godot/scene/3d/physics_body_3d.cpp

3455 lines
139 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*************************************************************************/
/* physics_body_3d.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "physics_body_3d.h"
#include "core/core_string_names.h"
#include "scene/scene_string_names.h"
void PhysicsBody3D::_bind_methods() {
ClassDB::bind_method(D_METHOD("move_and_collide", "distance", "test_only", "safe_margin", "recovery_as_collision", "max_collisions"), &PhysicsBody3D::_move, DEFVAL(false), DEFVAL(0.001), DEFVAL(false), DEFVAL(1));
ClassDB::bind_method(D_METHOD("test_move", "from", "distance", "collision", "safe_margin", "recovery_as_collision", "max_collisions"), &PhysicsBody3D::test_move, DEFVAL(Variant()), DEFVAL(0.001), DEFVAL(false), DEFVAL(1));
ClassDB::bind_method(D_METHOD("set_axis_lock", "axis", "lock"), &PhysicsBody3D::set_axis_lock);
ClassDB::bind_method(D_METHOD("get_axis_lock", "axis"), &PhysicsBody3D::get_axis_lock);
ClassDB::bind_method(D_METHOD("get_collision_exceptions"), &PhysicsBody3D::get_collision_exceptions);
ClassDB::bind_method(D_METHOD("add_collision_exception_with", "body"), &PhysicsBody3D::add_collision_exception_with);
ClassDB::bind_method(D_METHOD("remove_collision_exception_with", "body"), &PhysicsBody3D::remove_collision_exception_with);
ADD_GROUP("Axis Lock", "axis_lock_");
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_linear_x"), "set_axis_lock", "get_axis_lock", PhysicsServer3D::BODY_AXIS_LINEAR_X);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_linear_y"), "set_axis_lock", "get_axis_lock", PhysicsServer3D::BODY_AXIS_LINEAR_Y);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_linear_z"), "set_axis_lock", "get_axis_lock", PhysicsServer3D::BODY_AXIS_LINEAR_Z);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_angular_x"), "set_axis_lock", "get_axis_lock", PhysicsServer3D::BODY_AXIS_ANGULAR_X);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_angular_y"), "set_axis_lock", "get_axis_lock", PhysicsServer3D::BODY_AXIS_ANGULAR_Y);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_angular_z"), "set_axis_lock", "get_axis_lock", PhysicsServer3D::BODY_AXIS_ANGULAR_Z);
}
PhysicsBody3D::PhysicsBody3D(PhysicsServer3D::BodyMode p_mode) :
CollisionObject3D(PhysicsServer3D::get_singleton()->body_create(), false) {
set_body_mode(p_mode);
}
PhysicsBody3D::~PhysicsBody3D() {
if (motion_cache.is_valid()) {
motion_cache->owner = nullptr;
}
}
TypedArray<PhysicsBody3D> PhysicsBody3D::get_collision_exceptions() {
List<RID> exceptions;
PhysicsServer3D::get_singleton()->body_get_collision_exceptions(get_rid(), &exceptions);
Array ret;
for (const RID &body : exceptions) {
ObjectID instance_id = PhysicsServer3D::get_singleton()->body_get_object_instance_id(body);
Object *obj = ObjectDB::get_instance(instance_id);
PhysicsBody3D *physics_body = Object::cast_to<PhysicsBody3D>(obj);
ret.append(physics_body);
}
return ret;
}
void PhysicsBody3D::add_collision_exception_with(Node *p_node) {
ERR_FAIL_NULL(p_node);
CollisionObject3D *collision_object = Object::cast_to<CollisionObject3D>(p_node);
ERR_FAIL_COND_MSG(!collision_object, "Collision exception only works between two CollisionObject3Ds.");
PhysicsServer3D::get_singleton()->body_add_collision_exception(get_rid(), collision_object->get_rid());
}
void PhysicsBody3D::remove_collision_exception_with(Node *p_node) {
ERR_FAIL_NULL(p_node);
CollisionObject3D *collision_object = Object::cast_to<CollisionObject3D>(p_node);
ERR_FAIL_COND_MSG(!collision_object, "Collision exception only works between two CollisionObject3Ds.");
PhysicsServer3D::get_singleton()->body_remove_collision_exception(get_rid(), collision_object->get_rid());
}
Ref<KinematicCollision3D> PhysicsBody3D::_move(const Vector3 &p_distance, bool p_test_only, real_t p_margin, bool p_recovery_as_collision, int p_max_collisions) {
PhysicsServer3D::MotionParameters parameters(get_global_transform(), p_distance, p_margin);
parameters.max_collisions = p_max_collisions;
parameters.recovery_as_collision = p_recovery_as_collision;
PhysicsServer3D::MotionResult result;
if (move_and_collide(parameters, result, p_test_only)) {
// Create a new instance when the cached reference is invalid or still in use in script.
if (motion_cache.is_null() || motion_cache->reference_get_count() > 1) {
motion_cache.instantiate();
motion_cache->owner = this;
}
motion_cache->result = result;
return motion_cache;
}
return Ref<KinematicCollision3D>();
}
bool PhysicsBody3D::move_and_collide(const PhysicsServer3D::MotionParameters &p_parameters, PhysicsServer3D::MotionResult &r_result, bool p_test_only, bool p_cancel_sliding) {
bool colliding = PhysicsServer3D::get_singleton()->body_test_motion(get_rid(), p_parameters, &r_result);
// Restore direction of motion to be along original motion,
// in order to avoid sliding due to recovery,
// but only if collision depth is low enough to avoid tunneling.
if (p_cancel_sliding) {
real_t motion_length = p_parameters.motion.length();
real_t precision = 0.001;
if (colliding) {
// Can't just use margin as a threshold because collision depth is calculated on unsafe motion,
// so even in normal resting cases the depth can be a bit more than the margin.
precision += motion_length * (r_result.collision_unsafe_fraction - r_result.collision_safe_fraction);
if (r_result.collisions[0].depth > p_parameters.margin + precision) {
p_cancel_sliding = false;
}
}
if (p_cancel_sliding) {
// When motion is null, recovery is the resulting motion.
Vector3 motion_normal;
if (motion_length > CMP_EPSILON) {
motion_normal = p_parameters.motion / motion_length;
}
// Check depth of recovery.
real_t projected_length = r_result.travel.dot(motion_normal);
Vector3 recovery = r_result.travel - motion_normal * projected_length;
real_t recovery_length = recovery.length();
// Fixes cases where canceling slide causes the motion to go too deep into the ground,
// because we're only taking rest information into account and not general recovery.
if (recovery_length < p_parameters.margin + precision) {
// Apply adjustment to motion.
r_result.travel = motion_normal * projected_length;
r_result.remainder = p_parameters.motion - r_result.travel;
}
}
}
for (int i = 0; i < 3; i++) {
if (locked_axis & (1 << i)) {
r_result.travel[i] = 0;
}
}
if (!p_test_only) {
Transform3D gt = p_parameters.from;
gt.origin += r_result.travel;
set_global_transform(gt);
}
return colliding;
}
bool PhysicsBody3D::test_move(const Transform3D &p_from, const Vector3 &p_distance, const Ref<KinematicCollision3D> &r_collision, real_t p_margin, bool p_recovery_as_collision, int p_max_collisions) {
ERR_FAIL_COND_V(!is_inside_tree(), false);
PhysicsServer3D::MotionResult *r = nullptr;
PhysicsServer3D::MotionResult temp_result;
if (r_collision.is_valid()) {
// Needs const_cast because method bindings don't support non-const Ref.
