godot/doc/classes/SkeletonModification2DFABRIK.xml
TwistedTwigleg 8aa3c2f091 New and improved IK system for Skeleton2D
This PR and commit adds a new IK system for 2D with the Skeleton2D node
that adds several new IK solvers, a way to control bones in a Skeleton2D
node similar to that in Skeleton3D. It also adds additional changes
and functionality.

This work was sponsored by GSoC 2020 and TwistedTwigleg.

Full list of changes:
* Adds a SkeletonModifier2D resource
  * This resource is the base where all IK code is written and executed
  * Has a function for clamping angles, since it is so commonly used
  * Modifiers are unique when duplicated so it works with instancing
* Adds a SkeletonModifierStack2D resource
  * This resource manages a series of SkeletonModification2Ds
  * This is what the Skeleton2D directly interfaces with to make IK possible
* Adds SkeletonModifier2D resources for LookAt, CCDIK, FABRIK, Jiggle, and TwoBoneIK
  * Each modification is in its own file
  * There is also a SkeletonModifier2D resource that acts as a stack for using multiple stacks together
* Adds a PhysicalBone2D node
  * Works similar to the PhysicalBone3D node, but uses a RigidBody2D node
* Changes to Skeleton2D listed below:
  * Skeleton2D now holds a single SkeletonModificationStack2D for IK
  * Skeleton2D now has a local_pose_override, which overrides the Bone2D position similar to how the overrides work in Skeleton3D
* Changes to Bone2D listed below:
  * The default_length property has been changed to length. Length is the length of the bone to its child bone node
  * New bone_angle property, which is the angle the bone has to its first child bone node
  * Bone2D caches its transform when not modified by IK for IK interpolation purposes
  * Bone2D draws its own editor gizmo, though this is stated to change in the future
* Changes to CanvasItemEditor listed below:
  * Bone2D gizmo drawing code removed
  * The 2D IK code is removed. Now Bone2D is the only bone system for 2D
* Transform2D now has a looking_at function for rotating to face a position
* Two new node notifications: NOTIFICATION_EDITOR_PRE_SAVE and NOTIFICATION_EDITOR_POST_SAVE
  * These notifications only are called in the editor right before and after saving a scene
  * Needed for not saving the IK position when executing IK in the editor
* Documentation for all the changes listed above.
2021-06-05 15:19:51 -04:00

109 lines
5.4 KiB
XML

<?xml version="1.0" encoding="UTF-8" ?>
<class name="SkeletonModification2DFABRIK" inherits="SkeletonModification2D" version="4.0">
<brief_description>
A modification that uses FABRIK to manipulate a series of [Bone2D] nodes to reach a target.
</brief_description>
<description>
This [SkeletonModification2D] uses an algorithm called [b]F[/b]orward [b]A[/b]nd [b]B[/b]ackward [b]R[/b]eaching [b]I[/b]nverse [b]K[/b]inematics, or FABRIK, to rotate a bone chain so that it reaches a target.
FABRIK works by knowing the positions and lengths of a series of bones, typically called a "bone chain". It first starts by running a forward pass, which places the final bone at the target's position. Then all other bones are moved towards the tip bone, so they stay at the defined bone length away. Then a backwards pass is performed, where the root/first bone in the FABRIK chain is placed back at the origin. then all other bones are moved so they stay at the defined bone length away. This positions the bone chain so that it reaches the target when possible, but all of the bones stay the correct length away from each other.
Because of how FABRIK works, it often gives more natural results than those seen in [SkeletonModification2DCCDIK]. FABRIK also supports angle constraints, which are fully taken into account when solving.
[b]Note:[/b] The FABRIK modifier has [code]fabrik_joints[/code], which are the data objects that hold the data for each joint in the FABRIK chain. This is different from [Bone2D] nodes! FABRIK joints hold the data needed for each [Bone2D] in the bone chain used by FABRIK.
To help control how the FABRIK joints move, a magnet vector can be passed, which can nudge the bones in a certain direction prior to solving, giving a level of control over the final result.
</description>
<tutorials>
</tutorials>
<methods>
<method name="get_fabrik_joint_bone2d_node" qualifiers="const">
<return type="NodePath">
</return>
<argument index="0" name="joint_idx" type="int">
</argument>
<description>
Returns the [Bone2D] node assigned to the FABRIK joint at [code]joint_idx[/code].
</description>
</method>
<method name="get_fabrik_joint_bone_index" qualifiers="const">
<return type="int">
</return>
<argument index="0" name="joint_idx" type="int">
</argument>
<description>
Returns the index of the [Bone2D] node assigned to the FABRIK joint at [code]joint_idx[/code].
</description>
</method>
<method name="get_fabrik_joint_magnet_position" qualifiers="const">
<return type="Vector2">
</return>
<argument index="0" name="joint_idx" type="int">
</argument>
<description>
Returns the magnet position vector for the joint at [code]joint_idx[/code].
</description>
</method>
<method name="get_fabrik_joint_use_target_rotation" qualifiers="const">
<return type="bool">
</return>
<argument index="0" name="joint_idx" type="int">
</argument>
<description>
Returns whether the joint is using the target's rotation rather than allowing FABRIK to rotate the joint. This option only applies to the tip/final joint in the chain.
</description>
</method>
<method name="set_fabrik_joint_bone2d_node">
<return type="void">
</return>
<argument index="0" name="joint_idx" type="int">
</argument>
<argument index="1" name="bone2d_nodepath" type="NodePath">
</argument>
<description>
Sets the [Bone2D] node assigned to the FABRIK joint at [code]joint_idx[/code].
</description>
</method>
<method name="set_fabrik_joint_bone_index">
<return type="void">
</return>
<argument index="0" name="joint_idx" type="int">
</argument>
<argument index="1" name="bone_idx" type="int">
</argument>
<description>
Sets the bone index, [code]bone_index[/code], of the FABRIK joint at [code]joint_idx[/code]. When possible, this will also update the [code]bone2d_node[/code] of the FABRIK joint based on data provided by the linked skeleton.
</description>
</method>
<method name="set_fabrik_joint_magnet_position">
<return type="void">
</return>
<argument index="0" name="joint_idx" type="int">
</argument>
<argument index="1" name="magnet_position" type="Vector2">
</argument>
<description>
Sets the magnet position vector for the joint at [code]joint_idx[/code].
</description>
</method>
<method name="set_fabrik_joint_use_target_rotation">
<return type="void">
</return>
<argument index="0" name="joint_idx" type="int">
</argument>
<argument index="1" name="use_target_rotation" type="bool">
</argument>
<description>
Sets whether the joint at [code]joint_idx[/code] will use the target node's rotation rather than letting FABRIK rotate the node.
[b]Note:[/b] This option only works for the tip/final joint in the chain. For all other nodes, this option will be ignored.
</description>
</method>
</methods>
<members>
<member name="fabrik_data_chain_length" type="int" setter="set_fabrik_data_chain_length" getter="get_fabrik_data_chain_length" default="0">
The amount of FABRIK joints in the FABRIK modification.
</member>
<member name="target_nodepath" type="NodePath" setter="set_target_node" getter="get_target_node" default="NodePath(&quot;&quot;)">
The NodePath to the node that is the target for the FABRIK modification. This node is what the FABRIK chain will attempt to rotate the bone chain to.
</member>
</members>
<constants>
</constants>
</class>