godot/modules/regex/regex.cpp
2017-06-26 05:52:56 +08:00

1500 lines
32 KiB
C++

/*************************************************************************/
/* regex.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "regex.h"
#include <wchar.h>
#include <wctype.h>
static int RegEx_hex2int(const CharType c) {
if ('0' <= c && c <= '9')
return int(c - '0');
else if ('a' <= c && c <= 'f')
return int(c - 'a') + 10;
else if ('A' <= c && c <= 'F')
return int(c - 'A') + 10;
return -1;
}
struct RegExSearch {
Ref<RegExMatch> match;
const CharType *str;
int end;
int eof;
// For standard quantifier behaviour, test_parent is used to check the
// rest of the pattern. If the pattern matches, to prevent the parent
// from testing again, the complete flag is used as a shortcut out.
bool complete;
// With lookahead, the position needs to rewind to its starting position
// when test_parent is used. Due to functional programming, this state
// has to be kept as a parameter.
Vector<int> lookahead_pos;
CharType at(int p_pos) {
return str[p_pos];
}
RegExSearch(Ref<RegExMatch> &p_match, int p_end, int p_lookahead)
: match(p_match) {
str = p_match->string.c_str();
end = p_end;
eof = p_match->string.length();
complete = false;
lookahead_pos.resize(p_lookahead);
}
};
struct RegExNode {
RegExNode *next;
RegExNode *previous;
RegExNode *parent;
bool quantifiable;
int length;
RegExNode() {
next = NULL;
previous = NULL;
parent = NULL;
quantifiable = false;
length = -1;
}
virtual ~RegExNode() {
if (next)
memdelete(next);
}
// For avoiding RTTI
virtual bool is_look_behind() { return false; }
virtual int test(RegExSearch &s, int pos) const {
return next ? next->test(s, pos) : -1;
}
virtual int test_parent(RegExSearch &s, int pos) const {
if (next)
pos = next->test(s, pos);
if (pos >= 0) {
s.complete = true;
if (parent)
pos = parent->test_parent(s, pos);
}
if (pos < 0)
s.complete = false;
return pos;
}
void increment_length(int amount, bool subtract = false) {
if (amount >= 0 && length >= 0) {
if (!subtract)
length += amount;
else
length -= amount;
} else {
length = -1;
}
if (parent)
parent->increment_length(amount, subtract);
}
};
struct RegExNodeChar : public RegExNode {
CharType ch;
RegExNodeChar(CharType p_char) {
length = 1;
quantifiable = true;
ch = p_char;
}
virtual int test(RegExSearch &s, int pos) const {
if (s.end <= pos || 0 > pos || s.at(pos) != ch)
return -1;
return next ? next->test(s, pos + 1) : pos + 1;
}
static CharType parse_escape(const CharType *&c) {
int point = 0;
switch (c[1]) {
case 'x':
for (int i = 2; i <= 3; ++i) {
int res = RegEx_hex2int(c[i]);
if (res == -1)
return '\0';
point = (point << 4) + res;
}
c = &c[3];
return CharType(point);
case 'u':
for (int i = 2; i <= 5; ++i) {
int res = RegEx_hex2int(c[i]);
if (res == -1)
return '\0';
point = (point << 4) + res;
}
c = &c[5];
return CharType(point);
case '0': ++c; return '\0';
case 'a': ++c; return '\a';
case 'e': ++c; return '\e';
case 'f': ++c; return '\f';
case 'n': ++c; return '\n';
case 'r': ++c; return '\r';
case 't': ++c; return '\t';
case 'v': ++c; return '\v';
case 'b': ++c; return '\b';
default: break;
}
return (++c)[0];
}
};
struct RegExNodeRange : public RegExNode {
CharType start;
CharType end;
RegExNodeRange(CharType p_start, CharType p_end) {
length = 1;
quantifiable = true;
start = p_start;
end = p_end;
}
virtual int test(RegExSearch &s, int pos) const {
if (s.end <= pos || 0 > pos)
return -1;
