godot/scene/3d/physics_body.cpp
Hein-Pieter van Braam 0e29f7974b Reduce unnecessary COW on Vector by make writing explicit
This commit makes operator[] on Vector const and adds a write proxy to it.  From
now on writes to Vectors need to happen through the .write proxy. So for
instance:

Vector<int> vec;
vec.push_back(10);
std::cout << vec[0] << std::endl;
vec.write[0] = 20;

Failing to use the .write proxy will cause a compilation error.

In addition COWable datatypes can now embed a CowData pointer to their data.
This means that String, CharString, and VMap no longer use or derive from
Vector.

_ALWAYS_INLINE_ and _FORCE_INLINE_ are now equivalent for debug and non-debug
builds. This is a lot faster for Vector in the editor and while running tests.
The reason why this difference used to exist is because force-inlined methods
used to give a bad debugging experience. After extensive testing with modern
compilers this is no longer the case.
2018-07-26 00:54:16 +02:00

2526 lines
92 KiB
C++

/*************************************************************************/
/* physics_body.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "physics_body.h"
#include "core/core_string_names.h"
#include "engine.h"
#include "method_bind_ext.gen.inc"
#include "scene/scene_string_names.h"
#ifdef TOOLS_ENABLED
#include "editor/plugins/spatial_editor_plugin.h"
#endif
void PhysicsBody::_notification(int p_what) {
/*
switch(p_what) {
case NOTIFICATION_TRANSFORM_CHANGED: {
PhysicsServer::get_singleton()->body_set_state(get_rid(),PhysicsServer::BODY_STATE_TRANSFORM,get_global_transform());
} break;
}
*/
}
Vector3 PhysicsBody::get_linear_velocity() const {
return Vector3();
}
Vector3 PhysicsBody::get_angular_velocity() const {
return Vector3();
}
float PhysicsBody::get_inverse_mass() const {
return 0;
}
void PhysicsBody::set_collision_layer(uint32_t p_layer) {
collision_layer = p_layer;
PhysicsServer::get_singleton()->body_set_collision_layer(get_rid(), p_layer);
}
uint32_t PhysicsBody::get_collision_layer() const {
return collision_layer;
}
void PhysicsBody::set_collision_mask(uint32_t p_mask) {
collision_mask = p_mask;
PhysicsServer::get_singleton()->body_set_collision_mask(get_rid(), p_mask);
}
uint32_t PhysicsBody::get_collision_mask() const {
return collision_mask;
}
void PhysicsBody::set_collision_mask_bit(int p_bit, bool p_value) {
uint32_t mask = get_collision_mask();
if (p_value)
mask |= 1 << p_bit;
else
mask &= ~(1 << p_bit);
set_collision_mask(mask);
}
bool PhysicsBody::get_collision_mask_bit(int p_bit) const {
return get_collision_mask() & (1 << p_bit);
}
void PhysicsBody::set_collision_layer_bit(int p_bit, bool p_value) {
uint32_t mask = get_collision_layer();
if (p_value)
mask |= 1 << p_bit;
else
mask &= ~(1 << p_bit);
set_collision_layer(mask);
}
bool PhysicsBody::get_collision_layer_bit(int p_bit) const {
return get_collision_layer() & (1 << p_bit);
}
void PhysicsBody::add_collision_exception_with(Node *p_node) {
ERR_FAIL_NULL(p_node);
CollisionObject *collision_object = Object::cast_to<CollisionObject>(p_node);
if (!collision_object) {
ERR_EXPLAIN("Collision exception only works between two CollisionObject");
}
ERR_FAIL_COND(!collision_object);
PhysicsServer::get_singleton()->body_add_collision_exception(get_rid(), collision_object->get_rid());
}
void PhysicsBody::remove_collision_exception_with(Node *p_node) {
ERR_FAIL_NULL(p_node);
CollisionObject *collision_object = Object::cast_to<CollisionObject>(p_node);
if (!collision_object) {
ERR_EXPLAIN("Collision exception only works between two CollisionObject");
}
ERR_FAIL_COND(!collision_object);
PhysicsServer::get_singleton()->body_remove_collision_exception(get_rid(), collision_object->get_rid());
}
void PhysicsBody::_set_layers(uint32_t p_mask) {
set_collision_layer(p_mask);
set_collision_mask(p_mask);
}
uint32_t PhysicsBody::_get_layers() const {
return get_collision_layer();
}
void PhysicsBody::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_collision_layer", "layer"), &PhysicsBody::set_collision_layer);
ClassDB::bind_method(D_METHOD("get_collision_layer"), &PhysicsBody::get_collision_layer);
ClassDB::bind_method(D_METHOD("set_collision_mask", "mask"), &PhysicsBody::set_collision_mask);
ClassDB::bind_method(D_METHOD("get_collision_mask"), &PhysicsBody::get_collision_mask);
ClassDB::bind_method(D_METHOD("set_collision_mask_bit", "bit", "value"), &PhysicsBody::set_collision_mask_bit);
ClassDB::bind_method(D_METHOD("get_collision_mask_bit", "bit"), &PhysicsBody::get_collision_mask_bit);
ClassDB::bind_method(D_METHOD("set_collision_layer_bit", "bit", "value"), &PhysicsBody::set_collision_layer_bit);
ClassDB::bind_method(D_METHOD("get_collision_layer_bit", "bit"), &PhysicsBody::get_collision_layer_bit);
ClassDB::bind_method(D_METHOD("_set_layers", "mask"), &PhysicsBody::_set_layers);
ClassDB::bind_method(D_METHOD("_get_layers"), &PhysicsBody::_get_layers);
ADD_GROUP("Collision", "collision_");
ADD_PROPERTY(PropertyInfo(Variant::INT, "collision_layer", PROPERTY_HINT_LAYERS_3D_PHYSICS), "set_collision_layer", "get_collision_layer");
ADD_PROPERTY(PropertyInfo(Variant::INT, "collision_mask", PROPERTY_HINT_LAYERS_3D_PHYSICS), "set_collision_mask", "get_collision_mask");
}
PhysicsBody::PhysicsBody(PhysicsServer::BodyMode p_mode) :
CollisionObject(PhysicsServer::get_singleton()->body_create(p_mode), false) {
collision_layer = 1;
collision_mask = 1;
}
#ifndef DISABLE_DEPRECATED
void StaticBody::set_friction(real_t p_friction) {
ERR_EXPLAIN("The method set_friction has been deprecated and will be removed in the future, use physical material")
WARN_DEPRECATED
ERR_FAIL_COND(p_friction < 0 || p_friction > 1);
if (physics_material_override.is_null()) {
physics_material_override.instance();
}
physics_material_override->set_friction(p_friction);
_reload_physics_characteristics();
}
real_t StaticBody::get_friction() const {
ERR_EXPLAIN("The method get_friction has been deprecated and will be removed in the future, use physical material")
WARN_DEPRECATED
if (physics_material_override.is_null()) {
return 1;
}
return physics_material_override->get_friction();
}
void StaticBody::set_bounce(real_t p_bounce) {
ERR_EXPLAIN("The method set_bounce has been deprecated and will be removed in the future, use physical material")
WARN_DEPRECATED
ERR_FAIL_COND(p_bounce < 0 || p_bounce > 1);
if (physics_material_override.is_null()) {
physics_material_override.instance();
}
physics_material_override->set_bounce(p_bounce);
_reload_physics_characteristics();
}
real_t StaticBody::get_bounce() const {
ERR_EXPLAIN("The method get_bounce has been deprecated and will be removed in the future, use physical material")
WARN_DEPRECATED
if (physics_material_override.is_null()) {
return 0;
}
return physics_material_override->get_bounce();
}
#endif
void StaticBody::set_physics_material_override(const Ref<PhysicsMaterial> &p_physics_material_override) {
if (physics_material_override.is_valid()) {
physics_material_override->disconnect(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics");
}
physics_material_override = p_physics_material_override;
if (physics_material_override.is_valid()) {
physics_material_override->connect(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics");
}
_reload_physics_characteristics();
}
Ref<PhysicsMaterial> StaticBody::get_physics_material_override() const {
return physics_material_override;
}
void StaticBody::set_constant_linear_velocity(const Vector3 &p_vel) {
constant_linear_velocity = p_vel;
PhysicsServer::get_singleton()->body_set_state(get_rid(), PhysicsServer::BODY_STATE_LINEAR_VELOCITY, constant_linear_velocity);
}
void StaticBody::set_constant_angular_velocity(const Vector3 &p_vel) {
constant_angular_velocity = p_vel;
PhysicsServer::get_singleton()->body_set_state(get_rid(), PhysicsServer::BODY_STATE_ANGULAR_VELOCITY, constant_angular_velocity);
}
Vector3 StaticBody::get_constant_linear_velocity() const {
return constant_linear_velocity;
}
Vector3 StaticBody::get_constant_angular_velocity() const {
return constant_angular_velocity;
}
void StaticBody::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_constant_linear_velocity", "vel"), &StaticBody::set_constant_linear_velocity);
ClassDB::bind_method(D_METHOD("set_constant_angular_velocity", "vel"), &StaticBody::set_constant_angular_velocity);
ClassDB::bind_method(D_METHOD("get_constant_linear_velocity"), &StaticBody::get_constant_linear_velocity);
ClassDB::bind_method(D_METHOD("get_constant_angular_velocity"), &StaticBody::get_constant_angular_velocity);
ClassDB::bind_method(D_METHOD("set_friction", "friction"), &StaticBody::set_friction);
ClassDB::bind_method(D_METHOD("get_friction"), &StaticBody::get_friction);
ClassDB::bind_method(D_METHOD("set_bounce", "bounce"), &StaticBody::set_bounce);
ClassDB::bind_method(D_METHOD("get_bounce"), &StaticBody::get_bounce);
ClassDB::bind_method(D_METHOD("set_physics_material_override", "physics_material_override"), &StaticBody::set_physics_material_override);
ClassDB::bind_method(D_METHOD("get_physics_material_override"), &StaticBody::get_physics_material_override);
ClassDB::bind_method(D_METHOD("_reload_physics_characteristics"), &StaticBody::_reload_physics_characteristics);
ClassDB::bind_method(D_METHOD("add_collision_exception_with", "body"), &PhysicsBody::add_collision_exception_with);
ClassDB::bind_method(D_METHOD("remove_collision_exception_with", "body"), &PhysicsBody::remove_collision_exception_with);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "friction", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_friction", "get_friction");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "bounce", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_bounce", "get_bounce");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "physics_material_override", PROPERTY_HINT_RESOURCE_TYPE, "PhysicsMaterial"), "set_physics_material_override", "get_physics_material_override");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "constant_linear_velocity"), "set_constant_linear_velocity", "get_constant_linear_velocity");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "constant_angular_velocity"), "set_constant_angular_velocity", "get_constant_angular_velocity");
}
StaticBody::StaticBody() :
PhysicsBody(PhysicsServer::BODY_MODE_STATIC) {
}
StaticBody::~StaticBody() {}
void StaticBody::_reload_physics_characteristics() {
if (physics_material_override.is_null()) {
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_BOUNCE, 0);
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_FRICTION, 1);
PhysicsServer::get_singleton()->body_set_combine_mode(get_rid(), PhysicsServer::BODY_PARAM_BOUNCE, PhysicsServer::COMBINE_MODE_INHERIT);
PhysicsServer::get_singleton()->body_set_combine_mode(get_rid(), PhysicsServer::BODY_PARAM_FRICTION, PhysicsServer::COMBINE_MODE_INHERIT);
} else {
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_BOUNCE, physics_material_override->get_bounce());
