godot/thirdparty/embree/kernels/common/scene_grid_mesh.h
Jakub Mateusz Marcowski c43eab55a4
embree: Update to 4.3.1
2024-03-27 22:10:35 +01:00

469 lines
17 KiB
C++

// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "geometry.h"
#include "buffer.h"
namespace embree
{
/*! Grid Mesh */
struct GridMesh : public Geometry
{
/*! type of this geometry */
static const Geometry::GTypeMask geom_type = Geometry::MTY_GRID_MESH;
/*! grid */
struct Grid
{
unsigned int startVtxID;
unsigned int lineVtxOffset;
unsigned short resX,resY;
/* border flags due to 3x3 vertex pattern */
__forceinline unsigned int get3x3FlagsX(const unsigned int x) const
{
return (x + 2 >= (unsigned int)resX) ? (1<<15) : 0;
}
/* border flags due to 3x3 vertex pattern */
__forceinline unsigned int get3x3FlagsY(const unsigned int y) const
{
return (y + 2 >= (unsigned int)resY) ? (1<<15) : 0;
}
/*! outputs grid structure */
__forceinline friend embree_ostream operator<<(embree_ostream cout, const Grid& t) {
return cout << "Grid { startVtxID " << t.startVtxID << ", lineVtxOffset " << t.lineVtxOffset << ", resX " << t.resX << ", resY " << t.resY << " }";
}
};
public:
/*! grid mesh construction */
GridMesh (Device* device);
/* geometry interface */
public:
void setMask(unsigned mask);
void setNumTimeSteps (unsigned int numTimeSteps);
void setVertexAttributeCount (unsigned int N);
void setBuffer(RTCBufferType type, unsigned int slot, RTCFormat format, const Ref<Buffer>& buffer, size_t offset, size_t stride, unsigned int num);
void* getBuffer(RTCBufferType type, unsigned int slot);
void updateBuffer(RTCBufferType type, unsigned int slot);
void commit();
bool verify();
void interpolate(const RTCInterpolateArguments* const args);
template<int N>
void interpolate_impl(const RTCInterpolateArguments* const args)
{
unsigned int primID = args->primID;
float U = args->u;
float V = args->v;
/* clamp input u,v to [0;1] range */
U = max(min(U,1.0f),0.0f);
V = max(min(V,1.0f),0.0f);
RTCBufferType bufferType = args->bufferType;
unsigned int bufferSlot = args->bufferSlot;
float* P = args->P;
float* dPdu = args->dPdu;
float* dPdv = args->dPdv;
float* ddPdudu = args->ddPdudu;
float* ddPdvdv = args->ddPdvdv;
float* ddPdudv = args->ddPdudv;
unsigned int valueCount = args->valueCount;
/* calculate base pointer and stride */
assert((bufferType == RTC_BUFFER_TYPE_VERTEX && bufferSlot < numTimeSteps) ||
(bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE && bufferSlot <= vertexAttribs.size()));
const char* src = nullptr;
size_t stride = 0;
if (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) {
src = vertexAttribs[bufferSlot].getPtr();
stride = vertexAttribs[bufferSlot].getStride();
} else {
src = vertices[bufferSlot].getPtr();
stride = vertices[bufferSlot].getStride();
}
const Grid& grid = grids[primID];
const int grid_width = grid.resX-1;
const int grid_height = grid.resY-1;
const float rcp_grid_width = rcp(float(grid_width));
const float rcp_grid_height = rcp(float(grid_height));
const int iu = min((int)floor(U*grid_width ),grid_width);
const int iv = min((int)floor(V*grid_height),grid_height);
const float u = U*grid_width-float(iu);
const float v = V*grid_height-float(iv);
for (unsigned int i=0; i<valueCount; i+=N)
{
const size_t ofs = i*sizeof(float);
const unsigned int idx0 = grid.startVtxID + (iv+0)*grid.lineVtxOffset + iu;
const unsigned int idx1 = grid.startVtxID + (iv+1)*grid.lineVtxOffset + iu;
const vbool<N> valid = vint<N>((int)i)+vint<N>(step) < vint<N>(int(valueCount));
const vfloat<N> p0 = mem<vfloat<N>>::loadu(valid,(float*)&src[(idx0+0)*stride+ofs]);
const vfloat<N> p1 = mem<vfloat<N>>::loadu(valid,(float*)&src[(idx0+1)*stride+ofs]);