CharType c = s.at(pos);
if (c < start || end < c)
return -1;
return next ? next->test(s, pos + 1) : pos + 1;
}
};
struct RegExNodeShorthand : public RegExNode {
CharType repr;
RegExNodeShorthand(CharType p_repr) {
length = 1;
quantifiable = true;
repr = p_repr;
}
virtual int test(RegExSearch &s, int pos) const {
if (s.end <= pos || 0 > pos)
return -1;
bool found = false;
bool invert = false;
CharType c = s.at(pos);
switch (repr) {
case '.':
found = true;
break;
case 'W':
invert = true;
case 'w':
found = (c == '_' || iswalnum(c) != 0);
break;
case 'D':
invert = true;
case 'd':
found = ('0' <= c && c <= '9');
break;
case 'S':
invert = true;
case 's':
found = (iswspace(c) != 0);
break;
default:
break;
}
if (found == invert)
return -1;
return next ? next->test(s, pos + 1) : pos + 1;
}
};
struct RegExNodeClass : public RegExNode {
enum Type {
Type_none,
Type_alnum,
Type_alpha,
Type_ascii,
Type_blank,
Type_cntrl,
Type_digit,
Type_graph,
Type_lower,
Type_print,
Type_punct,
Type_space,
Type_upper,
Type_xdigit,
Type_word
};
Type type;
bool test_class(CharType c) const {
static Vector<CharType> REGEX_NODE_SPACE = String(" \t\r\n\f");
static Vector<CharType> REGEX_NODE_PUNCT = String("!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~");
switch (type) {
case Type_alnum:
if ('0' <= c && c <= '9') return true;
if ('a' <= c && c <= 'z') return true;
if ('A' <= c && c <= 'Z') return true;
return false;
case Type_alpha:
if ('a' <= c && c <= 'z') return true;
if ('A' <= c && c <= 'Z') return true;
return false;
case Type_ascii:
return (0x00 <= c && c <= 0x7F);
case Type_blank:
return (c == ' ' || c == '\t');
case Type_cntrl:
return ((0x00 <= c && c <= 0x1F) || c == 0x7F);
case Type_digit:
return ('0' <= c && c <= '9');
case Type_graph:
return (0x20 < c && c < 0x7F);
case Type_lower:
return ('a' <= c && c <= 'z');
case Type_print:
return (0x20 < c && c < 0x7f);
case Type_punct:
return (REGEX_NODE_PUNCT.find(c) >= 0);
case Type_space:
return (REGEX_NODE_SPACE.find(c) >= 0);
case Type_upper:
return ('A' <= c && c <= 'Z');
case Type_xdigit:
if ('0' <= c && c <= '9') return true;
if ('a' <= c && c <= 'f') return true;
if ('A' <= c && c <= 'F') return true;
return false;
case Type_word:
if ('0' <= c && c <= '9') return true;
if ('a' <= c && c <= 'z') return true;
if ('A' <= c && c <= 'Z') return true;
return (c == '_');
default:
return false;
}
return false;
}
RegExNodeClass(Type p_type) {
length = 1;
quantifiable = true;
type = p_type;
}
virtual int test(RegExSearch &s, int pos) const {
if (s.end <= pos || 0 > pos)
return -1;
if (!test_class(s.at(pos)))
return -1;
return next ? next->test(s, pos + 1) : pos + 1;
}
#define REGEX_CMP_CLASS(POS, NAME) \
if (cmp_class(POS, #NAME)) return Type_##NAME
static Type parse_type(const CharType *&p_pos) {
REGEX_CMP_CLASS(p_pos, alnum);
REGEX_CMP_CLASS(p_pos, alpha);
REGEX_CMP_CLASS(p_pos, ascii);
REGEX_CMP_CLASS(p_pos, blank);
REGEX_CMP_CLASS(p_pos, cntrl);
REGEX_CMP_CLASS(p_pos, digit);
REGEX_CMP_CLASS(p_pos, graph);
REGEX_CMP_CLASS(p_pos, lower);
REGEX_CMP_CLASS(p_pos, print);
REGEX_CMP_CLASS(p_pos, punct);
REGEX_CMP_CLASS(p_pos, space);
REGEX_CMP_CLASS(p_pos, upper);
REGEX_CMP_CLASS(p_pos, xdigit);
REGEX_CMP_CLASS(p_pos, word);
return Type_none;
}
static bool cmp_class(const CharType *&p_pos, const char *p_text) {
unsigned int i = 0;
for (i = 0; p_text[i] != '\0'; ++i)
if (p_pos[i] != p_text[i])
return false;
if (p_pos[i++] != ':' || p_pos[i] != ']')