r = const_cast<PhysicsServer3D::MotionResult *>(&r_collision->result);
} else {
r = &temp_result;
}
PhysicsServer3D::MotionParameters parameters(p_from, p_distance, p_margin);
parameters.recovery_as_collision = p_recovery_as_collision;
return PhysicsServer3D::get_singleton()->body_test_motion(get_rid(), parameters, r);
}
void PhysicsBody3D::set_axis_lock(PhysicsServer3D::BodyAxis p_axis, bool p_lock) {
if (p_lock) {
locked_axis |= p_axis;
} else {
locked_axis &= (~p_axis);
}
PhysicsServer3D::get_singleton()->body_set_axis_lock(get_rid(), p_axis, p_lock);
}
bool PhysicsBody3D::get_axis_lock(PhysicsServer3D::BodyAxis p_axis) const {
return (locked_axis & p_axis);
}
Vector3 PhysicsBody3D::get_linear_velocity() const {
return Vector3();
}
Vector3 PhysicsBody3D::get_angular_velocity() const {
return Vector3();
}
real_t PhysicsBody3D::get_inverse_mass() const {
return 0;
}
void StaticBody3D::set_physics_material_override(const Ref<PhysicsMaterial> &p_physics_material_override) {
if (physics_material_override.is_valid()) {
if (physics_material_override->is_connected(CoreStringNames::get_singleton()->changed, callable_mp(this, &StaticBody3D::_reload_physics_characteristics))) {
physics_material_override->disconnect(CoreStringNames::get_singleton()->changed, callable_mp(this, &StaticBody3D::_reload_physics_characteristics));
}
}
physics_material_override = p_physics_material_override;
if (physics_material_override.is_valid()) {
physics_material_override->connect(CoreStringNames::get_singleton()->changed, callable_mp(this, &StaticBody3D::_reload_physics_characteristics));
}
_reload_physics_characteristics();
}
Ref<PhysicsMaterial> StaticBody3D::get_physics_material_override() const {
return physics_material_override;
}
void StaticBody3D::set_constant_linear_velocity(const Vector3 &p_vel) {
constant_linear_velocity = p_vel;
PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_LINEAR_VELOCITY, constant_linear_velocity);
}
void StaticBody3D::set_constant_angular_velocity(const Vector3 &p_vel) {
constant_angular_velocity = p_vel;
PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_ANGULAR_VELOCITY, constant_angular_velocity);
}
Vector3 StaticBody3D::get_constant_linear_velocity() const {
return constant_linear_velocity;
}
Vector3 StaticBody3D::get_constant_angular_velocity() const {
return constant_angular_velocity;
}
void StaticBody3D::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_constant_linear_velocity", "vel"), &StaticBody3D::set_constant_linear_velocity);
ClassDB::bind_method(D_METHOD("set_constant_angular_velocity", "vel"), &StaticBody3D::set_constant_angular_velocity);
ClassDB::bind_method(D_METHOD("get_constant_linear_velocity"), &StaticBody3D::get_constant_linear_velocity);
ClassDB::bind_method(D_METHOD("get_constant_angular_velocity"), &StaticBody3D::get_constant_angular_velocity);
ClassDB::bind_method(D_METHOD("set_physics_material_override", "physics_material_override"), &StaticBody3D::set_physics_material_override);
ClassDB::bind_method(D_METHOD("get_physics_material_override"), &StaticBody3D::get_physics_material_override);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "physics_material_override", PROPERTY_HINT_RESOURCE_TYPE, "PhysicsMaterial"), "set_physics_material_override", "get_physics_material_override");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "constant_linear_velocity", PROPERTY_HINT_NONE, "suffix:m/s"), "set_constant_linear_velocity", "get_constant_linear_velocity");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "constant_angular_velocity", PROPERTY_HINT_NONE, U"radians,suffix:\u00B0/s"), "set_constant_angular_velocity", "get_constant_angular_velocity");
}
StaticBody3D::StaticBody3D(PhysicsServer3D::BodyMode p_mode) :
PhysicsBody3D(p_mode) {
}
void StaticBody3D::_reload_physics_characteristics() {
if (physics_material_override.is_null()) {
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_BOUNCE, 0);
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_FRICTION, 1);
} else {
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_BOUNCE, physics_material_override->computed_bounce());
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_FRICTION, physics_material_override->computed_friction());
}
}
Vector3 AnimatableBody3D::get_linear_velocity() const {
return linear_velocity;
}
Vector3 AnimatableBody3D::get_angular_velocity() const {
return angular_velocity;
}
void AnimatableBody3D::set_sync_to_physics(bool p_enable) {
if (sync_to_physics == p_enable) {
return;
}
sync_to_physics = p_enable;
_update_kinematic_motion();
}
bool AnimatableBody3D::is_sync_to_physics_enabled() const {
return sync_to_physics;
}
void AnimatableBody3D::_update_kinematic_motion() {
#ifdef TOOLS_ENABLED
if (Engine::get_singleton()->is_editor_hint()) {
return;
}
#endif
if (sync_to_physics) {
set_only_update_transform_changes(true);
set_notify_local_transform(true);
} else {
set_only_update_transform_changes(false);
set_notify_local_transform(false);
}
}
void AnimatableBody3D::_body_state_changed_callback(void *p_instance, PhysicsDirectBodyState3D *p_state) {
AnimatableBody3D *body = (AnimatableBody3D *)p_instance;
body->_body_state_changed(p_state);
}
void AnimatableBody3D::_body_state_changed(PhysicsDirectBodyState3D *p_state) {
linear_velocity = p_state->get_linear_velocity();
angular_velocity = p_state->get_angular_velocity();
if (!sync_to_physics) {
return;
}
last_valid_transform = p_state->get_transform();
set_notify_local_transform(false);
set_global_transform(last_valid_transform);
set_notify_local_transform(true);
_on_transform_changed();
}
void AnimatableBody3D::_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_ENTER_TREE: {
last_valid_transform = get_global_transform();
_update_kinematic_motion();
} break;
case NOTIFICATION_EXIT_TREE: {
set_only_update_transform_changes(false);
set_notify_local_transform(false);
} break;
case NOTIFICATION_LOCAL_TRANSFORM_CHANGED: {
// Used by sync to physics, send the new transform to the physics...
Transform3D new_transform = get_global_transform();
PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_TRANSFORM, new_transform);
// ... but then revert changes.
set_notify_local_transform(false);
set_global_transform(last_valid_transform);
set_notify_local_transform(true);
_on_transform_changed();
} break;
}
}
void AnimatableBody3D::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_sync_to_physics", "enable"), &AnimatableBody3D::set_sync_to_physics);
ClassDB::bind_method(D_METHOD("is_sync_to_physics_enabled"), &AnimatableBody3D::is_sync_to_physics_enabled);
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "sync_to_physics"), "set_sync_to_physics", "is_sync_to_physics_enabled");
}
AnimatableBody3D::AnimatableBody3D() :
StaticBody3D(PhysicsServer3D::BODY_MODE_KINEMATIC) {
PhysicsServer3D::get_singleton()->body_set_state_sync_callback(get_rid(), this, _body_state_changed_callback);
}
void RigidBody3D::_body_enter_tree(ObjectID p_id) {
Object *obj = ObjectDB::get_instance(p_id);
Node *node = Object::cast_to<Node>(obj);
ERR_FAIL_COND(!node);
ERR_FAIL_COND(!contact_monitor);
HashMap<ObjectID, BodyState>::Iterator E = contact_monitor->body_map.find(p_id);
ERR_FAIL_COND(!E);
ERR_FAIL_COND(E->value.in_tree);
E->value.in_tree = true;
contact_monitor->locked = true;
emit_signal(SceneStringNames::get_singleton()->body_entered, node);
for (int i = 0; i < E->value.shapes.size(); i++) {
emit_signal(SceneStringNames::get_singleton()->body_shape_entered, E->value.rid, node, E->value.shapes[i].body_shape, E->value.shapes[i].local_shape);
}
contact_monitor->locked = false;
}
void RigidBody3D::_body_exit_tree(ObjectID p_id) {
Object *obj = ObjectDB::get_instance(p_id);
Node *node = Object::cast_to<Node>(obj);
ERR_FAIL_COND(!node);
ERR_FAIL_COND(!contact_monitor);
HashMap<ObjectID, BodyState>::Iterator E = contact_monitor->body_map.find(p_id);
ERR_FAIL_COND(!E);
ERR_FAIL_COND(!E->value.in_tree);
E->value.in_tree = false;
contact_monitor->locked = true;
emit_signal(SceneStringNames::get_singleton()->body_exited, node);