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_FRICTION, physics_material_override->get_friction());
PhysicsServer::get_singleton()->body_set_combine_mode(get_rid(), PhysicsServer::BODY_PARAM_BOUNCE, physics_material_override->get_bounce_combine_mode());
PhysicsServer::get_singleton()->body_set_combine_mode(get_rid(), PhysicsServer::BODY_PARAM_FRICTION, physics_material_override->get_friction_combine_mode());
}
}
void RigidBody::_body_enter_tree(ObjectID p_id) {
Object *obj = ObjectDB::get_instance(p_id);
Node *node = Object::cast_to<Node>(obj);
ERR_FAIL_COND(!node);
ERR_FAIL_COND(!contact_monitor);
Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.find(p_id);
ERR_FAIL_COND(!E);
ERR_FAIL_COND(E->get().in_tree);
E->get().in_tree = true;
contact_monitor->locked = true;
emit_signal(SceneStringNames::get_singleton()->body_entered, node);
for (int i = 0; i < E->get().shapes.size(); i++) {
emit_signal(SceneStringNames::get_singleton()->body_shape_entered, p_id, node, E->get().shapes[i].body_shape, E->get().shapes[i].local_shape);
}
contact_monitor->locked = false;
}
void RigidBody::_body_exit_tree(ObjectID p_id) {
Object *obj = ObjectDB::get_instance(p_id);
Node *node = Object::cast_to<Node>(obj);
ERR_FAIL_COND(!node);
ERR_FAIL_COND(!contact_monitor);
Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.find(p_id);
ERR_FAIL_COND(!E);
ERR_FAIL_COND(!E->get().in_tree);
E->get().in_tree = false;
contact_monitor->locked = true;
emit_signal(SceneStringNames::get_singleton()->body_exited, node);
for (int i = 0; i < E->get().shapes.size(); i++) {
emit_signal(SceneStringNames::get_singleton()->body_shape_exited, p_id, node, E->get().shapes[i].body_shape, E->get().shapes[i].local_shape);
}
contact_monitor->locked = false;
}
void RigidBody::_body_inout(int p_status, ObjectID p_instance, int p_body_shape, int p_local_shape) {
bool body_in = p_status == 1;
ObjectID objid = p_instance;
Object *obj = ObjectDB::get_instance(objid);
Node *node = Object::cast_to<Node>(obj);
ERR_FAIL_COND(!contact_monitor);
Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.find(objid);
ERR_FAIL_COND(!body_in && !E);
if (body_in) {
if (!E) {
E = contact_monitor->body_map.insert(objid, BodyState());
//E->get().rc=0;
E->get().in_tree = node && node->is_inside_tree();
if (node) {
node->connect(SceneStringNames::get_singleton()->tree_entered, this, SceneStringNames::get_singleton()->_body_enter_tree, make_binds(objid));
node->connect(SceneStringNames::get_singleton()->tree_exiting, this, SceneStringNames::get_singleton()->_body_exit_tree, make_binds(objid));
if (E->get().in_tree) {
emit_signal(SceneStringNames::get_singleton()->body_entered, node);
}
}
}
//E->get().rc++;
if (node)
E->get().shapes.insert(ShapePair(p_body_shape, p_local_shape));
if (E->get().in_tree) {
emit_signal(SceneStringNames::get_singleton()->body_shape_entered, objid, node, p_body_shape, p_local_shape);
}
} else {
//E->get().rc--;
if (node)
E->get().shapes.erase(ShapePair(p_body_shape, p_local_shape));
bool in_tree = E->get().in_tree;
if (E->get().shapes.empty()) {
if (node) {
node->disconnect(SceneStringNames::get_singleton()->tree_entered, this, SceneStringNames::get_singleton()->_body_enter_tree);
node->disconnect(SceneStringNames::get_singleton()->tree_exiting, this, SceneStringNames::get_singleton()->_body_exit_tree);
if (in_tree)
emit_signal(SceneStringNames::get_singleton()->body_exited, obj);
}
contact_monitor->body_map.erase(E);
}
if (node && in_tree) {
emit_signal(SceneStringNames::get_singleton()->body_shape_exited, objid, obj, p_body_shape, p_local_shape);
}
}
}
struct _RigidBodyInOut {
ObjectID id;
int shape;
int local_shape;
};
void RigidBody::_direct_state_changed(Object *p_state) {
#ifdef DEBUG_ENABLED
state = Object::cast_to<PhysicsDirectBodyState>(p_state);
#else
state = (PhysicsDirectBodyState *)p_state; //trust it
#endif
set_ignore_transform_notification(true);
set_global_transform(state->get_transform());
linear_velocity = state->get_linear_velocity();
angular_velocity = state->get_angular_velocity();
if (sleeping != state->is_sleeping()) {
sleeping = state->is_sleeping();
emit_signal(SceneStringNames::get_singleton()->sleeping_state_changed);
}
if (get_script_instance())
get_script_instance()->call("_integrate_forces", state);
set_ignore_transform_notification(false);
if (contact_monitor) {
contact_monitor->locked = true;
//untag all
int rc = 0;
for (Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.front(); E; E = E->next()) {
for (int i = 0; i < E->get().shapes.size(); i++) {
E->get().shapes[i].tagged = false;
rc++;
}
}
_RigidBodyInOut *toadd = (_RigidBodyInOut *)alloca(state->get_contact_count() * sizeof(_RigidBodyInOut));
int toadd_count = 0; //state->get_contact_count();
RigidBody_RemoveAction *toremove = (RigidBody_RemoveAction *)alloca(rc * sizeof(RigidBody_RemoveAction));
int toremove_count = 0;
//put the ones to add
for (int i = 0; i < state->get_contact_count(); i++) {
ObjectID obj = state->get_contact_collider_id(i);
int local_shape = state->get_contact_local_shape(i);
int shape = state->get_contact_collider_shape(i);
//bool found=false;
Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.find(obj);
if (!E) {
toadd[toadd_count].local_shape = local_shape;
toadd[toadd_count].id = obj;
toadd[toadd_count].shape = shape;
toadd_count++;
continue;
}
ShapePair sp(shape, local_shape);
int idx = E->get().shapes.find(sp);
if (idx == -1) {
toadd[toadd_count].local_shape = local_shape;
toadd[toadd_count].id = obj;
toadd[toadd_count].shape = shape;
toadd_count++;
continue;
}
E->get().shapes[idx].tagged = true;
}
//put the ones to remove
for (Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.front(); E; E = E->next()) {
for (int i = 0; i < E->get().shapes.size(); i++) {
if (!E->get().shapes[i].tagged) {
toremove[toremove_count].body_id = E->key();
toremove[toremove_count].pair = E->get().shapes[i];
toremove_count++;
}
}
}
//process remotions
for (int i = 0; i < toremove_count; i++) {
_body_inout(0, toremove[i].body_id, toremove[i].pair.body_shape, toremove[i].pair.local_shape);
}
//process aditions
for (int i = 0; i < toadd_count; i++) {
_body_inout(1, toadd[i].id, toadd[i].shape, toadd[i].local_shape);
}
contact_monitor->locked = false;
}
state = NULL;
}
void RigidBody::_notification(int p_what) {
#ifdef TOOLS_ENABLED
if (p_what == NOTIFICATION_ENTER_TREE) {
if (Engine::get_singleton()->is_editor_hint()) {
set_notify_local_transform(true); //used for warnings and only in editor
}
}
if (p_what == NOTIFICATION_LOCAL_TRANSFORM_CHANGED) {
if (Engine::get_singleton()->is_editor_hint()) {
update_configuration_warning();
}
}
#endif
}
void RigidBody::set_mode(Mode p_mode) {
mode = p_mode;
switch (p_mode) {
case MODE_RIGID: {
PhysicsServer::get_singleton()->body_set_mode(get_rid(), PhysicsServer::BODY_MODE_RIGID);
} break;
case MODE_STATIC: {
PhysicsServer::get_singleton()->body_set_mode(get_rid(), PhysicsServer::BODY_MODE_STATIC);
} break;
case MODE_CHARACTER: {
PhysicsServer::get_singleton()->body_set_mode(get_rid(), PhysicsServer::BODY_MODE_CHARACTER);
} break;
case MODE_KINEMATIC: {
PhysicsServer::get_singleton()->body_set_mode(get_rid(), PhysicsServer::BODY_MODE_KINEMATIC);
} break;
}
}
RigidBody::Mode RigidBody::get_mode() const {
return mode;
}
void RigidBody::set_mass(real_t p_mass) {
ERR_FAIL_COND(p_mass <= 0);
mass = p_mass;
_change_notify("mass");
_change_notify("weight");
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_MASS, mass);
}
real_t RigidBody::get_mass() const {
return mass;
}
void RigidBody::set_weight(real_t p_weight) {
set_mass(p_weight / real_t(GLOBAL_DEF("physics/3d/default_gravity", 9.8)));
}
real_t RigidBody::get_weight() const {
return mass * real_t(GLOBAL_DEF("physics/3d/default_gravity", 9.8));
}
#ifndef DISABLE_DEPRECATED
void RigidBody::set_friction(real_t p_friction) {
ERR_EXPLAIN("The method set_friction has been deprecated and will be removed in the future, use physical material")
WARN_DEPRECATED
ERR_FAIL_COND(p_friction < 0 || p_friction > 1);
if (physics_material_override.is_null()) {
physics_material_override.instance();
}
physics_material_override->set_friction(p_friction);
_reload_physics_characteristics();
}
real_t RigidBody::get_friction() const {
ERR_EXPLAIN("The method get_friction has been deprecated and will be removed in the future, use physical material")
WARN_DEPRECATED
if (physics_material_override.is_null()) {
return 1;
}
return physics_material_override->get_friction();
}
void RigidBody::set_bounce(real_t p_bounce) {
ERR_EXPLAIN("The method set_bounce has been deprecated and will be removed in the future, use physical material")
WARN_DEPRECATED
ERR_FAIL_COND(p_bounce < 0 || p_bounce > 1);
if (physics_material_override.is_null()) {
physics_material_override.instance();
}
physics_material_override->set_bounce(p_bounce);
_reload_physics_characteristics();
}
real_t RigidBody::get_bounce() const {
ERR_EXPLAIN("The method get_bounce has been deprecated and will be removed in the future, use physical material")
WARN_DEPRECATED
if (physics_material_override.is_null()) {
return 0;
}
return physics_material_override->get_bounce();
}
#endif
void RigidBody::set_physics_material_override(const Ref<PhysicsMaterial> &p_physics_material_override) {
if (physics_material_override.is_valid()) {
physics_material_override->disconnect(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics");
}
physics_material_override = p_physics_material_override;
if (physics_material_override.is_valid()) {
physics_material_override->connect(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics");
}
_reload_physics_characteristics();
}
Ref<PhysicsMaterial> RigidBody::get_physics_material_override() const {
return physics_material_override;
}
void RigidBody::set_gravity_scale(real_t p_gravity_scale) {
gravity_scale = p_gravity_scale;
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_GRAVITY_SCALE, gravity_scale);
}
real_t RigidBody::get_gravity_scale() const {
return gravity_scale;
}
void RigidBody::set_linear_damp(real_t p_linear_damp) {
ERR_FAIL_COND(p_linear_damp < -1);
linear_damp = p_linear_damp;
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_LINEAR_DAMP, linear_damp);
}
real_t RigidBody::get_linear_damp() const {
return linear_damp;
}
void RigidBody::set_angular_damp(real_t p_angular_damp) {
ERR_FAIL_COND(p_angular_damp < -1);
angular_damp = p_angular_damp;
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_ANGULAR_DAMP, angular_damp);
}
real_t RigidBody::get_angular_damp() const {
return angular_damp;
}
void RigidBody::set_axis_velocity(const Vector3 &p_axis) {
Vector3 v = state ? state->get_linear_velocity() : linear_velocity;
Vector3 axis = p_axis.normalized();
v -= axis * axis.dot(v);
v += p_axis;
if (state) {
set_linear_velocity(v);
} else {
PhysicsServer::get_singleton()->body_set_axis_velocity(get_rid(), p_axis);
linear_velocity = v;
}
}
void RigidBody::set_linear_velocity(const Vector3 &p_velocity) {
linear_velocity = p_velocity;
