mirror of
https://github.com/godotengine/godot.git
synced 2024-11-27 09:16:35 +08:00
bd7ba0b664
Furthermore, functions which expect a rotation matrix will now give an error simply, rather than trying to orthonormalize such matrices. The documentation for such functions has be updated accordingly. This commit breaks code using 3D rotations, and is a part of the breaking changes in 2.1 -> 3.0 transition. The code affected within Godot code base is fixed in this commit.
393 lines
9.1 KiB
C++
393 lines
9.1 KiB
C++
/*************************************************************************/
|
|
/* vector3.h */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* http://www.godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
#ifndef VECTOR3_H
|
|
#define VECTOR3_H
|
|
|
|
#include "typedefs.h"
|
|
#include "math_defs.h"
|
|
#include "math_funcs.h"
|
|
#include "ustring.h"
|
|
|
|
|
|
struct Vector3 {
|
|
|
|
enum Axis {
|
|
AXIS_X,
|
|
AXIS_Y,
|
|
AXIS_Z,
|
|
};
|
|
|
|
union {
|
|
struct {
|
|
real_t x;
|
|
real_t y;
|
|
real_t z;
|
|
};
|
|
|
|
real_t coord[3];
|
|
};
|
|
|
|
_FORCE_INLINE_ const real_t& operator[](int p_axis) const {
|
|
|
|
return coord[p_axis];
|
|
}
|
|
|
|
_FORCE_INLINE_ real_t& operator[](int p_axis) {
|
|
|
|
return coord[p_axis];
|
|
}
|
|
|
|
void set_axis(int p_axis,real_t p_value);
|
|
real_t get_axis(int p_axis) const;
|
|
|
|
int min_axis() const;
|
|
int max_axis() const;
|
|
|
|
_FORCE_INLINE_ real_t length() const;
|
|
_FORCE_INLINE_ real_t length_squared() const;
|
|
|
|
_FORCE_INLINE_ void normalize();
|
|
_FORCE_INLINE_ Vector3 normalized() const;
|
|
_FORCE_INLINE_ Vector3 inverse() const;
|
|
|
|
_FORCE_INLINE_ void zero();
|
|
|
|
void snap(float p_val);
|
|
Vector3 snapped(float p_val) const;
|
|
|
|
void rotate(const Vector3& p_axis,float p_phi);
|
|
Vector3 rotated(const Vector3& p_axis,float p_phi) const;
|
|
|
|
/* Static Methods between 2 vector3s */
|
|
|
|
_FORCE_INLINE_ Vector3 linear_interpolate(const Vector3& p_b,float p_t) const;
|
|
Vector3 cubic_interpolate(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,float p_t) const;
|
|
Vector3 cubic_interpolaten(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,float p_t) const;
|
|
|
|
_FORCE_INLINE_ Vector3 cross(const Vector3& p_b) const;
|
|
_FORCE_INLINE_ real_t dot(const Vector3& p_b) const;
|
|
|
|
_FORCE_INLINE_ Vector3 abs() const;
|
|
_FORCE_INLINE_ Vector3 floor() const;
|
|
_FORCE_INLINE_ Vector3 ceil() const;
|
|
|
|
_FORCE_INLINE_ real_t distance_to(const Vector3& p_b) const;
|
|
_FORCE_INLINE_ real_t distance_squared_to(const Vector3& p_b) const;
|
|
|
|
_FORCE_INLINE_ real_t angle_to(const Vector3& p_b) const;
|
|
|
|
|
|
_FORCE_INLINE_ Vector3 slide(const Vector3& p_vec) const;
|
|
_FORCE_INLINE_ Vector3 reflect(const Vector3& p_vec) const;
|
|
|
|
|
|
/* Operators */
|
|
|
|
_FORCE_INLINE_ Vector3& operator+=(const Vector3& p_v);
|
|
_FORCE_INLINE_ Vector3 operator+(const Vector3& p_v) const;
|
|
_FORCE_INLINE_ Vector3& operator-=(const Vector3& p_v);