for (int i = 0; i < E->value.shapes.size(); i++) {
emit_signal(SceneStringNames::get_singleton()->body_shape_exited, E->value.rid, node, E->value.shapes[i].body_shape, E->value.shapes[i].local_shape);
}
contact_monitor->locked = false;
}
void RigidBody3D::_body_inout(int p_status, const RID &p_body, ObjectID p_instance, int p_body_shape, int p_local_shape) {
bool body_in = p_status == 1;
ObjectID objid = p_instance;
Object *obj = ObjectDB::get_instance(objid);
Node *node = Object::cast_to<Node>(obj);
ERR_FAIL_COND(!contact_monitor);
HashMap<ObjectID, BodyState>::Iterator E = contact_monitor->body_map.find(objid);
ERR_FAIL_COND(!body_in && !E);
if (body_in) {
if (!E) {
E = contact_monitor->body_map.insert(objid, BodyState());
E->value.rid = p_body;
//E->value.rc=0;
E->value.in_tree = node && node->is_inside_tree();
if (node) {
node->connect(SceneStringNames::get_singleton()->tree_entered, callable_mp(this, &RigidBody3D::_body_enter_tree).bind(objid));
node->connect(SceneStringNames::get_singleton()->tree_exiting, callable_mp(this, &RigidBody3D::_body_exit_tree).bind(objid));
if (E->value.in_tree) {
emit_signal(SceneStringNames::get_singleton()->body_entered, node);
}
}
}
//E->value.rc++;
if (node) {
E->value.shapes.insert(ShapePair(p_body_shape, p_local_shape));
}
if (E->value.in_tree) {
emit_signal(SceneStringNames::get_singleton()->body_shape_entered, p_body, node, p_body_shape, p_local_shape);
}
} else {
//E->value.rc--;
if (node) {
E->value.shapes.erase(ShapePair(p_body_shape, p_local_shape));
}
bool in_tree = E->value.in_tree;
if (E->value.shapes.is_empty()) {
if (node) {
node->disconnect(SceneStringNames::get_singleton()->tree_entered, callable_mp(this, &RigidBody3D::_body_enter_tree));
node->disconnect(SceneStringNames::get_singleton()->tree_exiting, callable_mp(this, &RigidBody3D::_body_exit_tree));
if (in_tree) {
emit_signal(SceneStringNames::get_singleton()->body_exited, node);
}
}
contact_monitor->body_map.remove(E);
}
if (node && in_tree) {
emit_signal(SceneStringNames::get_singleton()->body_shape_exited, p_body, obj, p_body_shape, p_local_shape);
}
}
}
struct _RigidBodyInOut {
RID rid;
ObjectID id;
int shape = 0;
int local_shape = 0;
};
void RigidBody3D::_body_state_changed_callback(void *p_instance, PhysicsDirectBodyState3D *p_state) {
RigidBody3D *body = (RigidBody3D *)p_instance;
body->_body_state_changed(p_state);
}
void RigidBody3D::_body_state_changed(PhysicsDirectBodyState3D *p_state) {
set_ignore_transform_notification(true);
set_global_transform(p_state->get_transform());
linear_velocity = p_state->get_linear_velocity();
angular_velocity = p_state->get_angular_velocity();
inverse_inertia_tensor = p_state->get_inverse_inertia_tensor();
if (sleeping != p_state->is_sleeping()) {
sleeping = p_state->is_sleeping();
emit_signal(SceneStringNames::get_singleton()->sleeping_state_changed);
}
GDVIRTUAL_CALL(_integrate_forces, p_state);
set_ignore_transform_notification(false);
_on_transform_changed();
if (contact_monitor) {
contact_monitor->locked = true;
//untag all
int rc = 0;
for (KeyValue<ObjectID, BodyState> &E : contact_monitor->body_map) {
for (int i = 0; i < E.value.shapes.size(); i++) {
E.value.shapes[i].tagged = false;
rc++;
}
}
_RigidBodyInOut *toadd = (_RigidBodyInOut *)alloca(p_state->get_contact_count() * sizeof(_RigidBodyInOut));
int toadd_count = 0;
RigidBody3D_RemoveAction *toremove = (RigidBody3D_RemoveAction *)alloca(rc * sizeof(RigidBody3D_RemoveAction));
int toremove_count = 0;
//put the ones to add
for (int i = 0; i < p_state->get_contact_count(); i++) {
RID rid = p_state->get_contact_collider(i);
ObjectID obj = p_state->get_contact_collider_id(i);
int local_shape = p_state->get_contact_local_shape(i);
int shape = p_state->get_contact_collider_shape(i);
HashMap<ObjectID, BodyState>::Iterator E = contact_monitor->body_map.find(obj);
if (!E) {
toadd[toadd_count].rid = rid;
toadd[toadd_count].local_shape = local_shape;
toadd[toadd_count].id = obj;
toadd[toadd_count].shape = shape;
toadd_count++;
continue;
}
ShapePair sp(shape, local_shape);
int idx = E->value.shapes.find(sp);
if (idx == -1) {
toadd[toadd_count].rid = rid;
toadd[toadd_count].local_shape = local_shape;
toadd[toadd_count].id = obj;
toadd[toadd_count].shape = shape;
toadd_count++;
continue;
}
E->value.shapes[idx].tagged = true;
}
//put the ones to remove
for (const KeyValue<ObjectID, BodyState> &E : contact_monitor->body_map) {
for (int i = 0; i < E.value.shapes.size(); i++) {
if (!E.value.shapes[i].tagged) {
toremove[toremove_count].rid = E.value.rid;
toremove[toremove_count].body_id = E.key;
toremove[toremove_count].pair = E.value.shapes[i];
toremove_count++;
}
}
}
//process removals
for (int i = 0; i < toremove_count; i++) {
_body_inout(0, toremove[i].rid, toremove[i].body_id, toremove[i].pair.body_shape, toremove[i].pair.local_shape);
}
//process additions
for (int i = 0; i < toadd_count; i++) {
_body_inout(1, toremove[i].rid, toadd[i].id, toadd[i].shape, toadd[i].local_shape);
}
contact_monitor->locked = false;
}
}
void RigidBody3D::_notification(int p_what) {
#ifdef TOOLS_ENABLED
switch (p_what) {
case NOTIFICATION_ENTER_TREE: {
if (Engine::get_singleton()->is_editor_hint()) {
set_notify_local_transform(true); // Used for warnings and only in editor.
}
} break;
case NOTIFICATION_LOCAL_TRANSFORM_CHANGED: {
if (Engine::get_singleton()->is_editor_hint()) {
update_configuration_warnings();
}
} break;
}
#endif
}
void RigidBody3D::_apply_body_mode() {
if (freeze) {
switch (freeze_mode) {
case FREEZE_MODE_STATIC: {
set_body_mode(PhysicsServer3D::BODY_MODE_STATIC);
} break;
case FREEZE_MODE_KINEMATIC: {
set_body_mode(PhysicsServer3D::BODY_MODE_KINEMATIC);
} break;
}
} else if (lock_rotation) {
set_body_mode(PhysicsServer3D::BODY_MODE_RIGID_LINEAR);
} else {
set_body_mode(PhysicsServer3D::BODY_MODE_RIGID);
}
}
void RigidBody3D::set_lock_rotation_enabled(bool p_lock_rotation) {
if (p_lock_rotation == lock_rotation) {
return;
}
lock_rotation = p_lock_rotation;
_apply_body_mode();
}
bool RigidBody3D::is_lock_rotation_enabled() const {
return lock_rotation;
}
void RigidBody3D::set_freeze_enabled(bool p_freeze) {
if (p_freeze == freeze) {
return;
}
freeze = p_freeze;
_apply_body_mode();
}
bool RigidBody3D::is_freeze_enabled() const {
return freeze;
}
void RigidBody3D::set_freeze_mode(FreezeMode p_freeze_mode) {
if (p_freeze_mode == freeze_mode) {
return;
}
freeze_mode = p_freeze_mode;
_apply_body_mode();
}
RigidBody3D::FreezeMode RigidBody3D::get_freeze_mode() const {
return freeze_mode;
}
void RigidBody3D::set_mass(real_t p_mass) {
ERR_FAIL_COND(p_mass <= 0);
mass = p_mass;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_MASS, mass);
}
real_t RigidBody3D::get_mass() const {
return mass;
}
void RigidBody3D::set_inertia(const Vector3 &p_inertia) {
ERR_FAIL_COND(p_inertia.x < 0);
ERR_FAIL_COND(p_inertia.y < 0);
ERR_FAIL_COND(p_inertia.z < 0);
inertia = p_inertia;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_INERTIA, inertia);
}
const Vector3 &RigidBody3D::get_inertia() const {
return inertia;
}
void RigidBody3D::set_center_of_mass_mode(CenterOfMassMode p_mode) {
if (center_of_mass_mode == p_mode) {
return;
}
center_of_mass_mode = p_mode;
switch (center_of_mass_mode) {
case CENTER_OF_MASS_MODE_AUTO: {
center_of_mass = Vector3();
PhysicsServer3D::get_singleton()->body_reset_mass_properties(get_rid());
if (inertia != Vector3()) {
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_INERTIA, inertia);
}
} break;
case CENTER_OF_MASS_MODE_CUSTOM: {
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_CENTER_OF_MASS, center_of_mass);
} break;
}
}
RigidBody3D::CenterOfMassMode RigidBody3D::get_center_of_mass_mode() const {
return center_of_mass_mode;
}
void RigidBody3D::set_center_of_mass(const Vector3 &p_center_of_mass) {
if (center_of_mass == p_center_of_mass) {
return;
}
ERR_FAIL_COND(center_of_mass_mode != CENTER_OF_MASS_MODE_CUSTOM);
center_of_mass = p_center_of_mass;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_CENTER_OF_MASS, center_of_mass);
}
const Vector3 &RigidBody3D::get_center_of_mass() const {