if (state)
state->set_linear_velocity(linear_velocity);
else
PhysicsServer::get_singleton()->body_set_state(get_rid(), PhysicsServer::BODY_STATE_LINEAR_VELOCITY, linear_velocity);
}
Vector3 RigidBody::get_linear_velocity() const {
return linear_velocity;
}
void RigidBody::set_angular_velocity(const Vector3 &p_velocity) {
angular_velocity = p_velocity;
if (state)
state->set_angular_velocity(angular_velocity);
else
PhysicsServer::get_singleton()->body_set_state(get_rid(), PhysicsServer::BODY_STATE_ANGULAR_VELOCITY, angular_velocity);
}
Vector3 RigidBody::get_angular_velocity() const {
return angular_velocity;
}
void RigidBody::set_use_custom_integrator(bool p_enable) {
if (custom_integrator == p_enable)
return;
custom_integrator = p_enable;
PhysicsServer::get_singleton()->body_set_omit_force_integration(get_rid(), p_enable);
}
bool RigidBody::is_using_custom_integrator() {
return custom_integrator;
}
void RigidBody::set_sleeping(bool p_sleeping) {
sleeping = p_sleeping;
PhysicsServer::get_singleton()->body_set_state(get_rid(), PhysicsServer::BODY_STATE_SLEEPING, sleeping);
}
void RigidBody::set_can_sleep(bool p_active) {
can_sleep = p_active;
PhysicsServer::get_singleton()->body_set_state(get_rid(), PhysicsServer::BODY_STATE_CAN_SLEEP, p_active);
}
bool RigidBody::is_able_to_sleep() const {
return can_sleep;
}
bool RigidBody::is_sleeping() const {
return sleeping;
}
void RigidBody::set_max_contacts_reported(int p_amount) {
max_contacts_reported = p_amount;
PhysicsServer::get_singleton()->body_set_max_contacts_reported(get_rid(), p_amount);
}
int RigidBody::get_max_contacts_reported() const {
return max_contacts_reported;
}
void RigidBody::add_central_force(const Vector3 &p_force) {
PhysicsServer::get_singleton()->body_add_central_force(get_rid(), p_force);
}
void RigidBody::add_force(const Vector3 &p_force, const Vector3 &p_pos) {
PhysicsServer::get_singleton()->body_add_force(get_rid(), p_force, p_pos);
}
void RigidBody::add_torque(const Vector3 &p_torque) {
PhysicsServer::get_singleton()->body_add_torque(get_rid(), p_torque);
}
void RigidBody::apply_central_impulse(const Vector3 &p_impulse) {
PhysicsServer::get_singleton()->body_apply_central_impulse(get_rid(), p_impulse);
}
void RigidBody::apply_impulse(const Vector3 &p_pos, const Vector3 &p_impulse) {
PhysicsServer::get_singleton()->body_apply_impulse(get_rid(), p_pos, p_impulse);
}
void RigidBody::apply_torque_impulse(const Vector3 &p_impulse) {
PhysicsServer::get_singleton()->body_apply_torque_impulse(get_rid(), p_impulse);
}
void RigidBody::set_use_continuous_collision_detection(bool p_enable) {
ccd = p_enable;
PhysicsServer::get_singleton()->body_set_enable_continuous_collision_detection(get_rid(), p_enable);
}
bool RigidBody::is_using_continuous_collision_detection() const {
return ccd;
}
void RigidBody::set_contact_monitor(bool p_enabled) {
if (p_enabled == is_contact_monitor_enabled())
return;
if (!p_enabled) {
if (contact_monitor->locked) {
ERR_EXPLAIN("Can't disable contact monitoring during in/out callback. Use call_deferred(\"set_contact_monitor\",false) instead");
}
ERR_FAIL_COND(contact_monitor->locked);
for (Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.front(); E; E = E->next()) {
//clean up mess
Object *obj = ObjectDB::get_instance(E->key());
Node *node = Object::cast_to<Node>(obj);
if (node) {
node->disconnect(SceneStringNames::get_singleton()->tree_entered, this, SceneStringNames::get_singleton()->_body_enter_tree);
node->disconnect(SceneStringNames::get_singleton()->tree_exiting, this, SceneStringNames::get_singleton()->_body_exit_tree);
}
}
memdelete(contact_monitor);
contact_monitor = NULL;
} else {
contact_monitor = memnew(ContactMonitor);
contact_monitor->locked = false;
}
}
bool RigidBody::is_contact_monitor_enabled() const {
return contact_monitor != NULL;
}
void RigidBody::set_axis_lock(PhysicsServer::BodyAxis p_axis, bool p_lock) {
PhysicsServer::get_singleton()->body_set_axis_lock(get_rid(), p_axis, p_lock);
}
bool RigidBody::get_axis_lock(PhysicsServer::BodyAxis p_axis) const {
return PhysicsServer::get_singleton()->body_is_axis_locked(get_rid(), p_axis);
}
Array RigidBody::get_colliding_bodies() const {
ERR_FAIL_COND_V(!contact_monitor, Array());
Array ret;
ret.resize(contact_monitor->body_map.size());
int idx = 0;
for (const Map<ObjectID, BodyState>::Element *E = contact_monitor->body_map.front(); E; E = E->next()) {
Object *obj = ObjectDB::get_instance(E->key());
if (!obj) {
ret.resize(ret.size() - 1); //ops
} else {
ret[idx++] = obj;
}
}
return ret;
}
String RigidBody::get_configuration_warning() const {
Transform t = get_transform();
String warning = CollisionObject::get_configuration_warning();
if ((get_mode() == MODE_RIGID || get_mode() == MODE_CHARACTER) && (ABS(t.basis.get_axis(0).length() - 1.0) > 0.05 || ABS(t.basis.get_axis(1).length() - 1.0) > 0.05 || ABS(t.basis.get_axis(2).length() - 1.0) > 0.05)) {
if (warning != String()) {
warning += "\n";
}
warning += TTR("Size changes to RigidBody (in character or rigid modes) will be overridden by the physics engine when running.\nChange the size in children collision shapes instead.");
}
return warning;
}
void RigidBody::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_mode", "mode"), &RigidBody::set_mode);
ClassDB::bind_method(D_METHOD("get_mode"), &RigidBody::get_mode);
ClassDB::bind_method(D_METHOD("set_mass", "mass"), &RigidBody::set_mass);
ClassDB::bind_method(D_METHOD("get_mass"), &RigidBody::get_mass);
ClassDB::bind_method(D_METHOD("set_weight", "weight"), &RigidBody::set_weight);
ClassDB::bind_method(D_METHOD("get_weight"), &RigidBody::get_weight);
ClassDB::bind_method(D_METHOD("set_friction", "friction"), &RigidBody::set_friction);
ClassDB::bind_method(D_METHOD("get_friction"), &RigidBody::get_friction);
ClassDB::bind_method(D_METHOD("set_bounce", "bounce"), &RigidBody::set_bounce);
ClassDB::bind_method(D_METHOD("get_bounce"), &RigidBody::get_bounce);
ClassDB::bind_method(D_METHOD("set_physics_material_override", "physics_material_override"), &RigidBody::set_physics_material_override);
ClassDB::bind_method(D_METHOD("get_physics_material_override"), &RigidBody::get_physics_material_override);
ClassDB::bind_method(D_METHOD("_reload_physics_characteristics"), &RigidBody::_reload_physics_characteristics);
ClassDB::bind_method(D_METHOD("set_linear_velocity", "linear_velocity"), &RigidBody::set_linear_velocity);
ClassDB::bind_method(D_METHOD("get_linear_velocity"), &RigidBody::get_linear_velocity);
ClassDB::bind_method(D_METHOD("set_angular_velocity", "angular_velocity"), &RigidBody::set_angular_velocity);
ClassDB::bind_method(D_METHOD("get_angular_velocity"), &RigidBody::get_angular_velocity);
ClassDB::bind_method(D_METHOD("set_gravity_scale", "gravity_scale"), &RigidBody::set_gravity_scale);
ClassDB::bind_method(D_METHOD("get_gravity_scale"), &RigidBody::get_gravity_scale);
ClassDB::bind_method(D_METHOD("set_linear_damp", "linear_damp"), &RigidBody::set_linear_damp);
ClassDB::bind_method(D_METHOD("get_linear_damp"), &RigidBody::get_linear_damp);
ClassDB::bind_method(D_METHOD("set_angular_damp", "angular_damp"), &RigidBody::set_angular_damp);
ClassDB::bind_method(D_METHOD("get_angular_damp"), &RigidBody::get_angular_damp);
ClassDB::bind_method(D_METHOD("set_max_contacts_reported", "amount"), &RigidBody::set_max_contacts_reported);
ClassDB::bind_method(D_METHOD("get_max_contacts_reported"), &RigidBody::get_max_contacts_reported);
ClassDB::bind_method(D_METHOD("set_use_custom_integrator", "enable"), &RigidBody::set_use_custom_integrator);
ClassDB::bind_method(D_METHOD("is_using_custom_integrator"), &RigidBody::is_using_custom_integrator);
ClassDB::bind_method(D_METHOD("set_contact_monitor", "enabled"), &RigidBody::set_contact_monitor);
ClassDB::bind_method(D_METHOD("is_contact_monitor_enabled"), &RigidBody::is_contact_monitor_enabled);
ClassDB::bind_method(D_METHOD("set_use_continuous_collision_detection", "enable"), &RigidBody::set_use_continuous_collision_detection);
ClassDB::bind_method(D_METHOD("is_using_continuous_collision_detection"), &RigidBody::is_using_continuous_collision_detection);
ClassDB::bind_method(D_METHOD("set_axis_velocity", "axis_velocity"), &RigidBody::set_axis_velocity);
ClassDB::bind_method(D_METHOD("add_central_force", "force"), &RigidBody::add_central_force);
ClassDB::bind_method(D_METHOD("add_force", "force", "position"), &RigidBody::add_force);
ClassDB::bind_method(D_METHOD("add_torque", "torque"), &RigidBody::add_torque);
ClassDB::bind_method(D_METHOD("apply_central_impulse", "impulse"), &RigidBody::apply_central_impulse);
ClassDB::bind_method(D_METHOD("apply_impulse", "position", "impulse"), &RigidBody::apply_impulse);
ClassDB::bind_method(D_METHOD("apply_torque_impulse", "impulse"), &RigidBody::apply_torque_impulse);
ClassDB::bind_method(D_METHOD("set_sleeping", "sleeping"), &RigidBody::set_sleeping);
ClassDB::bind_method(D_METHOD("is_sleeping"), &RigidBody::is_sleeping);
ClassDB::bind_method(D_METHOD("set_can_sleep", "able_to_sleep"), &RigidBody::set_can_sleep);
ClassDB::bind_method(D_METHOD("is_able_to_sleep"), &RigidBody::is_able_to_sleep);
ClassDB::bind_method(D_METHOD("_direct_state_changed"), &RigidBody::_direct_state_changed);
ClassDB::bind_method(D_METHOD("_body_enter_tree"), &RigidBody::_body_enter_tree);
ClassDB::bind_method(D_METHOD("_body_exit_tree"), &RigidBody::_body_exit_tree);
ClassDB::bind_method(D_METHOD("set_axis_lock", "axis", "lock"), &RigidBody::set_axis_lock);
ClassDB::bind_method(D_METHOD("get_axis_lock", "axis"), &RigidBody::get_axis_lock);
ClassDB::bind_method(D_METHOD("get_colliding_bodies"), &RigidBody::get_colliding_bodies);
BIND_VMETHOD(MethodInfo("_integrate_forces", PropertyInfo(Variant::OBJECT, "state", PROPERTY_HINT_RESOURCE_TYPE, "PhysicsDirectBodyState")));
ADD_PROPERTY(PropertyInfo(Variant::INT, "mode", PROPERTY_HINT_ENUM, "Rigid,Static,Character,Kinematic"), "set_mode", "get_mode");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "mass", PROPERTY_HINT_EXP_RANGE, "0.01,65535,0.01"), "set_mass", "get_mass");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "weight", PROPERTY_HINT_EXP_RANGE, "0.01,65535,0.01", PROPERTY_USAGE_EDITOR), "set_weight", "get_weight");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "friction", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_friction", "get_friction");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "bounce", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_bounce", "get_bounce");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "physics_material_override", PROPERTY_HINT_RESOURCE_TYPE, "PhysicsMaterial"), "set_physics_material_override", "get_physics_material_override");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "gravity_scale", PROPERTY_HINT_RANGE, "-128,128,0.01"), "set_gravity_scale", "get_gravity_scale");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "custom_integrator"), "set_use_custom_integrator", "is_using_custom_integrator");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "continuous_cd"), "set_use_continuous_collision_detection", "is_using_continuous_collision_detection");