return false;
p_pos = &p_pos[i];
return true;
}
};
struct RegExNodeAnchorStart : public RegExNode {
RegExNodeAnchorStart() {
length = 0;
}
virtual int test(RegExSearch &s, int pos) const {
if (pos != 0)
return -1;
return next ? next->test(s, pos) : pos;
}
};
struct RegExNodeAnchorEnd : public RegExNode {
RegExNodeAnchorEnd() {
length = 0;
}
virtual int test(RegExSearch &s, int pos) const {
if (pos != s.eof)
return -1;
return next ? next->test(s, pos) : pos;
}
};
struct RegExNodeWordBoundary : public RegExNode {
bool inverse;
RegExNodeWordBoundary(bool p_inverse) {
length = 0;
inverse = p_inverse;
}
virtual int test(RegExSearch &s, int pos) const {
bool left = false;
bool right = false;
if (pos != 0) {
CharType c = s.at(pos - 1);
if (c == '_' || iswalnum(c))
left = true;
}
if (pos != s.eof) {
CharType c = s.at(pos);
if (c == '_' || iswalnum(c))
right = true;
}
if ((left == right) != inverse)
return -1;
return next ? next->test(s, pos) : pos;
}
};
struct RegExNodeQuantifier : public RegExNode {
int min;
int max;
bool greedy;
RegExNode *child;
RegExNodeQuantifier(int p_min, int p_max) {
min = p_min;
max = p_max;
greedy = true;
child = NULL;
}
~RegExNodeQuantifier() {
if (child)
memdelete(child);
}
virtual int test(RegExSearch &s, int pos) const {
return test_step(s, pos, 0, pos);
}
virtual int test_parent(RegExSearch &s, int pos) const {
s.complete = false;
return pos;
}
int test_step(RegExSearch &s, int pos, int level, int start) const {
if (pos > s.end)
return -1;
if (!greedy && level > min) {
int res = next ? next->test(s, pos) : pos;
if (s.complete)
return res;
if (res >= 0 && parent->test_parent(s, res) >= 0)
return res;
}
if (max >= 0 && level > max)
return -1;
int res = pos;
if (level >= 1) {
if (level > min + 1 && pos == start)
return -1;
res = child->test(s, pos);
if (s.complete)
return res;
}
if (res >= 0) {
int res_step = test_step(s, res, level + 1, start);
if (res_step >= 0)
return res_step;
if (greedy && level >= min) {
if (next)
res = next->test(s, res);
if (s.complete)
return res;
if (res >= 0 && parent->test_parent(s, res) >= 0)
return res;
}
}
return -1;
}
};
struct RegExNodeBackReference : public RegExNode {
int id;
RegExNodeBackReference(int p_id) {
length = -1;
quantifiable = true;
id = p_id;
}
virtual int test(RegExSearch &s, int pos) const {
RegExMatch::Group &ref = s.match->captures[id];
for (int i = 0; i < ref.length; ++i) {
if (pos + i >= s.end)
return -1;
if (s.at(ref.start + i) != s.at(pos + i))
return -1;
}
return next ? next->test(s, pos + ref.length) : pos + ref.length;
}
};
struct RegExNodeGroup : public RegExNode {
bool inverse;
bool reset_pos;
Vector<RegExNode *> childset;
RegExNode *back;
RegExNodeGroup() {
length = 0;
quantifiable = true;
inverse = false;
reset_pos = false;
back = NULL;
}
virtual ~RegExNodeGroup() {
for (int i = 0; i < childset.size(); ++i)
memdelete(childset[i]);
}
virtual int test(RegExSearch &s, int pos) const {
for (int i = 0; i < childset.size(); ++i) {
s.complete = false;
int res = childset[i]->test(s, pos);
if (s.complete)
return res;
if (inverse) {
if (res < 0)
res = pos + 1;
else
return -1;
if (i + 1 < childset.size())
continue;
}
if (res >= 0) {
if (reset_pos)
res = pos;
return next ? next->test(s, res) : res;
}
}
return -1;
}
void add_child(RegExNode *node) {
node->parent = this;
node->previous = back;
if (back)
back->next = node;
else
childset.push_back(node);
increment_length(node->length);