return center_of_mass;
}
void RigidBody3D::set_physics_material_override(const Ref<PhysicsMaterial> &p_physics_material_override) {
if (physics_material_override.is_valid()) {
if (physics_material_override->is_connected(CoreStringNames::get_singleton()->changed, callable_mp(this, &RigidBody3D::_reload_physics_characteristics))) {
physics_material_override->disconnect(CoreStringNames::get_singleton()->changed, callable_mp(this, &RigidBody3D::_reload_physics_characteristics));
}
}
physics_material_override = p_physics_material_override;
if (physics_material_override.is_valid()) {
physics_material_override->connect(CoreStringNames::get_singleton()->changed, callable_mp(this, &RigidBody3D::_reload_physics_characteristics));
}
_reload_physics_characteristics();
}
Ref<PhysicsMaterial> RigidBody3D::get_physics_material_override() const {
return physics_material_override;
}
void RigidBody3D::set_gravity_scale(real_t p_gravity_scale) {
gravity_scale = p_gravity_scale;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_GRAVITY_SCALE, gravity_scale);
}
real_t RigidBody3D::get_gravity_scale() const {
return gravity_scale;
}
void RigidBody3D::set_linear_damp_mode(DampMode p_mode) {
linear_damp_mode = p_mode;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_LINEAR_DAMP_MODE, linear_damp_mode);
}
RigidBody3D::DampMode RigidBody3D::get_linear_damp_mode() const {
return linear_damp_mode;
}
void RigidBody3D::set_angular_damp_mode(DampMode p_mode) {
angular_damp_mode = p_mode;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_ANGULAR_DAMP_MODE, angular_damp_mode);
}
RigidBody3D::DampMode RigidBody3D::get_angular_damp_mode() const {
return angular_damp_mode;
}
void RigidBody3D::set_linear_damp(real_t p_linear_damp) {
ERR_FAIL_COND(p_linear_damp < 0.0);
linear_damp = p_linear_damp;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_LINEAR_DAMP, linear_damp);
}
real_t RigidBody3D::get_linear_damp() const {
return linear_damp;
}
void RigidBody3D::set_angular_damp(real_t p_angular_damp) {
ERR_FAIL_COND(p_angular_damp < 0.0);
angular_damp = p_angular_damp;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_ANGULAR_DAMP, angular_damp);
}
real_t RigidBody3D::get_angular_damp() const {
return angular_damp;
}
void RigidBody3D::set_axis_velocity(const Vector3 &p_axis) {
Vector3 axis = p_axis.normalized();
linear_velocity -= axis * axis.dot(linear_velocity);
linear_velocity += p_axis;
PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_LINEAR_VELOCITY, linear_velocity);
}
void RigidBody3D::set_linear_velocity(const Vector3 &p_velocity) {
linear_velocity = p_velocity;
PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_LINEAR_VELOCITY, linear_velocity);
}
Vector3 RigidBody3D::get_linear_velocity() const {
return linear_velocity;
}
void RigidBody3D::set_angular_velocity(const Vector3 &p_velocity) {
angular_velocity = p_velocity;
PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_ANGULAR_VELOCITY, angular_velocity);
}
Vector3 RigidBody3D::get_angular_velocity() const {
return angular_velocity;
}
Basis RigidBody3D::get_inverse_inertia_tensor() const {
return inverse_inertia_tensor;
}
void RigidBody3D::set_use_custom_integrator(bool p_enable) {
if (custom_integrator == p_enable) {
return;
}
custom_integrator = p_enable;
PhysicsServer3D::get_singleton()->body_set_omit_force_integration(get_rid(), p_enable);
}
bool RigidBody3D::is_using_custom_integrator() {
return custom_integrator;
}
void RigidBody3D::set_sleeping(bool p_sleeping) {
sleeping = p_sleeping;
PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_SLEEPING, sleeping);
}
void RigidBody3D::set_can_sleep(bool p_active) {
can_sleep = p_active;
PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_CAN_SLEEP, p_active);
}
bool RigidBody3D::is_able_to_sleep() const {
return can_sleep;
}
bool RigidBody3D::is_sleeping() const {
return sleeping;
}
void RigidBody3D::set_max_contacts_reported(int p_amount) {
max_contacts_reported = p_amount;
PhysicsServer3D::get_singleton()->body_set_max_contacts_reported(get_rid(), p_amount);
}
int RigidBody3D::get_max_contacts_reported() const {
return max_contacts_reported;
}
int RigidBody3D::get_contact_count() const {
PhysicsDirectBodyState3D *bs = PhysicsServer3D::get_singleton()->body_get_direct_state(get_rid());
ERR_FAIL_NULL_V(bs, 0);
return bs->get_contact_count();
}
void RigidBody3D::apply_central_impulse(const Vector3 &p_impulse) {
PhysicsServer3D::get_singleton()->body_apply_central_impulse(get_rid(), p_impulse);
}
void RigidBody3D::apply_impulse(const Vector3 &p_impulse, const Vector3 &p_position) {
PhysicsServer3D *singleton = PhysicsServer3D::get_singleton();
singleton->body_apply_impulse(get_rid(), p_impulse, p_position);
}
void RigidBody3D::apply_torque_impulse(const Vector3 &p_impulse) {
PhysicsServer3D::get_singleton()->body_apply_torque_impulse(get_rid(), p_impulse);
}
void RigidBody3D::apply_central_force(const Vector3 &p_force) {
PhysicsServer3D::get_singleton()->body_apply_central_force(get_rid(), p_force);
}
void RigidBody3D::apply_force(const Vector3 &p_force, const Vector3 &p_position) {
PhysicsServer3D *singleton = PhysicsServer3D::get_singleton();
singleton->body_apply_force(get_rid(), p_force, p_position);
}
void RigidBody3D::apply_torque(const Vector3 &p_torque) {
PhysicsServer3D::get_singleton()->body_apply_torque(get_rid(), p_torque);
}
void RigidBody3D::add_constant_central_force(const Vector3 &p_force) {
PhysicsServer3D::get_singleton()->body_add_constant_central_force(get_rid(), p_force);
}
void RigidBody3D::add_constant_force(const Vector3 &p_force, const Vector3 &p_position) {
PhysicsServer3D *singleton = PhysicsServer3D::get_singleton();
singleton->body_add_constant_force(get_rid(), p_force, p_position);
}
void RigidBody3D::add_constant_torque(const Vector3 &p_torque) {
PhysicsServer3D::get_singleton()->body_add_constant_torque(get_rid(), p_torque);
}
void RigidBody3D::set_constant_force(const Vector3 &p_force) {
PhysicsServer3D::get_singleton()->body_set_constant_force(get_rid(), p_force);
}
Vector3 RigidBody3D::get_constant_force() const {
return PhysicsServer3D::get_singleton()->body_get_constant_force(get_rid());
}
void RigidBody3D::set_constant_torque(const Vector3 &p_torque) {
PhysicsServer3D::get_singleton()->body_set_constant_torque(get_rid(), p_torque);
}
Vector3 RigidBody3D::get_constant_torque() const {
return PhysicsServer3D::get_singleton()->body_get_constant_torque(get_rid());
}
void RigidBody3D::set_use_continuous_collision_detection(bool p_enable) {
ccd = p_enable;
PhysicsServer3D::get_singleton()->body_set_enable_continuous_collision_detection(get_rid(), p_enable);
}
bool RigidBody3D::is_using_continuous_collision_detection() const {
return ccd;
}
void RigidBody3D::set_contact_monitor(bool p_enabled) {
if (p_enabled == is_contact_monitor_enabled()) {
return;
}
if (!p_enabled) {
ERR_FAIL_COND_MSG(contact_monitor->locked, "Can't disable contact monitoring during in/out callback. Use call_deferred(\"set_contact_monitor\", false) instead.");
for (const KeyValue<ObjectID, BodyState> &E : contact_monitor->body_map) {
//clean up mess
Object *obj = ObjectDB::get_instance(E.key);
Node *node = Object::cast_to<Node>(obj);
if (node) {
node->disconnect(SceneStringNames::get_singleton()->tree_entered, callable_mp(this, &RigidBody3D::_body_enter_tree));
node->disconnect(SceneStringNames::get_singleton()->tree_exiting, callable_mp(this, &RigidBody3D::_body_exit_tree));
}
}
memdelete(contact_monitor);
contact_monitor = nullptr;
} else {
contact_monitor = memnew(ContactMonitor);
contact_monitor->locked = false;
}
}
bool RigidBody3D::is_contact_monitor_enabled() const {
return contact_monitor != nullptr;
}
TypedArray<Node3D> RigidBody3D::get_colliding_bodies() const {
ERR_FAIL_COND_V(!contact_monitor, TypedArray<Node3D>());
TypedArray<Node3D> ret;
ret.resize(contact_monitor->body_map.size());
int idx = 0;
for (const KeyValue<ObjectID, BodyState> &E : contact_monitor->body_map) {
Object *obj = ObjectDB::get_instance(E.key);
if (!obj) {
ret.resize(ret.size() - 1); //ops
} else {
ret[idx++] = obj;
}