ADD_PROPERTY(PropertyInfo(Variant::INT, "contacts_reported"), "set_max_contacts_reported", "get_max_contacts_reported");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "contact_monitor"), "set_contact_monitor", "is_contact_monitor_enabled");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "sleeping"), "set_sleeping", "is_sleeping");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "can_sleep"), "set_can_sleep", "is_able_to_sleep");
ADD_GROUP("Axis Lock", "axis_lock_");
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_linear_x"), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_LINEAR_X);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_linear_y"), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_LINEAR_Y);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_linear_z"), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_LINEAR_Z);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_angular_x"), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_ANGULAR_X);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_angular_y"), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_ANGULAR_Y);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_angular_z"), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_ANGULAR_Z);
ADD_GROUP("Linear", "linear_");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "linear_velocity"), "set_linear_velocity", "get_linear_velocity");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "linear_damp", PROPERTY_HINT_RANGE, "-1,128,0.01"), "set_linear_damp", "get_linear_damp");
ADD_GROUP("Angular", "angular_");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "angular_velocity"), "set_angular_velocity", "get_angular_velocity");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "angular_damp", PROPERTY_HINT_RANGE, "-1,128,0.01"), "set_angular_damp", "get_angular_damp");
ADD_SIGNAL(MethodInfo("body_shape_entered", PropertyInfo(Variant::INT, "body_id"), PropertyInfo(Variant::OBJECT, "body"), PropertyInfo(Variant::INT, "body_shape"), PropertyInfo(Variant::INT, "local_shape")));
ADD_SIGNAL(MethodInfo("body_shape_exited", PropertyInfo(Variant::INT, "body_id"), PropertyInfo(Variant::OBJECT, "body"), PropertyInfo(Variant::INT, "body_shape"), PropertyInfo(Variant::INT, "local_shape")));
ADD_SIGNAL(MethodInfo("body_entered", PropertyInfo(Variant::OBJECT, "body")));
ADD_SIGNAL(MethodInfo("body_exited", PropertyInfo(Variant::OBJECT, "body")));
ADD_SIGNAL(MethodInfo("sleeping_state_changed"));
BIND_ENUM_CONSTANT(MODE_RIGID);
BIND_ENUM_CONSTANT(MODE_STATIC);
BIND_ENUM_CONSTANT(MODE_CHARACTER);
BIND_ENUM_CONSTANT(MODE_KINEMATIC);
}
RigidBody::RigidBody() :
PhysicsBody(PhysicsServer::BODY_MODE_RIGID) {
mode = MODE_RIGID;
mass = 1;
max_contacts_reported = 0;
state = NULL;
gravity_scale = 1;
linear_damp = -1;
angular_damp = -1;
//angular_velocity=0;
sleeping = false;
ccd = false;
custom_integrator = false;
contact_monitor = NULL;
can_sleep = true;
PhysicsServer::get_singleton()->body_set_force_integration_callback(get_rid(), this, "_direct_state_changed");
}
RigidBody::~RigidBody() {
if (contact_monitor)
memdelete(contact_monitor);
}
void RigidBody::_reload_physics_characteristics() {
if (physics_material_override.is_null()) {
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_BOUNCE, 0);
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_FRICTION, 1);
PhysicsServer::get_singleton()->body_set_combine_mode(get_rid(), PhysicsServer::BODY_PARAM_BOUNCE, PhysicsServer::COMBINE_MODE_INHERIT);
PhysicsServer::get_singleton()->body_set_combine_mode(get_rid(), PhysicsServer::BODY_PARAM_FRICTION, PhysicsServer::COMBINE_MODE_INHERIT);
} else {
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_BOUNCE, physics_material_override->get_bounce());
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_FRICTION, physics_material_override->get_friction());
PhysicsServer::get_singleton()->body_set_combine_mode(get_rid(), PhysicsServer::BODY_PARAM_BOUNCE, physics_material_override->get_bounce_combine_mode());
PhysicsServer::get_singleton()->body_set_combine_mode(get_rid(), PhysicsServer::BODY_PARAM_FRICTION, physics_material_override->get_friction_combine_mode());
}
}
//////////////////////////////////////////////////////
//////////////////////////
Ref<KinematicCollision> KinematicBody::_move(const Vector3 &p_motion, bool p_infinite_inertia) {
Collision col;
if (move_and_collide(p_motion, p_infinite_inertia, col)) {
if (motion_cache.is_null()) {
motion_cache.instance();
motion_cache->owner = this;
}
motion_cache->collision = col;
return motion_cache;
}
return Ref<KinematicCollision>();
}
bool KinematicBody::move_and_collide(const Vector3 &p_motion, bool p_infinite_inertia, Collision &r_collision) {
Transform gt = get_global_transform();
PhysicsServer::MotionResult result;
bool colliding = PhysicsServer::get_singleton()->body_test_motion(get_rid(), gt, p_motion, p_infinite_inertia, &result);
if (colliding) {
r_collision.collider_metadata = result.collider_metadata;
r_collision.collider_shape = result.collider_shape;
r_collision.collider_vel = result.collider_velocity;
r_collision.collision = result.collision_point;
r_collision.normal = result.collision_normal;
r_collision.collider = result.collider_id;
r_collision.travel = result.motion;
r_collision.remainder = result.remainder;
r_collision.local_shape = result.collision_local_shape;
}
for (int i = 0; i < 3; i++) {
if (locked_axis & (1 << i)) {
result.motion[i] = 0;
}
}
gt.origin += result.motion;
set_global_transform(gt);
return colliding;
}
Vector3 KinematicBody::move_and_slide(const Vector3 &p_linear_velocity, const Vector3 &p_floor_direction, float p_slope_stop_min_velocity, int p_max_slides, float p_floor_max_angle, bool p_infinite_inertia) {
Vector3 lv = p_linear_velocity;
for (int i = 0; i < 3; i++) {
if (locked_axis & (1 << i)) {
lv[i] = 0;
}
}
Vector3 motion = (floor_velocity + lv) * get_physics_process_delta_time();
on_floor = false;
on_ceiling = false;
on_wall = false;
colliders.clear();
floor_velocity = Vector3();
while (p_max_slides) {
Collision collision;
bool collided = move_and_collide(motion, p_infinite_inertia, collision);
if (collided) {
motion = collision.remainder;
if (p_floor_direction == Vector3()) {
//all is a wall
on_wall = true;
} else {
if (collision.normal.dot(p_floor_direction) >= Math::cos(p_floor_max_angle)) { //floor
on_floor = true;
floor_velocity = collision.collider_vel;
Vector3 rel_v = lv - floor_velocity;
Vector3 hv = rel_v - p_floor_direction * p_floor_direction.dot(rel_v);
if (collision.travel.length() < 0.05 && hv.length() < p_slope_stop_min_velocity) {
Transform gt = get_global_transform();
gt.origin -= collision.travel;
set_global_transform(gt);
return floor_velocity - p_floor_direction * p_floor_direction.dot(floor_velocity);
}
} else if (collision.normal.dot(-p_floor_direction) >= Math::cos(p_floor_max_angle)) { //ceiling
on_ceiling = true;
} else {
on_wall = true;
}
}
Vector3 n = collision.normal;
motion = motion.slide(n);
lv = lv.slide(n);
for (int i = 0; i < 3; i++) {
if (locked_axis & (1 << i)) {
lv[i] = 0;
}
}
colliders.push_back(collision);
} else {
break;
}
p_max_slides--;
if (motion == Vector3())
break;
}
return lv;
}
bool KinematicBody::is_on_floor() const {
return on_floor;
}
bool KinematicBody::is_on_wall() const {
return on_wall;
}
bool KinematicBody::is_on_ceiling() const {
return on_ceiling;
}
Vector3 KinematicBody::get_floor_velocity() const {
return floor_velocity;
}
bool KinematicBody::test_move(const Transform &p_from, const Vector3 &p_motion, bool p_infinite_inertia) {
ERR_FAIL_COND_V(!is_inside_tree(), false);
return PhysicsServer::get_singleton()->body_test_motion(get_rid(), p_from, p_motion, p_infinite_inertia);
}
void KinematicBody::set_axis_lock(PhysicsServer::BodyAxis p_axis, bool p_lock) {
PhysicsServer::get_singleton()->body_set_axis_lock(get_rid(), p_axis, p_lock);
}
bool KinematicBody::get_axis_lock(PhysicsServer::BodyAxis p_axis) const {
return PhysicsServer::get_singleton()->body_is_axis_locked(get_rid(), p_axis);
}
void KinematicBody::set_safe_margin(float p_margin) {
margin = p_margin;
PhysicsServer::get_singleton()->body_set_kinematic_safe_margin(get_rid(), margin);
}
float KinematicBody::get_safe_margin() const {
return margin;
}
int KinematicBody::get_slide_count() const {
return colliders.size();
}
KinematicBody::Collision KinematicBody::get_slide_collision(int p_bounce) const {
ERR_FAIL_INDEX_V(p_bounce, colliders.size(), Collision());
return colliders[p_bounce];
}
Ref<KinematicCollision> KinematicBody::_get_slide_collision(int p_bounce) {
ERR_FAIL_INDEX_V(p_bounce, colliders.size(), Ref<KinematicCollision>());
if (p_bounce >= slide_colliders.size()) {
slide_colliders.resize(p_bounce + 1);
}
if (slide_colliders[p_bounce].is_null()) {
slide_colliders.write[p_bounce].instance();
slide_colliders.write[p_bounce]->owner = this;
}
slide_colliders.write[p_bounce]->collision = colliders[p_bounce];
return slide_colliders[p_bounce];
}
void KinematicBody::_bind_methods() {
ClassDB::bind_method(D_METHOD("move_and_collide", "rel_vec", "infinite_inertia"), &KinematicBody::_move, DEFVAL(true));
ClassDB::bind_method(D_METHOD("move_and_slide", "linear_velocity", "floor_normal", "slope_stop_min_velocity", "max_slides", "floor_max_angle", "infinite_inertia"), &KinematicBody::move_and_slide, DEFVAL(Vector3(0, 0, 0)), DEFVAL(0.05), DEFVAL(4), DEFVAL(Math::deg2rad((float)45)), DEFVAL(true));
ClassDB::bind_method(D_METHOD("test_move", "from", "rel_vec", "infinite_inertia"), &KinematicBody::test_move);
ClassDB::bind_method(D_METHOD("is_on_floor"), &KinematicBody::is_on_floor);
ClassDB::bind_method(D_METHOD("is_on_ceiling"), &KinematicBody::is_on_ceiling);
ClassDB::bind_method(D_METHOD("is_on_wall"), &KinematicBody::is_on_wall);
ClassDB::bind_method(D_METHOD("get_floor_velocity"), &KinematicBody::get_floor_velocity);
ClassDB::bind_method(D_METHOD("set_axis_lock", "axis", "lock"), &KinematicBody::set_axis_lock);
ClassDB::bind_method(D_METHOD("get_axis_lock", "axis"), &KinematicBody::get_axis_lock);
ClassDB::bind_method(D_METHOD("set_safe_margin", "pixels"), &KinematicBody::set_safe_margin);
ClassDB::bind_method(D_METHOD("get_safe_margin"), &KinematicBody::get_safe_margin);
ClassDB::bind_method(D_METHOD("get_slide_count"), &KinematicBody::get_slide_count);
ClassDB::bind_method(D_METHOD("get_slide_collision", "slide_idx"), &KinematicBody::_get_slide_collision);
ADD_GROUP("Axis Lock", "axis_lock_");