back = node;
}
void add_childset() {
if (childset.size() > 0)
length = -1;
back = NULL;
}
RegExNode *swap_back(RegExNode *node) {
RegExNode *old = back;
if (old) {
if (!old->previous)
childset.remove(childset.size() - 1);
back = old->previous;
increment_length(old->length, true);
}
add_child(node);
return old;
}
};
struct RegExNodeCapturing : public RegExNodeGroup {
int id;
RegExNodeCapturing(int p_id = 0) {
id = p_id;
}
virtual int test(RegExSearch &s, int pos) const {
RegExMatch::Group &ref = s.match->captures[id];
int old_start = ref.start;
ref.start = pos;
int res = RegExNodeGroup::test(s, pos);
if (res >= 0) {
if (!s.complete)
ref.length = res - pos;
} else {
ref.start = old_start;
}
return res;
}
virtual int test_parent(RegExSearch &s, int pos) const {
RegExMatch::Group &ref = s.match->captures[id];
ref.length = pos - ref.start;
return RegExNode::test_parent(s, pos);
}
static Variant parse_name(const CharType *&c, bool p_allow_numeric) {
if (c[1] == '0') {
return -1;
} else if ('1' <= c[1] && c[1] <= '9') {
if (!p_allow_numeric)
return -1;
int res = (++c)[0] - '0';
while ('0' <= c[1] && c[1] <= '9')
res = res * 10 + int((++c)[0] - '0');
if ((++c)[0] != '>')
return -1;
return res;
} else if (iswalnum(c[1])) {
String res(++c, 1);
while (iswalnum(c[1]))
res += String(++c, 1);
if ((++c)[0] != '>')
return -1;
return res;
}
return -1;
}
};
struct RegExNodeLookAhead : public RegExNodeGroup {
int id;
RegExNodeLookAhead(bool p_inverse, int p_id = 0) {
quantifiable = false;
inverse = p_inverse;
reset_pos = true;
id = p_id;
}
virtual int test(RegExSearch &s, int pos) const {
s.lookahead_pos[id] = pos;
return RegExNodeGroup::test(s, pos);
}
virtual int test_parent(RegExSearch &s, int pos) const {
return RegExNode::test_parent(s, s.lookahead_pos[id]);
}
};
struct RegExNodeLookBehind : public RegExNodeGroup {
RegExNodeLookBehind(bool p_inverse, int p_id = 0) {
quantifiable = false;
inverse = p_inverse;
reset_pos = true;
}
virtual bool is_look_behind() { return true; }
virtual int test(RegExSearch &s, int pos) const {
if (pos < length)
return -1;
return RegExNodeGroup::test(s, pos - length);
}
};
struct RegExNodeBracket : public RegExNode {
bool inverse;
Vector<RegExNode *> children;
RegExNodeBracket() {
length = 1;
quantifiable = true;
inverse = false;
}
virtual ~RegExNodeBracket() {
for (int i = 0; i < children.size(); ++i)
memdelete(children[i]);
}
virtual int test(RegExSearch &s, int pos) const {
for (int i = 0; i < children.size(); ++i) {
int res = children[i]->test(s, pos);
if (inverse) {
if (res < 0)
res = pos + 1;
else
return -1;
if (i + 1 < children.size())
continue;
}
if (res >= 0)
return next ? next->test(s, res) : res;
}
return -1;
}
void add_child(RegExNode *node) {
node->parent = this;
children.push_back(node);
}
void pop_back() {
memdelete(children[children.size() - 1]);
children.remove(children.size() - 1);
}
};
#define REGEX_EXPAND_FAIL(MSG) \
{ \
ERR_PRINT(MSG); \
return String(); \
}
String RegExMatch::expand(const String &p_template) const {
String res;
for (const CharType *c = p_template.c_str(); *c != '\0'; ++c) {
if (c[0] == '\\') {
if (('1' <= c[1] && c[1] <= '9') || (c[1] == 'g' && c[2] == '{')) {
int ref = 0;
bool unclosed = false;
if (c[1] == 'g') {
unclosed = true;
c = &c[2];
}
while ('0' <= c[1] && c[1] <= '9') {
ref = ref * 10 + int(c[1] - '0');
++c;
}
if (unclosed) {
if (c[1] != '}')
REGEX_EXPAND_FAIL("unclosed backreference '{'");
++c;