}
return ret;
}
TypedArray<String> RigidBody3D::get_configuration_warnings() const {
Transform3D t = get_transform();
TypedArray<String> warnings = Node::get_configuration_warnings();
if (ABS(t.basis.get_column(0).length() - 1.0) > 0.05 || ABS(t.basis.get_column(1).length() - 1.0) > 0.05 || ABS(t.basis.get_column(2).length() - 1.0) > 0.05) {
warnings.push_back(RTR("Size changes to RigidBody will be overridden by the physics engine when running.\nChange the size in children collision shapes instead."));
}
return warnings;
}
void RigidBody3D::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_mass", "mass"), &RigidBody3D::set_mass);
ClassDB::bind_method(D_METHOD("get_mass"), &RigidBody3D::get_mass);
ClassDB::bind_method(D_METHOD("set_inertia", "inertia"), &RigidBody3D::set_inertia);
ClassDB::bind_method(D_METHOD("get_inertia"), &RigidBody3D::get_inertia);
ClassDB::bind_method(D_METHOD("set_center_of_mass_mode", "mode"), &RigidBody3D::set_center_of_mass_mode);
ClassDB::bind_method(D_METHOD("get_center_of_mass_mode"), &RigidBody3D::get_center_of_mass_mode);
ClassDB::bind_method(D_METHOD("set_center_of_mass", "center_of_mass"), &RigidBody3D::set_center_of_mass);
ClassDB::bind_method(D_METHOD("get_center_of_mass"), &RigidBody3D::get_center_of_mass);
ClassDB::bind_method(D_METHOD("set_physics_material_override", "physics_material_override"), &RigidBody3D::set_physics_material_override);
ClassDB::bind_method(D_METHOD("get_physics_material_override"), &RigidBody3D::get_physics_material_override);
ClassDB::bind_method(D_METHOD("set_linear_velocity", "linear_velocity"), &RigidBody3D::set_linear_velocity);
ClassDB::bind_method(D_METHOD("get_linear_velocity"), &RigidBody3D::get_linear_velocity);
ClassDB::bind_method(D_METHOD("set_angular_velocity", "angular_velocity"), &RigidBody3D::set_angular_velocity);
ClassDB::bind_method(D_METHOD("get_angular_velocity"), &RigidBody3D::get_angular_velocity);
ClassDB::bind_method(D_METHOD("get_inverse_inertia_tensor"), &RigidBody3D::get_inverse_inertia_tensor);
ClassDB::bind_method(D_METHOD("set_gravity_scale", "gravity_scale"), &RigidBody3D::set_gravity_scale);
ClassDB::bind_method(D_METHOD("get_gravity_scale"), &RigidBody3D::get_gravity_scale);
ClassDB::bind_method(D_METHOD("set_linear_damp_mode", "linear_damp_mode"), &RigidBody3D::set_linear_damp_mode);
ClassDB::bind_method(D_METHOD("get_linear_damp_mode"), &RigidBody3D::get_linear_damp_mode);
ClassDB::bind_method(D_METHOD("set_angular_damp_mode", "angular_damp_mode"), &RigidBody3D::set_angular_damp_mode);
ClassDB::bind_method(D_METHOD("get_angular_damp_mode"), &RigidBody3D::get_angular_damp_mode);
ClassDB::bind_method(D_METHOD("set_linear_damp", "linear_damp"), &RigidBody3D::set_linear_damp);
ClassDB::bind_method(D_METHOD("get_linear_damp"), &RigidBody3D::get_linear_damp);
ClassDB::bind_method(D_METHOD("set_angular_damp", "angular_damp"), &RigidBody3D::set_angular_damp);
ClassDB::bind_method(D_METHOD("get_angular_damp"), &RigidBody3D::get_angular_damp);
ClassDB::bind_method(D_METHOD("set_max_contacts_reported", "amount"), &RigidBody3D::set_max_contacts_reported);
ClassDB::bind_method(D_METHOD("get_max_contacts_reported"), &RigidBody3D::get_max_contacts_reported);
ClassDB::bind_method(D_METHOD("get_contact_count"), &RigidBody3D::get_contact_count);
ClassDB::bind_method(D_METHOD("set_use_custom_integrator", "enable"), &RigidBody3D::set_use_custom_integrator);
ClassDB::bind_method(D_METHOD("is_using_custom_integrator"), &RigidBody3D::is_using_custom_integrator);
ClassDB::bind_method(D_METHOD("set_contact_monitor", "enabled"), &RigidBody3D::set_contact_monitor);
ClassDB::bind_method(D_METHOD("is_contact_monitor_enabled"), &RigidBody3D::is_contact_monitor_enabled);
ClassDB::bind_method(D_METHOD("set_use_continuous_collision_detection", "enable"), &RigidBody3D::set_use_continuous_collision_detection);
ClassDB::bind_method(D_METHOD("is_using_continuous_collision_detection"), &RigidBody3D::is_using_continuous_collision_detection);
ClassDB::bind_method(D_METHOD("set_axis_velocity", "axis_velocity"), &RigidBody3D::set_axis_velocity);
ClassDB::bind_method(D_METHOD("apply_central_impulse", "impulse"), &RigidBody3D::apply_central_impulse);
ClassDB::bind_method(D_METHOD("apply_impulse", "impulse", "position"), &RigidBody3D::apply_impulse, Vector3());
ClassDB::bind_method(D_METHOD("apply_torque_impulse", "impulse"), &RigidBody3D::apply_torque_impulse);
ClassDB::bind_method(D_METHOD("apply_central_force", "force"), &RigidBody3D::apply_central_force);
ClassDB::bind_method(D_METHOD("apply_force", "force", "position"), &RigidBody3D::apply_force, Vector3());
ClassDB::bind_method(D_METHOD("apply_torque", "torque"), &RigidBody3D::apply_torque);
ClassDB::bind_method(D_METHOD("add_constant_central_force", "force"), &RigidBody3D::add_constant_central_force);
ClassDB::bind_method(D_METHOD("add_constant_force", "force", "position"), &RigidBody3D::add_constant_force, Vector3());
ClassDB::bind_method(D_METHOD("add_constant_torque", "torque"), &RigidBody3D::add_constant_torque);
ClassDB::bind_method(D_METHOD("set_constant_force", "force"), &RigidBody3D::set_constant_force);
ClassDB::bind_method(D_METHOD("get_constant_force"), &RigidBody3D::get_constant_force);
ClassDB::bind_method(D_METHOD("set_constant_torque", "torque"), &RigidBody3D::set_constant_torque);
ClassDB::bind_method(D_METHOD("get_constant_torque"), &RigidBody3D::get_constant_torque);
ClassDB::bind_method(D_METHOD("set_sleeping", "sleeping"), &RigidBody3D::set_sleeping);
ClassDB::bind_method(D_METHOD("is_sleeping"), &RigidBody3D::is_sleeping);
ClassDB::bind_method(D_METHOD("set_can_sleep", "able_to_sleep"), &RigidBody3D::set_can_sleep);
ClassDB::bind_method(D_METHOD("is_able_to_sleep"), &RigidBody3D::is_able_to_sleep);
ClassDB::bind_method(D_METHOD("set_lock_rotation_enabled", "lock_rotation"), &RigidBody3D::set_lock_rotation_enabled);
ClassDB::bind_method(D_METHOD("is_lock_rotation_enabled"), &RigidBody3D::is_lock_rotation_enabled);
ClassDB::bind_method(D_METHOD("set_freeze_enabled", "freeze_mode"), &RigidBody3D::set_freeze_enabled);
ClassDB::bind_method(D_METHOD("is_freeze_enabled"), &RigidBody3D::is_freeze_enabled);
ClassDB::bind_method(D_METHOD("set_freeze_mode", "freeze_mode"), &RigidBody3D::set_freeze_mode);
ClassDB::bind_method(D_METHOD("get_freeze_mode"), &RigidBody3D::get_freeze_mode);
ClassDB::bind_method(D_METHOD("get_colliding_bodies"), &RigidBody3D::get_colliding_bodies);
GDVIRTUAL_BIND(_integrate_forces, "state");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "mass", PROPERTY_HINT_RANGE, "0.01,1000,0.01,or_greater,exp,suffix:kg"), "set_mass", "get_mass");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "inertia", PROPERTY_HINT_RANGE, U"0,1000,0.01,or_greater,exp,suffix:kg\u22C5m\u00B2"), "set_inertia", "get_inertia");
ADD_PROPERTY(PropertyInfo(Variant::INT, "center_of_mass_mode", PROPERTY_HINT_ENUM, "Auto,Custom", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_UPDATE_ALL_IF_MODIFIED), "set_center_of_mass_mode", "get_center_of_mass_mode");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "center_of_mass", PROPERTY_HINT_RANGE, "-10,10,0.01,or_less,or_greater,suffix:m"), "set_center_of_mass", "get_center_of_mass");
ADD_LINKED_PROPERTY("center_of_mass_mode", "center_of_mass");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "physics_material_override", PROPERTY_HINT_RESOURCE_TYPE, "PhysicsMaterial"), "set_physics_material_override", "get_physics_material_override");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "gravity_scale", PROPERTY_HINT_RANGE, "-128,128,0.01"), "set_gravity_scale", "get_gravity_scale");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "custom_integrator"), "set_use_custom_integrator", "is_using_custom_integrator");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "continuous_cd"), "set_use_continuous_collision_detection", "is_using_continuous_collision_detection");