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_linear_x"), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_LINEAR_X);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_linear_y"), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_LINEAR_Y);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_linear_z"), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_LINEAR_Z);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_angular_x"), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_ANGULAR_X);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_angular_y"), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_ANGULAR_Y);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_angular_z"), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_ANGULAR_Z);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "collision/safe_margin", PROPERTY_HINT_RANGE, "0.001,256,0.001"), "set_safe_margin", "get_safe_margin");
}
KinematicBody::KinematicBody() :
PhysicsBody(PhysicsServer::BODY_MODE_KINEMATIC) {
margin = 0.001;
locked_axis = 0;
on_floor = false;
on_ceiling = false;
on_wall = false;
}
KinematicBody::~KinematicBody() {
if (motion_cache.is_valid()) {
motion_cache->owner = NULL;
}
for (int i = 0; i < slide_colliders.size(); i++) {
if (slide_colliders[i].is_valid()) {
slide_colliders.write[i]->owner = NULL;
}
}
}
///////////////////////////////////////
Vector3 KinematicCollision::get_position() const {
return collision.collision;
}
Vector3 KinematicCollision::get_normal() const {
return collision.normal;
}
Vector3 KinematicCollision::get_travel() const {
return collision.travel;
}
Vector3 KinematicCollision::get_remainder() const {
return collision.remainder;
}
Object *KinematicCollision::get_local_shape() const {
ERR_FAIL_COND_V(!owner, NULL);
uint32_t ownerid = owner->shape_find_owner(collision.local_shape);
return owner->shape_owner_get_owner(ownerid);
}
Object *KinematicCollision::get_collider() const {
if (collision.collider) {
return ObjectDB::get_instance(collision.collider);
}
return NULL;
}
ObjectID KinematicCollision::get_collider_id() const {
return collision.collider;
}
Object *KinematicCollision::get_collider_shape() const {
Object *collider = get_collider();
if (collider) {
CollisionObject *obj2d = Object::cast_to<CollisionObject>(collider);
if (obj2d) {
uint32_t ownerid = obj2d->shape_find_owner(collision.collider_shape);
return obj2d->shape_owner_get_owner(ownerid);
}
}
return NULL;
}
int KinematicCollision::get_collider_shape_index() const {
return collision.collider_shape;
}
Vector3 KinematicCollision::get_collider_velocity() const {
return collision.collider_vel;
}
Variant KinematicCollision::get_collider_metadata() const {
return Variant();
}
void KinematicCollision::_bind_methods() {
ClassDB::bind_method(D_METHOD("get_position"), &KinematicCollision::get_position);
ClassDB::bind_method(D_METHOD("get_normal"), &KinematicCollision::get_normal);
ClassDB::bind_method(D_METHOD("get_travel"), &KinematicCollision::get_travel);
ClassDB::bind_method(D_METHOD("get_remainder"), &KinematicCollision::get_remainder);
ClassDB::bind_method(D_METHOD("get_local_shape"), &KinematicCollision::get_local_shape);
ClassDB::bind_method(D_METHOD("get_collider"), &KinematicCollision::get_collider);
ClassDB::bind_method(D_METHOD("get_collider_id"), &KinematicCollision::get_collider_id);
ClassDB::bind_method(D_METHOD("get_collider_shape"), &KinematicCollision::get_collider_shape);
ClassDB::bind_method(D_METHOD("get_collider_shape_index"), &KinematicCollision::get_collider_shape_index);
ClassDB::bind_method(D_METHOD("get_collider_velocity"), &KinematicCollision::get_collider_velocity);
ClassDB::bind_method(D_METHOD("get_collider_metadata"), &KinematicCollision::get_collider_metadata);
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "position"), "", "get_position");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "normal"), "", "get_normal");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "travel"), "", "get_travel");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "remainder"), "", "get_remainder");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "local_shape"), "", "get_local_shape");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "collider"), "", "get_collider");
ADD_PROPERTY(PropertyInfo(Variant::INT, "collider_id"), "", "get_collider_id");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "collider_shape"), "", "get_collider_shape");
ADD_PROPERTY(PropertyInfo(Variant::INT, "collider_shape_index"), "", "get_collider_shape_index");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "collider_velocity"), "", "get_collider_velocity");
ADD_PROPERTY(PropertyInfo(Variant::NIL, "collider_metadata", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NIL_IS_VARIANT), "", "get_collider_metadata");
}
KinematicCollision::KinematicCollision() {
collision.collider = 0;
collision.collider_shape = 0;
collision.local_shape = 0;
owner = NULL;
}
///////////////////////////////////////
bool PhysicalBone::JointData::_set(const StringName &p_name, const Variant &p_value, RID j) {
return false;
}
bool PhysicalBone::JointData::_get(const StringName &p_name, Variant &r_ret) const {
return false;
}
void PhysicalBone::JointData::_get_property_list(List<PropertyInfo> *p_list) const {
}
bool PhysicalBone::PinJointData::_set(const StringName &p_name, const Variant &p_value, RID j) {
if (JointData::_set(p_name, p_value, j)) {
return true;
}
if ("joint_constraints/bias" == p_name) {
bias = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->pin_joint_set_param(j, PhysicsServer::PIN_JOINT_BIAS, bias);
} else if ("joint_constraints/damping" == p_name) {
damping = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->pin_joint_set_param(j, PhysicsServer::PIN_JOINT_DAMPING, damping);
} else if ("joint_constraints/impulse_clamp" == p_name) {
impulse_clamp = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->pin_joint_set_param(j, PhysicsServer::PIN_JOINT_IMPULSE_CLAMP, impulse_clamp);
} else {
return false;
}
return true;
}
bool PhysicalBone::PinJointData::_get(const StringName &p_name, Variant &r_ret) const {
if (JointData::_get(p_name, r_ret)) {
return true;
}
if ("joint_constraints/bias" == p_name) {
r_ret = bias;
} else if ("joint_constraints/damping" == p_name) {
r_ret = damping;
} else if ("joint_constraints/impulse_clamp" == p_name) {
r_ret = impulse_clamp;
} else {
return false;
}
return true;
}
void PhysicalBone::PinJointData::_get_property_list(List<PropertyInfo> *p_list) const {
JointData::_get_property_list(p_list);
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/bias", PROPERTY_HINT_RANGE, "0.01,0.99,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/damping", PROPERTY_HINT_RANGE, "0.01,8.0,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/impulse_clamp", PROPERTY_HINT_RANGE, "0.0,64.0,0.01"));
}
bool PhysicalBone::ConeJointData::_set(const StringName &p_name, const Variant &p_value, RID j) {
if (JointData::_set(p_name, p_value, j)) {
return true;
}
if ("joint_constraints/swing_span" == p_name) {
swing_span = Math::deg2rad(real_t(p_value));
if (j.is_valid())
PhysicsServer::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer::CONE_TWIST_JOINT_SWING_SPAN, swing_span);
} else if ("joint_constraints/twist_span" == p_name) {
twist_span = Math::deg2rad(real_t(p_value));
if (j.is_valid())
PhysicsServer::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer::CONE_TWIST_JOINT_TWIST_SPAN, twist_span);
} else if ("joint_constraints/bias" == p_name) {
bias = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer::CONE_TWIST_JOINT_BIAS, bias);
} else if ("joint_constraints/softness" == p_name) {
softness = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer::CONE_TWIST_JOINT_SOFTNESS, softness);
} else if ("joint_constraints/relaxation" == p_name) {
relaxation = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer::CONE_TWIST_JOINT_RELAXATION, relaxation);
} else {
return false;
}
return true;
}
bool PhysicalBone::ConeJointData::_get(const StringName &p_name, Variant &r_ret) const {
if (JointData::_get(p_name, r_ret)) {
return true;
}
if ("joint_constraints/swing_span" == p_name) {
r_ret = Math::rad2deg(swing_span);
} else if ("joint_constraints/twist_span" == p_name) {
r_ret = Math::rad2deg(twist_span);
} else if ("joint_constraints/bias" == p_name) {
r_ret = bias;
} else if ("joint_constraints/softness" == p_name) {
r_ret = softness;
} else if ("joint_constraints/relaxation" == p_name) {
r_ret = relaxation;
} else {
return false;
}
return true;
}
void PhysicalBone::ConeJointData::_get_property_list(List<PropertyInfo> *p_list) const {
JointData::_get_property_list(p_list);
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/swing_span", PROPERTY_HINT_RANGE, "-180,180,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/twist_span", PROPERTY_HINT_RANGE, "-40000,40000,0.1,or_lesser,or_greater"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/bias", PROPERTY_HINT_RANGE, "0.01,16.0,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/softness", PROPERTY_HINT_RANGE, "0.01,16.0,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/relaxation", PROPERTY_HINT_RANGE, "0.01,16.0,0.01"));
}
bool PhysicalBone::HingeJointData::_set(const StringName &p_name, const Variant &p_value, RID j) {
if (JointData::_set(p_name, p_value, j)) {
return true;
}
if ("joint_constraints/angular_limit_enabled" == p_name) {
angular_limit_enabled = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->hinge_joint_set_flag(j, PhysicsServer::HINGE_JOINT_FLAG_USE_LIMIT, angular_limit_enabled);
} else if ("joint_constraints/angular_limit_upper" == p_name) {
angular_limit_upper = Math::deg2rad(real_t(p_value));
if (j.is_valid())
PhysicsServer::get_singleton()->hinge_joint_set_param(j, PhysicsServer::HINGE_JOINT_LIMIT_UPPER, angular_limit_upper);
} else if ("joint_constraints/angular_limit_lower" == p_name) {
angular_limit_lower = Math::deg2rad(real_t(p_value));
if (j.is_valid())
PhysicsServer::get_singleton()->hinge_joint_set_param(j, PhysicsServer::HINGE_JOINT_LIMIT_LOWER, angular_limit_lower);
} else if ("joint_constraints/angular_limit_bias" == p_name) {
angular_limit_bias = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->hinge_joint_set_param(j, PhysicsServer::HINGE_JOINT_LIMIT_BIAS, angular_limit_bias);
} else if ("joint_constraints/angular_limit_softness" == p_name) {
angular_limit_softness = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->hinge_joint_set_param(j, PhysicsServer::HINGE_JOINT_LIMIT_SOFTNESS, angular_limit_softness);
} else if ("joint_constraints/angular_limit_relaxation" == p_name) {
angular_limit_relaxation = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->hinge_joint_set_param(j, PhysicsServer::HINGE_JOINT_LIMIT_RELAXATION, angular_limit_relaxation);
} else {
return false;
}
return true;
}
bool PhysicalBone::HingeJointData::_get(const StringName &p_name, Variant &r_ret) const {
if (JointData::_get(p_name, r_ret)) {
return true;
}
if ("joint_constraints/angular_limit_enabled" == p_name) {
r_ret = angular_limit_enabled;
} else if ("joint_constraints/angular_limit_upper" == p_name) {
r_ret = Math::rad2deg(angular_limit_upper);
} else if ("joint_constraints/angular_limit_lower" == p_name) {
r_ret = Math::rad2deg(angular_limit_lower);