}
res += get_string(ref);
} else if (c[1] == 'g' && c[2] == '<') {
const CharType *d = &c[2];
Variant name = RegExNodeCapturing::parse_name(d, true);
if (name == Variant(-1))
REGEX_EXPAND_FAIL("unrecognised character for group name");
c = d;
res += get_string(name);
} else {
const CharType *d = c;
CharType ch = RegExNodeChar::parse_escape(d);
if (c == d)
REGEX_EXPAND_FAIL("invalid escape token");
res += String(&ch, 1);
c = d;
}
} else {
res += String(c, 1);
}
}
return res;
}
int RegExMatch::get_group_count() const {
int count = 0;
for (int i = 1; i < captures.size(); ++i)
if (captures[i].name.get_type() == Variant::INT)
++count;
return count;
}
Array RegExMatch::get_group_array() const {
Array res;
for (int i = 1; i < captures.size(); ++i) {
const RegExMatch::Group &capture = captures[i];
if (capture.name.get_type() != Variant::INT)
continue;
if (capture.start >= 0)
res.push_back(string.substr(capture.start, capture.length));
else
res.push_back(String());
}
return res;
}
Array RegExMatch::get_names() const {
Array res;
for (int i = 1; i < captures.size(); ++i)
if (captures[i].name.get_type() == Variant::STRING)
res.push_back(captures[i].name);
return res;
}
Dictionary RegExMatch::get_name_dict() const {
Dictionary res;
for (int i = 1; i < captures.size(); ++i) {
const RegExMatch::Group &capture = captures[i];
if (capture.name.get_type() != Variant::STRING)
continue;
if (capture.start >= 0)
res[capture.name] = string.substr(capture.start, capture.length);
else
res[capture.name] = String();
}
return res;
}
String RegExMatch::get_string(const Variant &p_name) const {
for (int i = 0; i < captures.size(); ++i) {
const RegExMatch::Group &capture = captures[i];
if (capture.name != p_name)
continue;
if (capture.start == -1)
return String();
return string.substr(capture.start, capture.length);
}
return String();
}
int RegExMatch::get_start(const Variant &p_name) const {
for (int i = 0; i < captures.size(); ++i)
if (captures[i].name == p_name)
return captures[i].start;
return -1;
}
int RegExMatch::get_end(const Variant &p_name) const {
for (int i = 0; i < captures.size(); ++i)
if (captures[i].name == p_name)
return captures[i].start + captures[i].length;
return -1;
}
RegExMatch::RegExMatch() {
}
static bool RegEx_is_shorthand(CharType ch) {
switch (ch) {
case 'w':
case 'W':
case 'd':
case 'D':
case 's':
case 'S':
return true;
default:
break;
}
return false;
}
#define REGEX_COMPILE_FAIL(MSG) \
{ \
ERR_PRINT(MSG); \
clear(); \
return FAILED; \
}
Error RegEx::compile(const String &p_pattern) {
ERR_FAIL_COND_V(p_pattern.length() == 0, FAILED);
if (pattern == p_pattern && root)
return OK;
clear();
pattern = p_pattern;
group_names.push_back(0);
RegExNodeGroup *root_group = memnew(RegExNodeCapturing(0));
root = root_group;
Vector<RegExNodeGroup *> stack;
stack.push_back(root_group);
int lookahead_level = 0;
int numeric_groups = 0;
const int numeric_max = 9;
for (const CharType *c = p_pattern.c_str(); *c != '\0'; ++c) {
switch (c[0]) {
case '(':
if (c[1] == '?') {
RegExNodeGroup *group = NULL;
switch (c[2]) {
case ':':
c = &c[2];
group = memnew(RegExNodeGroup());
break;
case '!':
case '=':
group = memnew(RegExNodeLookAhead((c[2] == '!'), lookahead_level++));
if (lookahead_depth < lookahead_level)
lookahead_depth = lookahead_level;
c = &c[2];
break;
case '<':
if (c[3] == '!' || c[3] == '=') {
group = memnew(RegExNodeLookBehind((c[3] == '!'), lookahead_level++));
c = &c[3];
}