ADD_PROPERTY(PropertyInfo(Variant::INT, "max_contacts_reported", PROPERTY_HINT_RANGE, "0,64,1,or_greater"), "set_max_contacts_reported", "get_max_contacts_reported");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "contact_monitor"), "set_contact_monitor", "is_contact_monitor_enabled");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "sleeping"), "set_sleeping", "is_sleeping");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "can_sleep"), "set_can_sleep", "is_able_to_sleep");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "lock_rotation"), "set_lock_rotation_enabled", "is_lock_rotation_enabled");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "freeze"), "set_freeze_enabled", "is_freeze_enabled");
ADD_PROPERTY(PropertyInfo(Variant::INT, "freeze_mode", PROPERTY_HINT_ENUM, "Static,Kinematic"), "set_freeze_mode", "get_freeze_mode");
ADD_GROUP("Linear", "linear_");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "linear_velocity", PROPERTY_HINT_NONE, "suffix:m/s"), "set_linear_velocity", "get_linear_velocity");
ADD_PROPERTY(PropertyInfo(Variant::INT, "linear_damp_mode", PROPERTY_HINT_ENUM, "Combine,Replace"), "set_linear_damp_mode", "get_linear_damp_mode");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "linear_damp", PROPERTY_HINT_RANGE, "0,100,0.001,or_greater"), "set_linear_damp", "get_linear_damp");
ADD_GROUP("Angular", "angular_");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "angular_velocity", PROPERTY_HINT_NONE, U"radians,suffix:\u00B0/s"), "set_angular_velocity", "get_angular_velocity");
ADD_PROPERTY(PropertyInfo(Variant::INT, "angular_damp_mode", PROPERTY_HINT_ENUM, "Combine,Replace"), "set_angular_damp_mode", "get_angular_damp_mode");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "angular_damp", PROPERTY_HINT_RANGE, "0,100,0.001,or_greater"), "set_angular_damp", "get_angular_damp");
ADD_GROUP("Constant Forces", "constant_");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "constant_force"), "set_constant_force", "get_constant_force");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "constant_torque"), "set_constant_torque", "get_constant_torque");
ADD_SIGNAL(MethodInfo("body_shape_entered", PropertyInfo(Variant::RID, "body_rid"), PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node"), PropertyInfo(Variant::INT, "body_shape_index"), PropertyInfo(Variant::INT, "local_shape_index")));
ADD_SIGNAL(MethodInfo("body_shape_exited", PropertyInfo(Variant::RID, "body_rid"), PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node"), PropertyInfo(Variant::INT, "body_shape_index"), PropertyInfo(Variant::INT, "local_shape_index")));
ADD_SIGNAL(MethodInfo("body_entered", PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node")));
ADD_SIGNAL(MethodInfo("body_exited", PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node")));
ADD_SIGNAL(MethodInfo("sleeping_state_changed"));
BIND_ENUM_CONSTANT(FREEZE_MODE_STATIC);
BIND_ENUM_CONSTANT(FREEZE_MODE_KINEMATIC);
BIND_ENUM_CONSTANT(CENTER_OF_MASS_MODE_AUTO);
BIND_ENUM_CONSTANT(CENTER_OF_MASS_MODE_CUSTOM);
BIND_ENUM_CONSTANT(DAMP_MODE_COMBINE);
BIND_ENUM_CONSTANT(DAMP_MODE_REPLACE);
}
void RigidBody3D::_validate_property(PropertyInfo &p_property) const {
if (center_of_mass_mode != CENTER_OF_MASS_MODE_CUSTOM) {
if (p_property.name == "center_of_mass") {
p_property.usage = PROPERTY_USAGE_NO_EDITOR;
}
}
}
RigidBody3D::RigidBody3D() :
PhysicsBody3D(PhysicsServer3D::BODY_MODE_RIGID) {
PhysicsServer3D::get_singleton()->body_set_state_sync_callback(get_rid(), this, _body_state_changed_callback);
}
RigidBody3D::~RigidBody3D() {
if (contact_monitor) {
memdelete(contact_monitor);
}
}
void RigidBody3D::_reload_physics_characteristics() {
if (physics_material_override.is_null()) {
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_BOUNCE, 0);
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_FRICTION, 1);
} else {
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_BOUNCE, physics_material_override->computed_bounce());
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_FRICTION, physics_material_override->computed_friction());
}
}
///////////////////////////////////////
//so, if you pass 45 as limit, avoid numerical precision errors when angle is 45.
#define FLOOR_ANGLE_THRESHOLD 0.01
bool CharacterBody3D::move_and_slide() {
// Hack in order to work with calling from _process as well as from _physics_process; calling from thread is risky
double delta = Engine::get_singleton()->is_in_physics_frame() ? get_physics_process_delta_time() : get_process_delta_time();
for (int i = 0; i < 3; i++) {
if (locked_axis & (1 << i)) {
velocity[i] = 0.0;
}
}
Transform3D gt = get_global_transform();
previous_position = gt.origin;
Vector3 current_platform_velocity = platform_velocity;
if ((collision_state.floor || collision_state.wall) && platform_rid.is_valid()) {
bool excluded = false;
if (collision_state.floor) {
excluded = (platform_floor_layers & platform_layer) == 0;
} else if (collision_state.wall) {
excluded = (platform_wall_layers & platform_layer) == 0;
}
if (!excluded) {
//this approach makes sure there is less delay between the actual body velocity and the one we saved
PhysicsDirectBodyState3D *bs = PhysicsServer3D::get_singleton()->body_get_direct_state(platform_rid);
if (bs) {
Vector3 local_position = gt.origin - bs->get_transform().origin;
current_platform_velocity = bs->get_velocity_at_local_position(local_position);
} else {
// Body is removed or destroyed, invalidate floor.
current_platform_velocity = Vector3();
platform_rid = RID();
}
} else {
current_platform_velocity = Vector3();
}
}
motion_results.clear();
bool was_on_floor = collision_state.floor;
collision_state.state = 0;
last_motion = Vector3();
if (!current_platform_velocity.is_zero_approx()) {
PhysicsServer3D::MotionParameters parameters(get_global_transform(), current_platform_velocity * delta, margin);
parameters.recovery_as_collision = true; // Also report collisions generated only from recovery.
parameters.exclude_bodies.insert(platform_rid);
if (platform_object_id.is_valid()) {
parameters.exclude_objects.insert(platform_object_id);
}
PhysicsServer3D::MotionResult floor_result;
if (move_and_collide(parameters, floor_result, false, false)) {
motion_results.push_back(floor_result);
CollisionState result_state;
_set_collision_direction(floor_result, result_state);
}
}
if (motion_mode == MOTION_MODE_GROUNDED) {
_move_and_slide_grounded(delta, was_on_floor);
} else {
_move_and_slide_floating(delta);
}
// Compute real velocity.
real_velocity = get_position_delta() / delta;
if (platform_on_leave != PLATFORM_ON_LEAVE_DO_NOTHING) {
// Add last platform velocity when just left a moving platform.
if (!collision_state.floor && !collision_state.wall) {
if (platform_on_leave == PLATFORM_ON_LEAVE_ADD_UPWARD_VELOCITY && current_platform_velocity.dot(up_direction) < 0) {
current_platform_velocity = current_platform_velocity.slide(up_direction);
}
velocity += current_platform_velocity;
}
}
return motion_results.size() > 0;
}
void CharacterBody3D::_move_and_slide_grounded(double p_delta, bool p_was_on_floor) {
Vector3 motion = velocity * p_delta;
Vector3 motion_slide_up = motion.slide(up_direction);
Vector3 prev_floor_normal = floor_normal;
platform_rid = RID();
platform_object_id = ObjectID();
platform_velocity = Vector3();
platform_ceiling_velocity = Vector3();
floor_normal = Vector3();
wall_normal = Vector3();
ceiling_normal = Vector3();
// No sliding on first attempt to keep floor motion stable when possible,
// When stop on slope is enabled or when there is no up direction.
bool sliding_enabled = !floor_stop_on_slope;
// Constant speed can be applied only the first time sliding is enabled.
bool can_apply_constant_speed = sliding_enabled;
// If the platform's ceiling push down the body.
bool apply_ceiling_velocity = false;
bool first_slide = true;
bool vel_dir_facing_up = velocity.dot(up_direction) > 0;
Vector3 total_travel;
for (int iteration = 0; iteration < max_slides; ++iteration) {
PhysicsServer3D::MotionParameters parameters(get_global_transform(), motion, margin);
parameters.max_collisions = 4;
parameters.recovery_as_collision = true; // Also report collisions generated only from recovery.