} else if ("joint_constraints/angular_limit_bias" == p_name) {
r_ret = angular_limit_bias;
} else if ("joint_constraints/angular_limit_softness" == p_name) {
r_ret = angular_limit_softness;
} else if ("joint_constraints/angular_limit_relaxation" == p_name) {
r_ret = angular_limit_relaxation;
} else {
return false;
}
return true;
}
void PhysicalBone::HingeJointData::_get_property_list(List<PropertyInfo> *p_list) const {
JointData::_get_property_list(p_list);
p_list->push_back(PropertyInfo(Variant::BOOL, "joint_constraints/angular_limit_enabled"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/angular_limit_upper", PROPERTY_HINT_RANGE, "-180,180,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/angular_limit_lower", PROPERTY_HINT_RANGE, "-180,180,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/angular_limit_bias", PROPERTY_HINT_RANGE, "0.01,0.99,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/angular_limit_softness", PROPERTY_HINT_RANGE, "0.01,16,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/angular_limit_relaxation", PROPERTY_HINT_RANGE, "0.01,16,0.01"));
}
bool PhysicalBone::SliderJointData::_set(const StringName &p_name, const Variant &p_value, RID j) {
if (JointData::_set(p_name, p_value, j)) {
return true;
}
if ("joint_constraints/linear_limit_upper" == p_name) {
linear_limit_upper = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->slider_joint_set_param(j, PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_UPPER, linear_limit_upper);
} else if ("joint_constraints/linear_limit_lower" == p_name) {
linear_limit_lower = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->slider_joint_set_param(j, PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_LOWER, linear_limit_lower);
} else if ("joint_constraints/linear_limit_softness" == p_name) {
linear_limit_softness = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->slider_joint_set_param(j, PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS, linear_limit_softness);
} else if ("joint_constraints/linear_limit_restitution" == p_name) {
linear_limit_restitution = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->slider_joint_set_param(j, PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION, linear_limit_restitution);
} else if ("joint_constraints/linear_limit_damping" == p_name) {
linear_limit_damping = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->slider_joint_set_param(j, PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_DAMPING, linear_limit_restitution);
} else if ("joint_constraints/angular_limit_upper" == p_name) {
angular_limit_upper = Math::deg2rad(real_t(p_value));
if (j.is_valid())
PhysicsServer::get_singleton()->slider_joint_set_param(j, PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_UPPER, angular_limit_upper);
} else if ("joint_constraints/angular_limit_lower" == p_name) {
angular_limit_lower = Math::deg2rad(real_t(p_value));
if (j.is_valid())
PhysicsServer::get_singleton()->slider_joint_set_param(j, PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_LOWER, angular_limit_lower);
} else if ("joint_constraints/angular_limit_softness" == p_name) {
angular_limit_softness = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->slider_joint_set_param(j, PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS, angular_limit_softness);
} else if ("joint_constraints/angular_limit_restitution" == p_name) {
angular_limit_restitution = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->slider_joint_set_param(j, PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS, angular_limit_softness);
} else if ("joint_constraints/angular_limit_damping" == p_name) {
angular_limit_damping = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->slider_joint_set_param(j, PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING, angular_limit_damping);
} else {
return false;
}
return true;
}
bool PhysicalBone::SliderJointData::_get(const StringName &p_name, Variant &r_ret) const {
if (JointData::_get(p_name, r_ret)) {
return true;
}
if ("joint_constraints/linear_limit_upper" == p_name) {
r_ret = linear_limit_upper;
} else if ("joint_constraints/linear_limit_lower" == p_name) {
r_ret = linear_limit_lower;
} else if ("joint_constraints/linear_limit_softness" == p_name) {
r_ret = linear_limit_softness;
} else if ("joint_constraints/linear_limit_restitution" == p_name) {
r_ret = linear_limit_restitution;
} else if ("joint_constraints/linear_limit_damping" == p_name) {
r_ret = linear_limit_damping;
} else if ("joint_constraints/angular_limit_upper" == p_name) {
r_ret = Math::rad2deg(angular_limit_upper);
} else if ("joint_constraints/angular_limit_lower" == p_name) {
r_ret = Math::rad2deg(angular_limit_lower);
} else if ("joint_constraints/angular_limit_softness" == p_name) {
r_ret = angular_limit_softness;
} else if ("joint_constraints/angular_limit_restitution" == p_name) {
r_ret = angular_limit_restitution;
} else if ("joint_constraints/angular_limit_damping" == p_name) {
r_ret = angular_limit_damping;
} else {
return false;
}
return true;
}
void PhysicalBone::SliderJointData::_get_property_list(List<PropertyInfo> *p_list) const {
JointData::_get_property_list(p_list);
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/linear_limit_upper"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/linear_limit_lower"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/linear_limit_softness", PROPERTY_HINT_RANGE, "0.01,16.0,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/linear_limit_restitution", PROPERTY_HINT_RANGE, "0.01,16.0,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/linear_limit_damping", PROPERTY_HINT_RANGE, "0,16.0,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/angular_limit_upper", PROPERTY_HINT_RANGE, "-180,180,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/angular_limit_lower", PROPERTY_HINT_RANGE, "-180,180,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/angular_limit_softness", PROPERTY_HINT_RANGE, "0.01,16.0,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/angular_limit_restitution", PROPERTY_HINT_RANGE, "0.01,16.0,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/angular_limit_damping", PROPERTY_HINT_RANGE, "0,16.0,0.01"));
}
bool PhysicalBone::SixDOFJointData::_set(const StringName &p_name, const Variant &p_value, RID j) {
if (JointData::_set(p_name, p_value, j)) {
return true;
}
String path = p_name;
Vector3::Axis axis;
{
const String axis_s = path.get_slicec('/', 1);
if ("x" == axis_s) {
axis = Vector3::AXIS_X;
} else if ("y" == axis_s) {
axis = Vector3::AXIS_Y;
} else if ("z" == axis_s) {
axis = Vector3::AXIS_Z;
} else {
return false;
}
}
String var_name = path.get_slicec('/', 2);
if ("linear_limit_enabled" == var_name) {
axis_data[axis].linear_limit_enabled = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->generic_6dof_joint_set_flag(j, axis, PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT, axis_data[axis].linear_limit_enabled);
} else if ("linear_limit_upper" == var_name) {
axis_data[axis].linear_limit_upper = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_LINEAR_UPPER_LIMIT, axis_data[axis].linear_limit_upper);
} else if ("linear_limit_lower" == var_name) {
axis_data[axis].linear_limit_lower = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_LINEAR_LOWER_LIMIT, axis_data[axis].linear_limit_lower);
} else if ("linear_limit_softness" == var_name) {
axis_data[axis].linear_limit_softness = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS, axis_data[axis].linear_limit_softness);
} else if ("linear_restitution" == var_name) {
axis_data[axis].linear_restitution = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_LINEAR_RESTITUTION, axis_data[axis].linear_restitution);
} else if ("linear_damping" == var_name) {
axis_data[axis].linear_damping = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_LINEAR_DAMPING, axis_data[axis].linear_damping);
} else if ("angular_limit_enabled" == var_name) {
axis_data[axis].angular_limit_enabled = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->generic_6dof_joint_set_flag(j, axis, PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT, axis_data[axis].angular_limit_enabled);
} else if ("angular_limit_upper" == var_name) {
axis_data[axis].angular_limit_upper = Math::deg2rad(real_t(p_value));
if (j.is_valid())
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_ANGULAR_UPPER_LIMIT, axis_data[axis].angular_limit_upper);
} else if ("angular_limit_lower" == var_name) {
axis_data[axis].angular_limit_lower = Math::deg2rad(real_t(p_value));
if (j.is_valid())
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_ANGULAR_LOWER_LIMIT, axis_data[axis].angular_limit_lower);
} else if ("angular_limit_softness" == var_name) {
axis_data[axis].angular_limit_softness = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS, axis_data[axis].angular_limit_softness);
} else if ("angular_restitution" == var_name) {
axis_data[axis].angular_restitution = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_ANGULAR_RESTITUTION, axis_data[axis].angular_restitution);
} else if ("angular_damping" == var_name) {
axis_data[axis].angular_damping = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_ANGULAR_DAMPING, axis_data[axis].angular_damping);
} else if ("erp" == var_name) {
axis_data[axis].erp = p_value;
if (j.is_valid())
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_ANGULAR_ERP, axis_data[axis].erp);
} else {
return false;
}
return true;
}
bool PhysicalBone::SixDOFJointData::_get(const StringName &p_name, Variant &r_ret) const {
if (JointData::_get(p_name, r_ret)) {
return true;
}
String path = p_name;
int axis;
{
const String axis_s = path.get_slicec('/', 1);
if ("x" == axis_s) {
axis = 0;
} else if ("y" == axis_s) {
axis = 1;
} else if ("z" == axis_s) {
axis = 2;
} else {
return false;
}
}
String var_name = path.get_slicec('/', 2);
if ("linear_limit_enabled" == var_name) {
r_ret = axis_data[axis].linear_limit_enabled;
} else if ("linear_limit_upper" == var_name) {
r_ret = axis_data[axis].linear_limit_upper;
} else if ("linear_limit_lower" == var_name) {
r_ret = axis_data[axis].linear_limit_lower;
} else if ("linear_limit_softness" == var_name) {
r_ret = axis_data[axis].linear_limit_softness;
} else if ("linear_restitution" == var_name) {
r_ret = axis_data[axis].linear_restitution;
} else if ("linear_damping" == var_name) {
r_ret = axis_data[axis].linear_damping;
} else if ("angular_limit_enabled" == var_name) {
r_ret = axis_data[axis].angular_limit_enabled;
} else if ("angular_limit_upper" == var_name) {
r_ret = Math::rad2deg(axis_data[axis].angular_limit_upper);
} else if ("angular_limit_lower" == var_name) {
r_ret = Math::rad2deg(axis_data[axis].angular_limit_lower);
} else if ("angular_limit_softness" == var_name) {
r_ret = axis_data[axis].angular_limit_softness;
} else if ("angular_restitution" == var_name) {
r_ret = axis_data[axis].angular_restitution;
} else if ("angular_damping" == var_name) {
