix.tdotx(rows[2]), p_matrix.tdoty(rows[2]), p_matrix.tdotz(rows[2]));
|
|
}
|
|
|
|
_FORCE_INLINE_ void Basis::operator+=(const Basis &p_matrix) {
|
|
rows[0] += p_matrix.rows[0];
|
|
rows[1] += p_matrix.rows[1];
|
|
rows[2] += p_matrix.rows[2];
|
|
}
|
|
|
|
_FORCE_INLINE_ Basis Basis::operator+(const Basis &p_matrix) const {
|
|
Basis ret(*this);
|
|
ret += p_matrix;
|
|
return ret;
|
|
}
|
|
|
|
_FORCE_INLINE_ void Basis::operator-=(const Basis &p_matrix) {
|
|
rows[0] -= p_matrix.rows[0];
|
|
rows[1] -= p_matrix.rows[1];
|
|
rows[2] -= p_matrix.rows[2];
|
|
}
|
|
|
|
_FORCE_INLINE_ Basis Basis::operator-(const Basis &p_matrix) const {
|
|
Basis ret(*this);
|
|
ret -= p_matrix;
|
|
return ret;
|
|
}
|
|
|
|
_FORCE_INLINE_ void Basis::operator*=(const real_t p_val) {
|
|
rows[0] *= p_val;
|
|
rows[1] *= p_val;
|
|
rows[2] *= p_val;
|
|
}
|
|
|
|
_FORCE_INLINE_ Basis Basis::operator*(const real_t p_val) const {
|
|
Basis ret(*this);
|
|
ret *= p_val;
|
|
return ret;
|
|
}
|
|
|
|
Vector3 Basis::xform(const Vector3 &p_vector) const {
|
|
return Vector3(
|
|
rows[0].dot(p_vector),
|
|
rows[1].dot(p_vector),
|
|
rows[2].dot(p_vector));
|
|
}
|
|
|
|
Vector3 Basis::xform_inv(const Vector3 &p_vector) const {
|
|
return Vector3(
|
|
(rows[0][0] * p_vector.x) + (rows[1][0] * p_vector.y) + (rows[2][0] * p_vector.z),
|
|
(rows[0][1] * p_vector.x) + (rows[1][1] * p_vector.y) + (rows[2][1] * p_vector.z),
|
|
(rows[0][2] * p_vector.x) + (rows[1][2] * p_vector.y) + (rows[2][2] * p_vector.z));
|
|
}
|
|
|
|
real_t Basis::determinant() const {
|
|
return rows[0][0] * (rows[1][1] * rows[2][2] - rows[2][1] * rows[1][2]) -
|
|
rows[1][0] * (rows[0][1] * rows[2][2] - rows[2][1] * rows[0][2]) +
|
|
rows[2][0] * (rows[0][1] * rows[1][2] - rows[1][1] * rows[0][2]);
|
|
}
|
|
|
|
#endif // BASIS_H
|