PhysicsServer3D::MotionResult result;
bool collided = move_and_collide(parameters, result, false, !sliding_enabled);
last_motion = result.travel;
if (collided) {
motion_results.push_back(result);
CollisionState previous_state = collision_state;
CollisionState result_state;
_set_collision_direction(result, result_state);
// If we hit a ceiling platform, we set the vertical velocity to at least the platform one.
if (collision_state.ceiling && platform_ceiling_velocity != Vector3() && platform_ceiling_velocity.dot(up_direction) < 0) {
// If ceiling sliding is on, only apply when the ceiling is flat or when the motion is upward.
if (!slide_on_ceiling || motion.dot(up_direction) < 0 || (ceiling_normal + up_direction).length() < 0.01) {
apply_ceiling_velocity = true;
Vector3 ceiling_vertical_velocity = up_direction * up_direction.dot(platform_ceiling_velocity);
Vector3 motion_vertical_velocity = up_direction * up_direction.dot(velocity);
if (motion_vertical_velocity.dot(up_direction) > 0 || ceiling_vertical_velocity.length_squared() > motion_vertical_velocity.length_squared()) {
velocity = ceiling_vertical_velocity + velocity.slide(up_direction);
}
}
}
if (collision_state.floor && floor_stop_on_slope && (velocity.normalized() + up_direction).length() < 0.01) {
Transform3D gt = get_global_transform();
if (result.travel.length() <= margin + CMP_EPSILON) {
gt.origin -= result.travel;
}
set_global_transform(gt);
velocity = Vector3();
motion = Vector3();
last_motion = Vector3();
break;
}
if (result.remainder.is_zero_approx()) {
motion = Vector3();
break;
}
// Apply regular sliding by default.
bool apply_default_sliding = true;
// Wall collision checks.
if (result_state.wall && (motion_slide_up.dot(wall_normal) <= 0)) {
// Move on floor only checks.
if (floor_block_on_wall) {
// Needs horizontal motion from current motion instead of motion_slide_up
// to properly test the angle and avoid standing on slopes
Vector3 horizontal_motion = motion.slide(up_direction);
Vector3 horizontal_normal = wall_normal.slide(up_direction).normalized();
real_t motion_angle = Math::abs(Math::acos(-horizontal_normal.dot(horizontal_motion.normalized())));
// Avoid to move forward on a wall if floor_block_on_wall is true.
// Applies only when the motion angle is under 90 degrees,
// in order to avoid blocking lateral motion along a wall.
if (motion_angle < .5 * Math_PI) {
apply_default_sliding = false;
if (p_was_on_floor && !vel_dir_facing_up) {
// Cancel the motion.
Transform3D gt = get_global_transform();
real_t travel_total = result.travel.length();
real_t cancel_dist_max = MIN(0.1, margin * 20);
if (travel_total <= margin + CMP_EPSILON) {
gt.origin -= result.travel;
result.travel = Vector3(); // Cancel for constant speed computation.
} else if (travel_total < cancel_dist_max) { // If the movement is large the body can be prevented from reaching the walls.
gt.origin -= result.travel.slide(up_direction);
// Keep remaining motion in sync with amount canceled.
motion = motion.slide(up_direction);
result.travel = Vector3();
} else {
// Travel is too high to be safely cancelled, we take it into account.
result.travel = result.travel.slide(up_direction);
motion = motion.normalized() * result.travel.length();
}
set_global_transform(gt);
// Determines if you are on the ground, and limits the possibility of climbing on the walls because of the approximations.
_snap_on_floor(true, false);
} else {
// If the movement is not cancelled we only keep the remaining.
motion = result.remainder;
}
// Apply slide on forward in order to allow only lateral motion on next step.
Vector3 forward = wall_normal.slide(up_direction).normalized();
motion = motion.slide(forward);
// Scales the horizontal velocity according to the wall slope.
if (vel_dir_facing_up) {
Vector3 slide_motion = velocity.slide(result.collisions[0].normal);
// Keeps the vertical motion from velocity and add the horizontal motion of the projection.
velocity = up_direction * up_direction.dot(velocity) + slide_motion.slide(up_direction);
} else {
velocity = velocity.slide(forward);
}
// Allow only lateral motion along previous floor when already on floor.
// Fixes slowing down when moving in diagonal against an inclined wall.
if (p_was_on_floor && !vel_dir_facing_up && (motion.dot(up_direction) > 0.0)) {
// Slide along the corner between the wall and previous floor.
Vector3 floor_side = prev_floor_normal.cross(wall_normal);
if (floor_side != Vector3()) {
motion = floor_side * motion.dot(floor_side);
}
}
// Stop all motion when a second wall is hit (unless sliding down or jumping),
// in order to avoid jittering in corner cases.
bool stop_all_motion = previous_state.wall && !vel_dir_facing_up;
// Allow sliding when the body falls.
if (!collision_state.floor && motion.dot(up_direction) < 0) {
Vector3 slide_motion = motion.slide(wall_normal);
// Test again to allow sliding only if the result goes downwards.
// Fixes jittering issues at the bottom of inclined walls.
if (slide_motion.dot(up_direction) < 0) {
stop_all_motion = false;
motion = slide_motion;
}
}
if (stop_all_motion) {
motion = Vector3();
velocity = Vector3();
}
}
}
// Stop horizontal motion when under wall slide threshold.
if (p_was_on_floor && (wall_min_slide_angle > 0.0) && result_state.wall) {
Vector3 horizontal_normal = wall_normal.slide(up_direction).normalized();
real_t motion_angle = Math::abs(Math::acos(-horizontal_normal.dot(motion_slide_up.normalized())));
if (motion_angle < wall_min_slide_angle) {
motion = up_direction * motion.dot(up_direction);
velocity = up_direction * velocity.dot(up_direction);
apply_default_sliding = false;
}
}
}
if (apply_default_sliding) {
// Regular sliding, the last part of the test handle the case when you don't want to slide on the ceiling.
if ((sliding_enabled || !collision_state.floor) && (!collision_state.ceiling || slide_on_ceiling || !vel_dir_facing_up) && !apply_ceiling_velocity) {
const PhysicsServer3D::MotionCollision &collision = result.collisions[0];
Vector3 slide_motion = result.remainder.slide(collision.normal);
if (collision_state.floor && !collision_state.wall && !motion_slide_up.is_zero_approx()) {
// Slide using the intersection between the motion plane and the floor plane,
// in order to keep the direction intact.
real_t motion_length = slide_motion.length();
slide_motion = up_direction.cross(result.remainder).cross(floor_normal);
// Keep the length from default slide to change speed in slopes by default,
// when constant speed is not enabled.
slide_motion.normalize();
slide_motion *= motion_length;
}
if (slide_motion.dot(velocity) > 0.0) {
motion = slide_motion;
} else {
motion = Vector3();
}
if (slide_on_ceiling && result_state.ceiling) {
// Apply slide only in the direction of the input motion, otherwise just stop to avoid jittering when moving against a wall.
if (vel_dir_facing_up) {
velocity = velocity.slide(collision.normal);
} else {
// Avoid acceleration in slope when falling.
velocity = up_direction * up_direction.dot(velocity);
}
}
}
// No sliding on first attempt to keep floor motion stable when possible.
else {
motion = result.remainder;
if (result_state.ceiling && !slide_on_ceiling && vel_dir_facing_up) {
velocity = velocity.slide(up_direction);
motion = motion.slide(up_direction);
}
}
}
total_travel += result.travel;
// Apply Constant Speed.
if (p_was_on_floor && floor_constant_speed && can_apply_constant_speed && collision_state.floor && !motion.is_zero_approx()) {
Vector3 travel_slide_up = total_travel.slide(up_direction);
motion = motion.normalized() * MAX(0, (motion_slide_up.length() - travel_slide_up.length()));
}
}
// When you move forward in a downward slope you dont collide because you will be in the air.