|
|
_FORCE_INLINE_ Vector3 operator-(const Vector3& p_v) const;
|
|
_FORCE_INLINE_ Vector3& operator*=(const Vector3& p_v);
|
|
_FORCE_INLINE_ Vector3 operator*(const Vector3& p_v) const;
|
|
_FORCE_INLINE_ Vector3& operator/=(const Vector3& p_v);
|
|
_FORCE_INLINE_ Vector3 operator/(const Vector3& p_v) const;
|
|
|
|
|
|
_FORCE_INLINE_ Vector3& operator*=(real_t p_scalar);
|
|
_FORCE_INLINE_ Vector3 operator*(real_t p_scalar) const;
|
|
_FORCE_INLINE_ Vector3& operator/=(real_t p_scalar);
|
|
_FORCE_INLINE_ Vector3 operator/(real_t p_scalar) const;
|
|
|
|
_FORCE_INLINE_ Vector3 operator-() const;
|
|
|
|
_FORCE_INLINE_ bool operator==(const Vector3& p_v) const;
|
|
_FORCE_INLINE_ bool operator!=(const Vector3& p_v) const;
|
|
_FORCE_INLINE_ bool operator<(const Vector3& p_v) const;
|
|
_FORCE_INLINE_ bool operator<=(const Vector3& p_v) const;
|
|
|
|
operator String() const;
|
|
|
|
_FORCE_INLINE_ Vector3() { x=y=z=0; }
|
|
_FORCE_INLINE_ Vector3(real_t p_x,real_t p_y,real_t p_z) { x=p_x; y=p_y; z=p_z; }
|
|
|
|
};
|
|
|
|
#ifdef VECTOR3_IMPL_OVERRIDE
|
|
|
|
#include "vector3_inline.h"
|
|
|
|
#else
|
|
|
|
Vector3 Vector3::cross(const Vector3& p_b) const {
|
|
|
|
Vector3 ret (
|
|
(y * p_b.z) - (z * p_b.y),
|
|
(z * p_b.x) - (x * p_b.z),
|
|
(x * p_b.y) - (y * p_b.x)
|
|
);
|
|
|
|
return ret;
|
|
}
|
|
|
|
real_t Vector3::dot(const Vector3& p_b) const {
|
|
|
|
return x*p_b.x + y*p_b.y + z*p_b.z;
|
|
}
|
|
|
|
Vector3 Vector3::abs() const {
|
|
|
|
return Vector3( Math::abs(x), Math::abs(y), Math::abs(z) );
|
|
}
|
|
|
|
Vector3 Vector3::floor() const {
|
|
|
|
return Vector3( Math::floor(x), Math::floor(y), Math::floor(z) );
|
|
}
|
|
|
|
Vector3 Vector3::ceil() const {
|
|
|
|
return Vector3( Math::ceil(x), Math::ceil(y), Math::ceil(z) );
|
|
}
|
|
|
|
Vector3 Vector3::linear_interpolate(const Vector3& p_b,float p_t) const {
|
|
|
|
return Vector3(
|
|
x+(p_t * (p_b.x-x)),
|
|
y+(p_t * (p_b.y-y)),
|
|
z+(p_t * (p_b.z-z))
|
|
);
|
|
}
|
|
|
|
real_t Vector3::distance_to(const Vector3& p_b) const {
|
|
|
|
return (p_b-*this).length();
|
|
}
|
|
|
|
real_t Vector3::distance_squared_to(const Vector3& p_b) const {
|
|
|
|
return (p_b-*this).length_squared();
|
|
}
|
|
|
|
real_t Vector3::angle_to(const Vector3& p_b) const {
|
|
|
|
return Math::acos(this->dot(p_b) / Math::sqrt(this->length_squared() * p_b.length_squared()));
|
|
}
|
|
|
|
/* Operators */
|
|
|
|
Vector3& Vector3::operator+=(const Vector3& p_v) {
|
|
|
|
x+=p_v.x;
|
|
y+=p_v.y;
|
|
z+=p_v.z;
|
|
return *this;
|
|
}
|
|
|
|
Vector3 Vector3::operator+(const Vector3& p_v) const {
|
|
|
|
return Vector3(x+p_v.x, y+p_v.y, z+ p_v.z);
|
|
}
|
|
|
|
Vector3& Vector3::operator-=(const Vector3& p_v) {
|
|
|
|
x-=p_v.x;
|
|
y-=p_v.y;
|
|
z-=p_v.z;
|
|
return *this;
|
|
}
|
|
Vector3 Vector3::operator-(const Vector3& p_v) const {
|
|
|
|
return Vector3(x-p_v.x, y-p_v.y, z- p_v.z);
|
|
}
|
|
|
|
Vector3& Vector3::operator*=(const Vector3& p_v) {
|
|
|
|
x*=p_v.x;
|
|
y*=p_v.y;
|
|
z*=p_v.z;
|
|