break;
case 'P':
if (c[3] == '<') {
const CharType *d = &c[3];
Variant name = RegExNodeCapturing::parse_name(d, false);
if (name == Variant(-1))
REGEX_COMPILE_FAIL("unrecognised character for group name");
group = memnew(RegExNodeCapturing(group_names.size()));
group_names.push_back(name);
c = d;
}
default:
break;
}
if (!group)
REGEX_COMPILE_FAIL("unrecognised qualifier for group");
stack[0]->add_child(group);
stack.insert(0, group);
} else if (numeric_groups < numeric_max) {
RegExNodeCapturing *group = memnew(RegExNodeCapturing(group_names.size()));
group_names.push_back(++numeric_groups);
stack[0]->add_child(group);
stack.insert(0, group);
} else {
RegExNodeGroup *group = memnew(RegExNodeGroup());
stack[0]->add_child(group);
stack.insert(0, group);
}
break;
case ')':
if (stack.size() == 1)
REGEX_COMPILE_FAIL("unexpected ')'");
stack.remove(0);
break;
case '\\':
if (('1' <= c[1] && c[1] <= '9') || (c[1] == 'g' && c[2] == '{')) {
int ref = 0;
bool unclosed = false;
if (c[1] == 'g') {
unclosed = true;
c = &c[2];
}
while ('0' <= c[1] && c[1] <= '9') {
ref = ref * 10 + int(c[1] - '0');
++c;
}
if (unclosed) {
if (c[1] != '}')
REGEX_COMPILE_FAIL("unclosed backreference '{'");
++c;
}
if (ref > numeric_groups || ref <= 0)
REGEX_COMPILE_FAIL("backreference not found");
for (int i = 0; i < stack.size(); ++i)
if (stack[i]->is_look_behind())
REGEX_COMPILE_FAIL("backreferences inside lookbehind not supported");
for (int i = 0; i < group_names.size(); ++i) {
if (group_names[i].get_type() == Variant::INT && int(group_names[i]) == ref) {
ref = group_names[i];
break;
}
}
stack[0]->add_child(memnew(RegExNodeBackReference(ref)));
}
if (c[1] == 'g' && c[2] == '<') {
const CharType *d = &c[2];
Variant name = RegExNodeCapturing::parse_name(d, true);
if (name == Variant(-1))
REGEX_COMPILE_FAIL("unrecognised character for group name");
c = d;
for (int i = 0; i < stack.size(); ++i)
if (stack[i]->is_look_behind())
REGEX_COMPILE_FAIL("backreferences inside lookbehind not supported");
int ref = -1;
for (int i = 0; i < group_names.size(); ++i) {
if (group_names[i].get_type() == Variant::INT && int(group_names[i]) == ref) {
ref = group_names[i];
break;
}
}
if (ref == -1)
REGEX_COMPILE_FAIL("backreference not found");
stack[0]->add_child(memnew(RegExNodeBackReference(ref)));
} else if (c[1] == 'b' || c[1] == 'B') {
stack[0]->add_child(memnew(RegExNodeWordBoundary(*(++c) == 'B')));
} else if (RegEx_is_shorthand(c[1])) {
stack[0]->add_child(memnew(RegExNodeShorthand(*(++c))));
} else {
const CharType *d = c;
CharType ch = RegExNodeChar::parse_escape(d);
if (c == d)
REGEX_COMPILE_FAIL("invalid escape token");
stack[0]->add_child(memnew(RegExNodeChar(ch)));
c = d;
}
break;
case '[': {
RegExNodeBracket *bracket = memnew(RegExNodeBracket());
stack[0]->add_child(bracket);
if (c[1] == '^') {
bracket->inverse = true;
++c;
}
bool first_child = true;
CharType previous_child;
bool previous_child_single = false;
while (true) {
++c;
if (!first_child && c[0] == ']') {
break;
} else if (c[0] == '\0') {
REGEX_COMPILE_FAIL("unclosed bracket expression '['");
} else if (c[0] == '\\') {
if (RegEx_is_shorthand(c[1])) {
bracket->add_child(memnew(RegExNodeShorthand(*(++c))));
} else {
const CharType *d = c;
CharType ch = RegExNodeChar::parse_escape(d);
if (c == d)
REGEX_COMPILE_FAIL("invalid escape token");
bracket->add_child(memnew(RegExNodeChar(ch)));
c = d;
previous_child = ch;
previous_child_single = true;
}