r_ret = axis_data[axis].angular_damping;
} else if ("erp" == var_name) {
r_ret = axis_data[axis].erp;
} else {
return false;
}
return true;
}
void PhysicalBone::SixDOFJointData::_get_property_list(List<PropertyInfo> *p_list) const {
const StringName axis_names[] = { "x", "y", "z" };
for (int i = 0; i < 3; ++i) {
p_list->push_back(PropertyInfo(Variant::BOOL, "joint_constraints/" + axis_names[i] + "/linear_limit_enabled"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/linear_limit_upper"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/linear_limit_lower"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/linear_limit_softness", PROPERTY_HINT_RANGE, "0.01,16,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/linear_restitution", PROPERTY_HINT_RANGE, "0.01,16,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/linear_damping", PROPERTY_HINT_RANGE, "0.01,16,0.01"));
p_list->push_back(PropertyInfo(Variant::BOOL, "joint_constraints/" + axis_names[i] + "/angular_limit_enabled"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/angular_limit_upper", PROPERTY_HINT_RANGE, "-180,180,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/angular_limit_lower", PROPERTY_HINT_RANGE, "-180,180,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/angular_limit_softness", PROPERTY_HINT_RANGE, "0.01,16,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/angular_restitution", PROPERTY_HINT_RANGE, "0.01,16,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/angular_damping", PROPERTY_HINT_RANGE, "0.01,16,0.01"));
p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/erp"));
}
}
bool PhysicalBone::_set(const StringName &p_name, const Variant &p_value) {
if (p_name == "bone_name") {
set_bone_name(p_value);
return true;
}
if (joint_data) {
if (joint_data->_set(p_name, p_value)) {
#ifdef TOOLS_ENABLED
if (get_gizmo().is_valid())
get_gizmo()->redraw();
#endif
return true;
}
}
return false;
}
bool PhysicalBone::_get(const StringName &p_name, Variant &r_ret) const {
if (p_name == "bone_name") {
r_ret = get_bone_name();
return true;
}
if (joint_data) {
return joint_data->_get(p_name, r_ret);
}
return false;
}
void PhysicalBone::_get_property_list(List<PropertyInfo> *p_list) const {
Skeleton *parent = find_skeleton_parent(get_parent());
if (parent) {
String names;
for (int i = 0; i < parent->get_bone_count(); i++) {
if (i > 0)
names += ",";
names += parent->get_bone_name(i);
}
p_list->push_back(PropertyInfo(Variant::STRING, "bone_name", PROPERTY_HINT_ENUM, names));
} else {
p_list->push_back(PropertyInfo(Variant::STRING, "bone_name"));
}
if (joint_data) {
joint_data->_get_property_list(p_list);
}
}
void PhysicalBone::_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_ENTER_TREE:
parent_skeleton = find_skeleton_parent(get_parent());
update_bone_id();
reset_to_rest_position();
_reset_physics_simulation_state();
break;
case NOTIFICATION_EXIT_TREE:
if (parent_skeleton) {
if (-1 != bone_id) {
parent_skeleton->unbind_physical_bone_from_bone(bone_id);
}
}
parent_skeleton = NULL;
update_bone_id();
break;
case NOTIFICATION_TRANSFORM_CHANGED:
if (Engine::get_singleton()->is_editor_hint()) {
update_offset();
}
break;
}
}
void PhysicalBone::_direct_state_changed(Object *p_state) {
if (!simulate_physics) {
return;
}
/// Update bone transform
PhysicsDirectBodyState *state;
#ifdef DEBUG_ENABLED
state = Object::cast_to<PhysicsDirectBodyState>(p_state);
#else
state = (PhysicsDirectBodyState *)p_state; //trust it
#endif
Transform global_transform(state->get_transform());
set_ignore_transform_notification(true);
set_global_transform(global_transform);
set_ignore_transform_notification(false);
// Update skeleton
if (parent_skeleton) {
if (-1 != bone_id) {
parent_skeleton->set_bone_global_pose(bone_id, parent_skeleton->get_global_transform().affine_inverse() * (global_transform * body_offset_inverse));
}
}
}
void PhysicalBone::_bind_methods() {
ClassDB::bind_method(D_METHOD("_direct_state_changed"), &PhysicalBone::_direct_state_changed);
ClassDB::bind_method(D_METHOD("set_joint_type", "joint_type"), &PhysicalBone::set_joint_type);
ClassDB::bind_method(D_METHOD("get_joint_type"), &PhysicalBone::get_joint_type);
ClassDB::bind_method(D_METHOD("set_joint_offset", "offset"), &PhysicalBone::set_joint_offset);
ClassDB::bind_method(D_METHOD("get_joint_offset"), &PhysicalBone::get_joint_offset);
ClassDB::bind_method(D_METHOD("set_body_offset", "offset"), &PhysicalBone::set_body_offset);
ClassDB::bind_method(D_METHOD("get_body_offset"), &PhysicalBone::get_body_offset);
ClassDB::bind_method(D_METHOD("is_static_body"), &PhysicalBone::is_static_body);
ClassDB::bind_method(D_METHOD("get_simulate_physics"), &PhysicalBone::get_simulate_physics);
ClassDB::bind_method(D_METHOD("is_simulating_physics"), &PhysicalBone::is_simulating_physics);
ClassDB::bind_method(D_METHOD("set_mass", "mass"), &PhysicalBone::set_mass);
ClassDB::bind_method(D_METHOD("get_mass"), &PhysicalBone::get_mass);
ClassDB::bind_method(D_METHOD("set_weight", "weight"), &PhysicalBone::set_weight);
ClassDB::bind_method(D_METHOD("get_weight"), &PhysicalBone::get_weight);
ClassDB::bind_method(D_METHOD("set_friction", "friction"), &PhysicalBone::set_friction);
ClassDB::bind_method(D_METHOD("get_friction"), &PhysicalBone::get_friction);
ClassDB::bind_method(D_METHOD("set_bounce", "bounce"), &PhysicalBone::set_bounce);
ClassDB::bind_method(D_METHOD("get_bounce"), &PhysicalBone::get_bounce);
ClassDB::bind_method(D_METHOD("set_gravity_scale", "gravity_scale"), &PhysicalBone::set_gravity_scale);
ClassDB::bind_method(D_METHOD("get_gravity_scale"), &PhysicalBone::get_gravity_scale);
ADD_GROUP("Joint", "joint_");
ADD_PROPERTY(PropertyInfo(Variant::INT, "joint_type", PROPERTY_HINT_ENUM, "None,PinJoint,ConeJoint,HingeJoint,SliderJoint,6DOFJoint"), "set_joint_type", "get_joint_type");
ADD_PROPERTY(PropertyInfo(Variant::TRANSFORM, "joint_offset"), "set_joint_offset", "get_joint_offset");
ADD_PROPERTY(PropertyInfo(Variant::TRANSFORM, "body_offset"), "set_body_offset", "get_body_offset");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "mass", PROPERTY_HINT_EXP_RANGE, "0.01,65535,0.01"), "set_mass", "get_mass");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "weight", PROPERTY_HINT_EXP_RANGE, "0.01,65535,0.01"), "set_weight", "get_weight");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "friction", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_friction", "get_friction");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "bounce", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_bounce", "get_bounce");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "gravity_scale", PROPERTY_HINT_RANGE, "-10,10,0.01"), "set_gravity_scale", "get_gravity_scale");
BIND_ENUM_CONSTANT(JOINT_TYPE_NONE);
BIND_ENUM_CONSTANT(JOINT_TYPE_PIN);
BIND_ENUM_CONSTANT(JOINT_TYPE_CONE);
BIND_ENUM_CONSTANT(JOINT_TYPE_HINGE);
BIND_ENUM_CONSTANT(JOINT_TYPE_SLIDER);
BIND_ENUM_CONSTANT(JOINT_TYPE_6DOF);
}
Skeleton *PhysicalBone::find_skeleton_parent(Node *p_parent) {
if (!p_parent) {
return NULL;
}
Skeleton *s = Object::cast_to<Skeleton>(p_parent);
return s ? s : find_skeleton_parent(p_parent->get_parent());
}
void PhysicalBone::_fix_joint_offset() {
// Clamp joint origin to bone origin
if (parent_skeleton) {
joint_offset.origin = body_offset.affine_inverse().origin;
}
}
void PhysicalBone::_reload_joint() {
if (joint.is_valid()) {
PhysicsServer::get_singleton()->free(joint);
joint = RID();
}
if (!parent_skeleton) {
return;
}
PhysicalBone *body_a = parent_skeleton->get_physical_bone_parent(bone_id);
if (!body_a) {
return;
}
Transform joint_transf = get_global_transform() * joint_offset;
Transform local_a = body_a->get_global_transform().affine_inverse() * joint_transf;
local_a.orthonormalize();
switch (get_joint_type()) {
case JOINT_TYPE_PIN: {
joint = PhysicsServer::get_singleton()->joint_create_pin(body_a->get_rid(), local_a.origin, get_rid(), joint_offset.origin);
const PinJointData *pjd(static_cast<const PinJointData *>(joint_data));
PhysicsServer::get_singleton()->pin_joint_set_param(joint, PhysicsServer::PIN_JOINT_BIAS, pjd->bias);
PhysicsServer::get_singleton()->pin_joint_set_param(joint, PhysicsServer::PIN_JOINT_DAMPING, pjd->damping);
PhysicsServer::get_singleton()->pin_joint_set_param(joint, PhysicsServer::PIN_JOINT_IMPULSE_CLAMP, pjd->impulse_clamp);
} break;
case JOINT_TYPE_CONE: {
joint = PhysicsServer::get_singleton()->joint_create_cone_twist(body_a->get_rid(), local_a, get_rid(), joint_offset);
const ConeJointData *cjd(static_cast<const ConeJointData *>(joint_data));
PhysicsServer::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer::CONE_TWIST_JOINT_SWING_SPAN, cjd->swing_span);
PhysicsServer::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer::CONE_TWIST_JOINT_TWIST_SPAN, cjd->twist_span);
PhysicsServer::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer::CONE_TWIST_JOINT_BIAS, cjd->bias);
PhysicsServer::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer::CONE_TWIST_JOINT_SOFTNESS, cjd->softness);
PhysicsServer::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer::CONE_TWIST_JOINT_RELAXATION, cjd->relaxation);
} break;
case JOINT_TYPE_HINGE: {
joint = PhysicsServer::get_singleton()->joint_create_hinge(body_a->get_rid(), local_a, get_rid(), joint_offset);
const HingeJointData *hjd(static_cast<const HingeJointData *>(joint_data));
PhysicsServer::get_singleton()->hinge_joint_set_flag(joint, PhysicsServer::HINGE_JOINT_FLAG_USE_LIMIT, hjd->angular_limit_enabled);
PhysicsServer::get_singleton()->hinge_joint_set_param(joint, PhysicsServer::HINGE_JOINT_LIMIT_UPPER, hjd->angular_limit_upper);
PhysicsServer::get_singleton()->hinge_joint_set_param(joint, PhysicsServer::HINGE_JOINT_LIMIT_LOWER, hjd->angular_limit_lower);
PhysicsServer::get_singleton()->hinge_joint_set_param(joint, PhysicsServer::HINGE_JOINT_LIMIT_BIAS, hjd->angular_limit_bias);
PhysicsServer::get_singleton()->hinge_joint_set_param(joint, PhysicsServer::HINGE_JOINT_LIMIT_SOFTNESS, hjd->angular_limit_softness);
PhysicsServer::get_singleton()->hinge_joint_set_param(joint, PhysicsServer::HINGE_JOINT_LIMIT_RELAXATION, hjd->angular_limit_relaxation);
} break;
case JOINT_TYPE_SLIDER: {
joint = PhysicsServer::get_singleton()->joint_create_slider(body_a->get_rid(), local_a, get_rid(), joint_offset);
const SliderJointData *sjd(static_cast<const SliderJointData *>(joint_data));
PhysicsServer::get_singleton()->slider_joint_set_param(joint, PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_UPPER, sjd->linear_limit_upper);
PhysicsServer::get_singleton()->slider_joint_set_param(joint, PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_LOWER, sjd->linear_limit_lower);
PhysicsServer::get_singleton()->slider_joint_set_param(joint, PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS, sjd->linear_limit_softness);
PhysicsServer::get_singleton()->slider_joint_set_param(joint, PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION, sjd->linear_limit_restitution);