return *this;
|
|
}
|
|
Vector3 Vector3::operator*(const Vector3& p_v) const {
|
|
|
|
return Vector3(x*p_v.x, y*p_v.y, z* p_v.z);
|
|
}
|
|
|
|
Vector3& Vector3::operator/=(const Vector3& p_v) {
|
|
|
|
x/=p_v.x;
|
|
y/=p_v.y;
|
|
z/=p_v.z;
|
|
return *this;
|
|
}
|
|
|
|
Vector3 Vector3::operator/(const Vector3& p_v) const {
|
|
|
|
return Vector3(x/p_v.x, y/p_v.y, z/ p_v.z);
|
|
}
|
|
|
|
Vector3& Vector3::operator*=(real_t p_scalar) {
|
|
|
|
x*=p_scalar;
|
|
y*=p_scalar;
|
|
z*=p_scalar;
|
|
return *this;
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector3 operator*(real_t p_scalar, const Vector3& p_vec) {
|
|
|
|
return p_vec * p_scalar;
|
|
}
|
|
|
|
Vector3 Vector3::operator*(real_t p_scalar) const {
|
|
|
|
return Vector3( x*p_scalar, y*p_scalar, z*p_scalar);
|
|
}
|
|
|
|
Vector3& Vector3::operator/=(real_t p_scalar) {
|
|
|
|
x/=p_scalar;
|
|
y/=p_scalar;
|
|
z/=p_scalar;
|
|
return *this;
|
|
}
|
|
|
|
Vector3 Vector3::operator/(real_t p_scalar) const {
|
|
|
|
return Vector3( x/p_scalar, y/p_scalar, z/p_scalar);
|
|
}
|
|
|
|
Vector3 Vector3::operator-() const {
|
|
|
|
return Vector3( -x, -y, -z );
|
|
}
|
|
|
|
bool Vector3::operator==(const Vector3& p_v) const {
|
|
|
|
return (x==p_v.x && y==p_v.y && z==p_v.z);
|
|
}
|
|
|
|
bool Vector3::operator!=(const Vector3& p_v) const {
|
|
return (x!=p_v.x || y!=p_v.y || z!=p_v.z);
|
|
}
|
|
|
|
bool Vector3::operator<(const Vector3& p_v) const {
|
|
|
|
if (x==p_v.x) {
|
|
if (y==p_v.y)
|
|
return z<p_v.z;
|
|
else
|
|
return y<p_v.y;
|
|
} else {
|
|
return x<p_v.x;
|
|
}
|
|
}
|
|
|
|
bool Vector3::operator<=(const Vector3& p_v) const {
|
|
|
|
if (x==p_v.x) {
|
|
if (y==p_v.y)
|
|
return z<=p_v.z;
|
|
else
|
|
return y<p_v.y;
|
|
} else {
|
|
return x<p_v.x;
|
|
}
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector3 vec3_cross(const Vector3& p_a, const Vector3& p_b) {
|
|
|
|
return p_a.cross(p_b);
|
|
}
|
|
|
|
_FORCE_INLINE_ real_t vec3_dot(const Vector3& p_a, const Vector3& p_b) {
|
|
|
|
return p_a.dot(p_b);
|
|
}
|
|
|
|
real_t Vector3::length() const {
|
|
|
|
real_t x2=x*x;
|
|
real_t y2=y*y;
|
|
real_t z2=z*z;
|
|
|
|
return Math::sqrt(x2+y2+z2);
|
|
}
|
|
|
|
real_t Vector3::length_squared() const {
|
|
|
|
real_t x2=x*x;
|
|
real_t y2=y*y;
|
|
real_t z2=z*z;
|
|
|
|
return x2+y2+z2;
|
|
}
|
|
|
|
void Vector3::normalize() {
|
|
|
|
real_t l=length();
|
|
if (l==0) {
|
|
x=y=z=0;
|
|
} else {
|
|
x/=l;
|
|
y/=l;
|
|
z/=l;
|
|
}
|
|
}
|
|
|
|
Vector3 Vector3::normalized() const {
|
|
|
|
Vector3 v=*this;
|
|
v.normalize();
|
|
return v;
|
|
}
|
|
|
|
Vector3 Vector3::inverse() const {
|
|
|
|
return Vector3( 1.0/x, 1.0/y, 1.0/z );
|
|
}
|
|
|
|
void Vector3::zero() {
|
|
|
|
x=y=z=0;
|
|
}
|
|
|
|
Vector3 Vector3::slide(const Vector3& p_vec) const {
|
|
|
|
return p_vec - *this * this->dot(p_vec);
|
|
}
|
|
|
|
Vector3 Vector3::reflect(const Vector3& p_vec) const {
|
|
|
|
return p_vec - *this * this->dot(p_vec) * 2.0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif // VECTOR3_H
|