const vfloat<N> p2 = mem<vfloat<N>>::loadu(valid,(float*)&src[(idx1+1)*stride+ofs]);
const vfloat<N> p3 = mem<vfloat<N>>::loadu(valid,(float*)&src[(idx1+0)*stride+ofs]);
const vbool<N> left = u+v <= 1.0f;
const vfloat<N> Q0 = select(left,p0,p2);
const vfloat<N> Q1 = select(left,p1,p3);
const vfloat<N> Q2 = select(left,p3,p1);
const vfloat<N> U = select(left,u,vfloat<N>(1.0f)-u);
const vfloat<N> V = select(left,v,vfloat<N>(1.0f)-v);
const vfloat<N> W = 1.0f-U-V;
if (P) {
mem<vfloat<N>>::storeu(valid,P+i,madd(W,Q0,madd(U,Q1,V*Q2)));
}
if (dPdu) {
assert(dPdu); mem<vfloat<N>>::storeu(valid,dPdu+i,select(left,Q1-Q0,Q0-Q1)*rcp_grid_width);
assert(dPdv); mem<vfloat<N>>::storeu(valid,dPdv+i,select(left,Q2-Q0,Q0-Q2)*rcp_grid_height);
}
if (ddPdudu) {
assert(ddPdudu); mem<vfloat<N>>::storeu(valid,ddPdudu+i,vfloat<N>(zero));
assert(ddPdvdv); mem<vfloat<N>>::storeu(valid,ddPdvdv+i,vfloat<N>(zero));
assert(ddPdudv); mem<vfloat<N>>::storeu(valid,ddPdudv+i,vfloat<N>(zero));
}
}
}
void addElementsToCount (GeometryCounts & counts) const;
__forceinline unsigned int getNumTotalQuads() const
{
size_t quads = 0;
for (size_t primID=0; primID<numPrimitives; primID++)
quads += getNumQuads(primID);
return quads;
}
__forceinline unsigned int getNumQuads(const size_t gridID) const
{
const Grid& g = grid(gridID);
return (unsigned int) max((int)1,((int)g.resX-1) * ((int)g.resY-1));
}
__forceinline unsigned int getNumSubGrids(const size_t gridID) const
{
const Grid& g = grid(gridID);
return max((unsigned int)1,((unsigned int)g.resX >> 1) * ((unsigned int)g.resY >> 1));
}
/*! get fast access to first vertex buffer */
__forceinline float * getCompactVertexArray () const {
return (float*) vertices0.getPtr();
}
public:
/*! returns number of vertices */
__forceinline size_t numVertices() const {
return vertices[0].size();
}
/*! returns i'th grid*/
__forceinline const Grid& grid(size_t i) const {
return grids[i];
}
/*! returns i'th vertex of the first time step */
__forceinline const Vec3fa vertex(size_t i) const { // FIXME: check if this does a unaligned load
return vertices0[i];
}
/*! returns i'th vertex of the first time step */
__forceinline const char* vertexPtr(size_t i) const {
return vertices0.getPtr(i);
}
/*! returns i'th vertex of itime'th timestep */
__forceinline const Vec3fa vertex(size_t i, size_t itime) const {
return vertices[itime][i];
}
/*! returns i'th vertex of for specified time */
__forceinline const Vec3fa vertex(size_t i, float time) const
{
float ftime;
const size_t itime = timeSegment(time, ftime);
const float t0 = 1.0f - ftime;
const float t1 = ftime;
Vec3fa v0 = vertex(i, itime+0);
Vec3fa v1 = vertex(i, itime+1);
return madd(Vec3fa(t0),v0,t1*v1);
}
/*! returns i'th vertex of itime'th timestep */
__forceinline const char* vertexPtr(size_t i, size_t itime) const {
return vertices[itime].getPtr(i);
}
/*! returns i'th vertex of the first timestep */
__forceinline size_t grid_vertex_index(const Grid& g, size_t x, size_t y) const {
assert(x < (size_t)g.resX);
assert(y < (size_t)g.resY);
return g.startVtxID + x + y * g.lineVtxOffset;
}
/*! returns i'th vertex of the first timestep */
__forceinline const Vec3fa grid_vertex(const Grid& g, size_t x, size_t y) const {
const size_t index = grid_vertex_index(g,x,y);
return vertex(index);
}
/*! returns i'th vertex of the itime'th timestep */
__forceinline const Vec3fa grid_vertex(const Grid& g, size_t x, size_t y, size_t itime) const {
const size_t index = grid_vertex_index(g,x,y);
return vertex(index,itime);
}
/*! returns i'th vertex of the itime'th timestep */
__forceinline const Vec3fa grid_vertex(const Grid& g, size_t x, size_t y, float time) const {
const size_t index = grid_vertex_index(g,x,y);