} else if (c[0] == ']' && c[1] == ':') {
const CharType *d = &c[2];
RegExNodeClass::Type type = RegExNodeClass::parse_type(d);
if (type != RegExNodeClass::Type_none) {
c = d;
previous_child_single = false;
} else {
bracket->add_child(memnew(RegExNodeChar('[')));
previous_child = '[';
previous_child_single = true;
}
} else if (previous_child_single && c[0] == '-') {
if (c[1] != '\0' && c[1] != ']') {
CharType next;
if (c[1] == '\\') {
const CharType *d = ++c;
next = RegExNodeChar::parse_escape(d);
if (c == d)
REGEX_COMPILE_FAIL("invalid escape token");
} else {
next = *(++c);
}
if (next < previous_child)
REGEX_COMPILE_FAIL("text range out of order");
bracket->pop_back();
bracket->add_child(memnew(RegExNodeRange(previous_child, next)));
previous_child_single = false;
} else {
bracket->add_child(memnew(RegExNodeChar('-')));
previous_child = '-';
previous_child_single = true;
}
} else {
bracket->add_child(memnew(RegExNodeChar(c[0])));
previous_child = c[0];
previous_child_single = true;
}
first_child = false;
}
} break;
case '|':
for (int i = 0; i < stack.size(); ++i)
if (stack[i]->is_look_behind())
REGEX_COMPILE_FAIL("alternations inside lookbehind not supported");
stack[0]->add_childset();
break;
case '^':
stack[0]->add_child(memnew(RegExNodeAnchorStart()));
break;
case '$':
stack[0]->add_child(memnew(RegExNodeAnchorEnd()));
break;
case '.':
stack[0]->add_child(memnew(RegExNodeShorthand('.')));
break;
case '?':
case '*':
case '+':
case '{': {
int min_val = 0;
int max_val = -1;
bool valid = true;
const CharType *d = c;
bool max_set = true;
switch (c[0]) {
case '?':
min_val = 0;
max_val = 1;
break;
case '*':
min_val = 0;
max_val = -1;
break;
case '+':
min_val = 1;
max_val = -1;
break;
case '{':
max_set = false;
while (valid) {
++d;
if (d[0] == '}') {
break;
} else if (d[0] == ',') {
max_set = true;
} else if ('0' <= d[0] && d[0] <= '9') {
if (max_set) {
if (max_val < 0)
max_val = int(d[0] - '0');
else
max_val = max_val * 10 + int(d[0] - '0');
} else {
min_val = min_val * 10 + int(d[0] - '0');
}
} else {
valid = false;
}
}
break;
default:
break;
}
if (!max_set)
max_val = min_val;
if (valid) {
c = d;
if (stack[0]->back == NULL || !stack[0]->back->quantifiable)
REGEX_COMPILE_FAIL("element not quantifiable");
if (min_val != max_val)
for (int i = 0; i < stack.size(); ++i)
if (stack[i]->is_look_behind())
REGEX_COMPILE_FAIL("variable length quantifiers inside lookbehind not supported");
RegExNodeQuantifier *quant = memnew(RegExNodeQuantifier(min_val, max_val));
quant->child = stack[0]->swap_back(quant);
quant->child->previous = NULL;
quant->child->parent = quant;
if (min_val == max_val && quant->child->length >= 0)
quant->length = max_val * quant->child->length;
if (c[1] == '?') {
quant->greedy = false;
++c;
}
break;
}
}
default:
stack[0]->add_child(memnew(RegExNodeChar(c[0])));
break;
}
}
if (stack.size() > 1)
REGEX_COMPILE_FAIL("unclosed group '('");
return OK;
}
Ref<RegExMatch> RegEx::search(const String &p_text, int p_start, int p_end) const {
ERR_FAIL_COND_V(!is_valid(), NULL);
ERR_FAIL_COND_V(p_start < 0, NULL);
ERR_FAIL_COND_V(p_start >= p_text.length(), NULL);
ERR_FAIL_COND_V(p_end > p_text.length(), NULL);
ERR_FAIL_COND_V(p_end != -1 && p_end < p_start, NULL);
Ref<RegExMatch> res = memnew(RegExMatch());
for (int i = 0; i < group_names.size(); ++i) {
RegExMatch::Group group;
group.name = group_names[i];
res->captures.push_back(group);
}
res->string = p_text;