PhysicsServer::get_singleton()->slider_joint_set_param(joint, PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_DAMPING, sjd->linear_limit_restitution);
PhysicsServer::get_singleton()->slider_joint_set_param(joint, PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_UPPER, sjd->angular_limit_upper);
PhysicsServer::get_singleton()->slider_joint_set_param(joint, PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_LOWER, sjd->angular_limit_lower);
PhysicsServer::get_singleton()->slider_joint_set_param(joint, PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS, sjd->angular_limit_softness);
PhysicsServer::get_singleton()->slider_joint_set_param(joint, PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS, sjd->angular_limit_softness);
PhysicsServer::get_singleton()->slider_joint_set_param(joint, PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING, sjd->angular_limit_damping);
} break;
case JOINT_TYPE_6DOF: {
joint = PhysicsServer::get_singleton()->joint_create_generic_6dof(body_a->get_rid(), local_a, get_rid(), joint_offset);
const SixDOFJointData *g6dofjd(static_cast<const SixDOFJointData *>(joint_data));
for (int axis = 0; axis < 3; ++axis) {
PhysicsServer::get_singleton()->generic_6dof_joint_set_flag(joint, static_cast<Vector3::Axis>(axis), PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT, g6dofjd->axis_data[axis].linear_limit_enabled);
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer::G6DOF_JOINT_LINEAR_UPPER_LIMIT, g6dofjd->axis_data[axis].linear_limit_upper);
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer::G6DOF_JOINT_LINEAR_LOWER_LIMIT, g6dofjd->axis_data[axis].linear_limit_lower);
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS, g6dofjd->axis_data[axis].linear_limit_softness);
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer::G6DOF_JOINT_LINEAR_RESTITUTION, g6dofjd->axis_data[axis].linear_restitution);
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer::G6DOF_JOINT_LINEAR_DAMPING, g6dofjd->axis_data[axis].linear_damping);
PhysicsServer::get_singleton()->generic_6dof_joint_set_flag(joint, static_cast<Vector3::Axis>(axis), PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT, g6dofjd->axis_data[axis].angular_limit_enabled);
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer::G6DOF_JOINT_ANGULAR_UPPER_LIMIT, g6dofjd->axis_data[axis].angular_limit_upper);
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer::G6DOF_JOINT_ANGULAR_LOWER_LIMIT, g6dofjd->axis_data[axis].angular_limit_lower);
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS, g6dofjd->axis_data[axis].angular_limit_softness);
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer::G6DOF_JOINT_ANGULAR_RESTITUTION, g6dofjd->axis_data[axis].angular_restitution);
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer::G6DOF_JOINT_ANGULAR_DAMPING, g6dofjd->axis_data[axis].angular_damping);
PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer::G6DOF_JOINT_ANGULAR_ERP, g6dofjd->axis_data[axis].erp);
}
} break;
}
}
void PhysicalBone::_on_bone_parent_changed() {
_reload_joint();
}
void PhysicalBone::_set_gizmo_move_joint(bool p_move_joint) {
#ifdef TOOLS_ENABLED
gizmo_move_joint = p_move_joint;
SpatialEditor::get_singleton()->update_transform_gizmo();
#endif
}
#ifdef TOOLS_ENABLED
Transform PhysicalBone::get_global_gizmo_transform() const {
return gizmo_move_joint ? get_global_transform() * joint_offset : get_global_transform();
}
Transform PhysicalBone::get_local_gizmo_transform() const {
return gizmo_move_joint ? get_transform() * joint_offset : get_transform();
}
#endif
const PhysicalBone::JointData *PhysicalBone::get_joint_data() const {
return joint_data;
}
Skeleton *PhysicalBone::find_skeleton_parent() {
return find_skeleton_parent(this);
}
void PhysicalBone::set_joint_type(JointType p_joint_type) {
if (p_joint_type == get_joint_type())
return;
memdelete(joint_data);
joint_data = NULL;
switch (p_joint_type) {
case JOINT_TYPE_PIN:
joint_data = memnew(PinJointData);
break;
case JOINT_TYPE_CONE:
joint_data = memnew(ConeJointData);
break;
case JOINT_TYPE_HINGE:
joint_data = memnew(HingeJointData);
break;
case JOINT_TYPE_SLIDER:
joint_data = memnew(SliderJointData);
break;
case JOINT_TYPE_6DOF:
joint_data = memnew(SixDOFJointData);
break;
}
_reload_joint();
#ifdef TOOLS_ENABLED
_change_notify();
if (get_gizmo().is_valid())
get_gizmo()->redraw();
#endif
}
PhysicalBone::JointType PhysicalBone::get_joint_type() const {
return joint_data ? joint_data->get_joint_type() : JOINT_TYPE_NONE;
}
void PhysicalBone::set_joint_offset(const Transform &p_offset) {
joint_offset = p_offset;
_fix_joint_offset();
set_ignore_transform_notification(true);
reset_to_rest_position();
set_ignore_transform_notification(false);
#ifdef TOOLS_ENABLED
if (get_gizmo().is_valid())
get_gizmo()->redraw();
#endif
}
const Transform &PhysicalBone::get_body_offset() const {
return body_offset;
}
void PhysicalBone::set_body_offset(const Transform &p_offset) {
body_offset = p_offset;
body_offset_inverse = body_offset.affine_inverse();
_fix_joint_offset();
set_ignore_transform_notification(true);
reset_to_rest_position();
set_ignore_transform_notification(false);
#ifdef TOOLS_ENABLED
if (get_gizmo().is_valid())
get_gizmo()->redraw();
#endif
}
const Transform &PhysicalBone::get_joint_offset() const {
return joint_offset;
}
void PhysicalBone::set_static_body(bool p_static) {
static_body = p_static;
set_as_toplevel(!static_body);
_reset_physics_simulation_state();
}
bool PhysicalBone::is_static_body() {
return static_body;
}
void PhysicalBone::set_simulate_physics(bool p_simulate) {
if (simulate_physics == p_simulate) {
return;
}
simulate_physics = p_simulate;
_reset_physics_simulation_state();
}
bool PhysicalBone::get_simulate_physics() {
return simulate_physics;
}
bool PhysicalBone::is_simulating_physics() {
return _internal_simulate_physics && !_internal_static_body;
}
void PhysicalBone::set_bone_name(const String &p_name) {
bone_name = p_name;
bone_id = -1;
update_bone_id();
reset_to_rest_position();
}
const String &PhysicalBone::get_bone_name() const {
return bone_name;
}
void PhysicalBone::set_mass(real_t p_mass) {
ERR_FAIL_COND(p_mass <= 0);
mass = p_mass;
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_MASS, mass);
}
real_t PhysicalBone::get_mass() const {
return mass;
}
void PhysicalBone::set_weight(real_t p_weight) {
set_mass(p_weight / real_t(GLOBAL_DEF("physics/3d/default_gravity", 9.8)));
}
real_t PhysicalBone::get_weight() const {
return mass * real_t(GLOBAL_DEF("physics/3d/default_gravity", 9.8));
}
void PhysicalBone::set_friction(real_t p_friction) {
ERR_FAIL_COND(p_friction < 0 || p_friction > 1);
friction = p_friction;
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_FRICTION, friction);
}
real_t PhysicalBone::get_friction() const {
return friction;
}
void PhysicalBone::set_bounce(real_t p_bounce) {
ERR_FAIL_COND(p_bounce < 0 || p_bounce > 1);
bounce = p_bounce;
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_BOUNCE, bounce);
}
real_t PhysicalBone::get_bounce() const {
return bounce;
}
void PhysicalBone::set_gravity_scale(real_t p_gravity_scale) {
gravity_scale = p_gravity_scale;
PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_GRAVITY_SCALE, gravity_scale);
}
real_t PhysicalBone::get_gravity_scale() const {
return gravity_scale;
}
PhysicalBone::PhysicalBone() :
PhysicsBody(PhysicsServer::BODY_MODE_STATIC),
#ifdef TOOLS_ENABLED
gizmo_move_joint(false),
#endif
joint_data(NULL),
static_body(false),
simulate_physics(false),
_internal_static_body(false),
_internal_simulate_physics(false),
bone_id(-1),
parent_skeleton(NULL),
bone_name(""),
bounce(0),
mass(1),
friction(1),
gravity_scale(1) {
set_static_body(static_body);
_reset_physics_simulation_state();
}
PhysicalBone::~PhysicalBone() {
memdelete(joint_data);
}
void PhysicalBone::update_bone_id() {
if (!parent_skeleton) {
return;
}
const int new_bone_id = parent_skeleton->find_bone(bone_name);
if (new_bone_id != bone_id) {
if (-1 != bone_id) {
// Assert the unbind from old node
parent_skeleton->unbind_physical_bone_from_bone(bone_id);
parent_skeleton->unbind_child_node_from_bone(bone_id, this);
}
bone_id = new_bone_id;
parent_skeleton->bind_physical_bone_to_bone(bone_id, this);
_fix_joint_offset();
_internal_static_body = !static_body; // Force staticness reset
_reset_staticness_state();
}
}
void PhysicalBone::update_offset() {
#ifdef TOOLS_ENABLED
if (parent_skeleton) {
Transform bone_transform(parent_skeleton->get_global_transform());
if (-1 != bone_id)
bone_transform *= parent_skeleton->get_bone_global_pose(bone_id);
if (gizmo_move_joint) {
bone_transform *= body_offset;
set_joint_offset(bone_transform.affine_inverse() * get_global_transform());
} else {
set_body_offset(bone_transform.affine_inverse() * get_global_transform());
}
}
#endif
}
void PhysicalBone::reset_to_rest_position() {
if (parent_skeleton) {
if (-1 == bone_id) {
set_global_transform(parent_skeleton->get_global_transform() * body_offset);
} else {
set_global_transform(parent_skeleton->get_global_transform() * parent_skeleton->get_bone_global_pose(bone_id) * body_offset);
}
}
}
void PhysicalBone::_reset_physics_simulation_state() {
if (simulate_physics && !static_body) {
_start_physics_simulation();
} else {
_stop_physics_simulation();
}
_reset_staticness_state();
}
void PhysicalBone::_reset_staticness_state() {
if (parent_skeleton && -1 != bone_id) {
if (static_body && simulate_physics) { // With this check I'm sure the position of this body is updated only when it's necessary
if (_internal_static_body) {
return;
}
parent_skeleton->bind_child_node_to_bone(bone_id, this);
_internal_static_body = true;
} else {
if (!_internal_static_body) {
return;
}
parent_skeleton->unbind_child_node_from_bone(bone_id, this);
_internal_static_body = false;
}
}
}
void PhysicalBone::_start_physics_simulation() {
if (_internal_simulate_physics || !parent_skeleton) {
return;
}
reset_to_rest_position();
PhysicsServer::get_singleton()->body_set_mode(get_rid(), PhysicsServer::BODY_MODE_RIGID);
PhysicsServer::get_singleton()->body_set_collision_layer(get_rid(), get_collision_layer());
PhysicsServer::get_singleton()->body_set_collision_mask(get_rid(), get_collision_mask());
PhysicsServer::get_singleton()->body_set_force_integration_callback(get_rid(), this, "_direct_state_changed");
parent_skeleton->set_bone_ignore_animation(bone_id, true);
_internal_simulate_physics = true;
}
void PhysicalBone::_stop_physics_simulation() {
if (!_internal_simulate_physics || !parent_skeleton) {
return;
}
PhysicsServer::get_singleton()->body_set_mode(get_rid(), PhysicsServer::BODY_MODE_STATIC);
PhysicsServer::get_singleton()->body_set_collision_layer(get_rid(), 0);
PhysicsServer::get_singleton()->body_set_collision_mask(get_rid(), 0);
PhysicsServer::get_singleton()->body_set_force_integration_callback(get_rid(), NULL, "");
parent_skeleton->set_bone_ignore_animation(bone_id, false);
_internal_simulate_physics = false;
}