return vertex(index,time);
}
/*! gathers quad vertices */
__forceinline void gather_quad_vertices(Vec3fa& v0, Vec3fa& v1, Vec3fa& v2, Vec3fa& v3, const Grid& g, size_t x, size_t y) const
{
v0 = grid_vertex(g,x+0,y+0);
v1 = grid_vertex(g,x+1,y+0);
v2 = grid_vertex(g,x+1,y+1);
v3 = grid_vertex(g,x+0,y+1);
}
/*! gathers quad vertices for specified time */
__forceinline void gather_quad_vertices(Vec3fa& v0, Vec3fa& v1, Vec3fa& v2, Vec3fa& v3, const Grid& g, size_t x, size_t y, float time) const
{
v0 = grid_vertex(g,x+0,y+0,time);
v1 = grid_vertex(g,x+1,y+0,time);
v2 = grid_vertex(g,x+1,y+1,time);
v3 = grid_vertex(g,x+0,y+1,time);
}
/*! gathers quad vertices for mblur and non-mblur meshes */
__forceinline void gather_quad_vertices_safe(Vec3fa& v0, Vec3fa& v1, Vec3fa& v2, Vec3fa& v3, const Grid& g, size_t x, size_t y, float time) const
{
if (hasMotionBlur()) gather_quad_vertices(v0,v1,v2,v3,g,x,y,time);
else gather_quad_vertices(v0,v1,v2,v3,g,x,y);
}
/*! calculates the build bounds of the i'th quad, if it's valid */
__forceinline bool buildBoundsQuad(const Grid& g, size_t sx, size_t sy, BBox3fa& bbox) const
{
BBox3fa b(empty);
for (size_t t=0; t<numTimeSteps; t++)
{
for (size_t y=sy;y<sy+2;y++)
for (size_t x=sx;x<sx+2;x++)
{
const Vec3fa v = grid_vertex(g,x,y,t);
if (unlikely(!isvalid(v))) return false;
b.extend(v);
}
}
bbox = b;
return true;
}
/*! calculates the build bounds of the i'th primitive, if it's valid */
__forceinline bool buildBounds(const Grid& g, size_t sx, size_t sy, BBox3fa& bbox) const
{
BBox3fa b(empty);
for (size_t t=0; t<numTimeSteps; t++)
{
for (size_t y=sy;y<min(sy+3,(size_t)g.resY);y++)
for (size_t x=sx;x<min(sx+3,(size_t)g.resX);x++)
{
const Vec3fa v = grid_vertex(g,x,y,t);
if (unlikely(!isvalid(v))) return false;
b.extend(v);
}
}
bbox = b;
return true;
}
/*! calculates the build bounds of the i'th primitive at the itime'th time segment, if it's valid */
__forceinline bool buildBounds(const Grid& g, size_t sx, size_t sy, size_t itime, BBox3fa& bbox) const
{
assert(itime < numTimeSteps);
BBox3fa b0(empty);
for (size_t y=sy;y<min(sy+3,(size_t)g.resY);y++)
for (size_t x=sx;x<min(sx+3,(size_t)g.resX);x++)
{
const Vec3fa v = grid_vertex(g,x,y,itime);
if (unlikely(!isvalid(v))) return false;
b0.extend(v);
}
/* use bounds of first time step in builder */
bbox = b0;
return true;
}
__forceinline bool valid(size_t gridID, size_t itime=0) const {
return valid(gridID, make_range(itime, itime));
}
/*! check if the i'th primitive is valid between the specified time range */
__forceinline bool valid(size_t gridID, const range<size_t>& itime_range) const
{
if (unlikely(gridID >= grids.size())) return false;
const Grid &g = grid(gridID);
if (unlikely(g.startVtxID + 0 >= vertices0.size())) return false;
if (unlikely(g.startVtxID + (g.resY-1)*g.lineVtxOffset + g.resX-1 >= vertices0.size())) return false;
for (size_t y=0;y<g.resY;y++)
for (size_t x=0;x<g.resX;x++)
for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++)
if (!isvalid(grid_vertex(g,x,y,itime))) return false;
return true;
}
__forceinline BBox3fa bounds(const Grid& g, size_t sx, size_t sy, size_t itime) const
{
BBox3fa box(empty);
buildBounds(g,sx,sy,itime,box);
return box;
}
__forceinline LBBox3fa linearBounds(const Grid& g, size_t sx, size_t sy, size_t itime) const {
BBox3fa bounds0, bounds1;
buildBounds(g,sx,sy,itime+0,bounds0);
buildBounds(g,sx,sy,itime+1,bounds1);
return LBBox3fa(bounds0,bounds1);
}
/*! calculates the linear bounds of the i'th primitive for the specified time range */