if (p_end == -1)
p_end = p_text.length();
RegExSearch s(res, p_end, lookahead_depth);
for (int i = p_start; i <= s.end; ++i) {
for (int c = 0; c < group_names.size(); ++c) {
res->captures[c].start = -1;
res->captures[c].length = 0;
}
if (root->test(s, i) >= 0)
break;
}
if (res->captures[0].start >= 0)
return res;
return NULL;
}
String RegEx::sub(const String &p_text, const String &p_replacement, bool p_all, int p_start, int p_end) const {
ERR_FAIL_COND_V(!is_valid(), p_text);
ERR_FAIL_COND_V(p_start < 0, p_text);
ERR_FAIL_COND_V(p_start >= p_text.length(), p_text);
ERR_FAIL_COND_V(p_end > p_text.length(), p_text);
ERR_FAIL_COND_V(p_end != -1 && p_end < p_start, p_text);
String text = p_text;
int start = p_start;
if (p_end == -1)
p_end = p_text.length();
while (start < text.length() && (p_all || start == p_start)) {
Ref<RegExMatch> m = search(text, start, p_end);
RegExMatch::Group &s = m->captures[0];
if (s.start < 0)
break;
String res = text.substr(0, s.start) + m->expand(p_replacement);
start = res.length();
if (s.length == 0)
++start;
int sub_end = s.start + s.length;
if (sub_end < text.length())
res += text.substr(sub_end, text.length() - sub_end);
p_end += res.length() - text.length();
text = res;
}
return text;
}
void RegEx::clear() {
if (root)
memdelete(root);
root = NULL;
group_names.clear();
lookahead_depth = 0;
}
bool RegEx::is_valid() const {
return (root != NULL);
}
String RegEx::get_pattern() const {
return pattern;
}
int RegEx::get_group_count() const {
int count = 0;
for (int i = 1; i < group_names.size(); ++i)
if (group_names[i].get_type() == Variant::INT)
++count;
return count;
}
Array RegEx::get_names() const {
Array res;
for (int i = 1; i < group_names.size(); ++i)
if (group_names[i].get_type() == Variant::STRING)
res.push_back(group_names[i]);
return res;
}
RegEx::RegEx() {
root = NULL;
lookahead_depth = 0;
}
RegEx::RegEx(const String &p_pattern) {
root = NULL;
compile(p_pattern);
}
RegEx::~RegEx() {
if (root)
memdelete(root);
}
void RegExMatch::_bind_methods() {
ClassDB::bind_method(D_METHOD("expand", "template"), &RegExMatch::expand);
ClassDB::bind_method(D_METHOD("get_group_count"), &RegExMatch::get_group_count);
ClassDB::bind_method(D_METHOD("get_group_array"), &RegExMatch::get_group_array);
ClassDB::bind_method(D_METHOD("get_names"), &RegExMatch::get_names);
ClassDB::bind_method(D_METHOD("get_name_dict"), &RegExMatch::get_name_dict);
ClassDB::bind_method(D_METHOD("get_string", "name"), &RegExMatch::get_string, DEFVAL(0));
ClassDB::bind_method(D_METHOD("get_start", "name"), &RegExMatch::get_start, DEFVAL(0));
ClassDB::bind_method(D_METHOD("get_end", "name"), &RegExMatch::get_end, DEFVAL(0));
}
void RegEx::_bind_methods() {
ClassDB::bind_method(D_METHOD("clear"), &RegEx::clear);
ClassDB::bind_method(D_METHOD("compile", "pattern"), &RegEx::compile);
ClassDB::bind_method(D_METHOD("search:RegExMatch", "text", "start", "end"), &RegEx::search, DEFVAL(0), DEFVAL(-1));
ClassDB::bind_method(D_METHOD("sub", "text", "replacement", "all", "start", "end"), &RegEx::sub, DEFVAL(false), DEFVAL(0), DEFVAL(-1));
ClassDB::bind_method(D_METHOD("is_valid"), &RegEx::is_valid);
ClassDB::bind_method(D_METHOD("get_pattern"), &RegEx::get_pattern);
ClassDB::bind_method(D_METHOD("get_group_count"), &RegEx::get_group_count);
ClassDB::bind_method(D_METHOD("get_names"), &RegEx::get_names);
ADD_PROPERTY(PropertyInfo(Variant::STRING, "pattern"), "compile", "get_pattern");
}