__forceinline LBBox3fa linearBounds(const Grid& g, size_t sx, size_t sy, const BBox1f& dt) const {
return LBBox3fa([&] (size_t itime) { return bounds(g,sx,sy,itime); }, dt, time_range, fnumTimeSegments);
}
__forceinline float projectedPrimitiveArea(const size_t i) const {
return pos_inf;
}
public:
BufferView<Grid> grids; //!< array of triangles
BufferView<Vec3fa> vertices0; //!< fast access to first vertex buffer
Device::vector<BufferView<Vec3fa>> vertices = device; //!< vertex array for each timestep
Device::vector<RawBufferView> vertexAttribs = device; //!< vertex attributes
#if defined(EMBREE_SYCL_SUPPORT)
public:
struct PrimID_XY { uint32_t primID; uint16_t x,y; };
Device::vector<PrimID_XY> quadID_to_primID_xy = device; //!< maps a quad to the primitive ID and grid coordinates
#endif
};
namespace isa
{
struct GridMeshISA : public GridMesh
{
GridMeshISA (Device* device)
: GridMesh(device) {}
LBBox3fa vlinearBounds(size_t buildID, const BBox1f& time_range, const SubGridBuildData * const sgrids) const override {
const SubGridBuildData &subgrid = sgrids[buildID];
const unsigned int primID = subgrid.primID;
const size_t x = subgrid.x();
const size_t y = subgrid.y();
return linearBounds(grid(primID),x,y,time_range);
}
#if defined(EMBREE_SYCL_SUPPORT)
PrimInfo createPrimRefArray(PrimRef* prims, const range<size_t>& r, size_t k, unsigned int geomID) const override
{
PrimInfo pinfo(empty);
for (size_t j=r.begin(); j<r.end(); j++)
{
BBox3fa bounds = empty;
const PrimID_XY& quad = quadID_to_primID_xy[j];
if (!buildBoundsQuad(grids[quad.primID],quad.x,quad.y,bounds)) continue;
const PrimRef prim(bounds,geomID,unsigned(j));
pinfo.add_center2(prim);
prims[k++] = prim;
}
return pinfo;
}
#endif
PrimInfo createPrimRefArray(mvector<PrimRef>& prims, mvector<SubGridBuildData>& sgrids, const range<size_t>& r, size_t k, unsigned int geomID) const override
{
PrimInfo pinfo(empty);
for (size_t j=r.begin(); j<r.end(); j++)
{
if (!valid(j)) continue;
const GridMesh::Grid &g = grid(j);
for (unsigned int y=0; y<g.resY-1u; y+=2)
{
for (unsigned int x=0; x<g.resX-1u; x+=2)
{
BBox3fa bounds = empty;
if (!buildBounds(g,x,y,bounds)) continue; // get bounds of subgrid
const PrimRef prim(bounds,(unsigned)geomID,(unsigned)k);
pinfo.add_center2(prim);
sgrids[k] = SubGridBuildData(x | g.get3x3FlagsX(x), y | g.get3x3FlagsY(y), unsigned(j));
prims[k++] = prim;
}
}
}
return pinfo;
}
#if defined(EMBREE_SYCL_SUPPORT)
PrimInfo createPrimRefArrayMB(PrimRef* prims, const BBox1f& time_range, const range<size_t>& r, size_t k, unsigned int geomID) const override
{
const BBox1f t0t1 = BBox1f::intersect(getTimeRange(), time_range);
PrimInfo pinfo(empty);
for (size_t j=r.begin(); j<r.end(); j++)
{
const PrimID_XY& quad = quadID_to_primID_xy[j];
const LBBox3fa lbounds = linearBounds(grids[quad.primID],quad.x,quad.y,t0t1);
const PrimRef prim(lbounds.bounds(), unsigned(geomID), unsigned(j));
pinfo.add_center2(prim);
prims[k++] = prim;
}
return pinfo;
}
#endif
PrimInfoMB createPrimRefMBArray(mvector<PrimRefMB>& prims, mvector<SubGridBuildData>& sgrids, const BBox1f& t0t1, const range<size_t>& r, size_t k, unsigned int geomID) const override
{
PrimInfoMB pinfoMB(empty);
for (size_t j=r.begin(); j<r.end(); j++)
{
if (!valid(j, timeSegmentRange(t0t1))) continue;
const GridMesh::Grid &g = grid(j);
for (unsigned int y=0; y<g.resY-1u; y+=2)
{
for (unsigned int x=0; x<g.resX-1u; x+=2)
{
const PrimRefMB prim(linearBounds(g,x,y,t0t1),numTimeSegments(),time_range,numTimeSegments(),unsigned(geomID),unsigned(k));
pinfoMB.add_primref(prim);
sgrids[k] = SubGridBuildData(x | g.get3x3FlagsX(x), y | g.get3x3FlagsY(y), unsigned(j));
prims[k++] = prim;
}
}
}
return pinfoMB;
}
};
}
DECLARE_ISA_FUNCTION(GridMesh*, createGridMesh, Device*);
}