// This test ensures that constant speed is applied, only if the player is still on the ground after the snap is applied.
else if (floor_constant_speed && first_slide && _on_floor_if_snapped(p_was_on_floor, vel_dir_facing_up)) {
can_apply_constant_speed = false;
sliding_enabled = true;
Transform3D gt = get_global_transform();
gt.origin = gt.origin - result.travel;
set_global_transform(gt);
// Slide using the intersection between the motion plane and the floor plane,
// in order to keep the direction intact.
Vector3 motion_slide_norm = up_direction.cross(motion).cross(prev_floor_normal);
motion_slide_norm.normalize();
motion = motion_slide_norm * (motion_slide_up.length());
collided = true;
}
if (!collided || motion.is_zero_approx()) {
break;
}
can_apply_constant_speed = !can_apply_constant_speed && !sliding_enabled;
sliding_enabled = true;
first_slide = false;
}
_snap_on_floor(p_was_on_floor, vel_dir_facing_up);
// Reset the gravity accumulation when touching the ground.
if (collision_state.floor && !vel_dir_facing_up) {
velocity = velocity.slide(up_direction);
}
}
void CharacterBody3D::_move_and_slide_floating(double p_delta) {
Vector3 motion = velocity * p_delta;
platform_rid = RID();
platform_object_id = ObjectID();
floor_normal = Vector3();
platform_velocity = Vector3();
bool first_slide = true;
for (int iteration = 0; iteration < max_slides; ++iteration) {
PhysicsServer3D::MotionParameters parameters(get_global_transform(), motion, margin);
parameters.recovery_as_collision = true; // Also report collisions generated only from recovery.
PhysicsServer3D::MotionResult result;
bool collided = move_and_collide(parameters, result, false, false);
last_motion = result.travel;
if (collided) {
motion_results.push_back(result);
CollisionState result_state;
_set_collision_direction(result, result_state);
if (result.remainder.is_zero_approx()) {
motion = Vector3();
break;
}
if (wall_min_slide_angle != 0 && Math::acos(wall_normal.dot(-velocity.normalized())) < wall_min_slide_angle + FLOOR_ANGLE_THRESHOLD) {
motion = Vector3();
if (result.travel.length() < margin + CMP_EPSILON) {
Transform3D gt = get_global_transform();
gt.origin -= result.travel;
set_global_transform(gt);
}
} else if (first_slide) {
Vector3 motion_slide_norm = result.remainder.slide(wall_normal).normalized();
motion = motion_slide_norm * (motion.length() - result.travel.length());
} else {
motion = result.remainder.slide(wall_normal);
}
if (motion.dot(velocity) <= 0.0) {
motion = Vector3();
}
}
if (!collided || motion.is_zero_approx()) {
break;
}
first_slide = false;
}
}
void CharacterBody3D::_snap_on_floor(bool p_was_on_floor, bool p_vel_dir_facing_up) {
if (collision_state.floor || !p_was_on_floor || p_vel_dir_facing_up) {
return;
}
// Snap by at least collision margin to keep floor state consistent.
real_t length = MAX(floor_snap_length, margin);
PhysicsServer3D::MotionParameters parameters(get_global_transform(), -up_direction * length, margin);
parameters.max_collisions = 4;
parameters.recovery_as_collision = true; // Also report collisions generated only from recovery.
parameters.collide_separation_ray = true;
PhysicsServer3D::MotionResult result;
if (move_and_collide(parameters, result, true, false)) {
CollisionState result_state;
// Apply direction for floor only.
_set_collision_direction(result, result_state, CollisionState(true, false, false));
if (result_state.floor) {
if (floor_stop_on_slope) {
// move and collide may stray the object a bit because of pre un-stucking,
// so only ensure that motion happens on floor direction in this case.
if (result.travel.length() > margin) {
result.travel = up_direction * up_direction.dot(result.travel);
} else {
result.travel = Vector3();
}
}
parameters.from.origin += result.travel;
set_global_transform(parameters.from);
}
}
}
bool CharacterBody3D::_on_floor_if_snapped(bool p_was_on_floor, bool p_vel_dir_facing_up) {
if (up_direction == Vector3() || collision_state.floor || !p_was_on_floor || p_vel_dir_facing_up) {
return false;
}
// Snap by at least collision margin to keep floor state consistent.
real_t length = MAX(floor_snap_length, margin);
PhysicsServer3D::MotionParameters parameters(get_global_transform(), -up_direction * length, margin);
parameters.max_collisions = 4;
parameters.recovery_as_collision = true; // Also report collisions generated only from recovery.
parameters.collide_separation_ray = true;
PhysicsServer3D::MotionResult result;
if (move_and_collide(parameters, result, true, false)) {
CollisionState result_state;
// Don't apply direction for any type.
_set_collision_direction(result, result_state, CollisionState());
return result_state.floor;
}
return false;
}
void CharacterBody3D::_set_collision_direction(const PhysicsServer3D::MotionResult &p_result, CollisionState &r_state, CollisionState p_apply_state) {
r_state.state = 0;
real_t wall_depth = -1.0;
real_t floor_depth = -1.0;
bool was_on_wall = collision_state.wall;
Vector3 prev_wall_normal = wall_normal;
int wall_collision_count = 0;
Vector3 combined_wall_normal;
Vector3 tmp_wall_col; // Avoid duplicate on average calculation.
for (int i = p_result.collision_count - 1; i >= 0; i--) {
const PhysicsServer3D::MotionCollision &collision = p_result.collisions[i];
if (motion_mode == MOTION_MODE_GROUNDED) {
// Check if any collision is floor.
real_t floor_angle = collision.get_angle(up_direction);
if (floor_angle <= floor_max_angle + FLOOR_ANGLE_THRESHOLD) {
r_state.floor = true;
if (p_apply_state.floor && collision.depth > floor_depth) {
collision_state.floor = true;
floor_normal = collision.normal;
floor_depth = collision.depth;
_set_platform_data(collision);
}
continue;
}
// Check if any collision is ceiling.
real_t ceiling_angle = collision.get_angle(-up_direction);
if (ceiling_angle <= floor_max_angle + FLOOR_ANGLE_THRESHOLD) {
r_state.ceiling = true;
if (p_apply_state.ceiling) {
platform_ceiling_velocity = collision.collider_velocity;
ceiling_normal = collision.normal;
collision_state.ceiling = true;
}
continue;
}
}
// Collision is wall by default.
r_state.wall = true;
if (p_apply_state.wall && collision.depth > wall_depth) {
collision_state.wall = true;
wall_depth = collision.depth;
wall_normal = collision.normal;
// Don't apply wall velocity when the collider is a CharacterBody3D.
if (Object::cast_to<CharacterBody3D>(ObjectDB::get_instance(collision.collider_id)) == nullptr) {
_set_platform_data(collision);
}
}
// Collect normal for calculating average.
if (!collision.normal.is_equal_approx(tmp_wall_col)) {
tmp_wall_col = collision.normal;
combined_wall_normal += collision.normal;
wall_collision_count++;
}
}
if (r_state.wall) {
if (wall_collision_count > 1 && !r_state.floor) {
// Check if wall normals cancel out to floor support.
if (!r_state.floor && motion_mode == MOTION_MODE_GROUNDED) {
combined_wall_normal.normalize();
real_t floor_angle = Math::acos(combined_wall_normal.dot(up_direction));
if (floor_angle <= floor_max_angle + FLOOR_ANGLE_THRESHOLD) {
r_state.floor = true;
r_state.wall = false;
if (p_apply_state.floor) {
collision_state.floor = true;
floor_normal = combined_wall_normal;
}
if (p_apply_state.wall) {
collision_state.wall = was_on_wall;
wall_normal = prev_wall_normal;
}
return;
}
}
}
}
}
void CharacterBody3D::_set_platform_data(const PhysicsServer3D::MotionCollision &p_collision) {
platform_rid = p_collision.collider;
platform_object_id = p_collision.collider_id;
platform_velocity = p_collision.collider_velocity;
platform_layer = PhysicsServer3D::get_singleton()->body_get_collision_layer(platform_rid);
}
void CharacterBody3D::set_safe_margin(real_t p_margin) {
margin = p_margin;
}
real_t CharacterBody3D::get_safe_margin() const {
return margin;
}
const Vector3 &CharacterBody3D::get_velocity() const {
return velocity;
}
void CharacterBody3D::set_velocity(const Vector3 &p_velocity) {
velocity = p_velocity;
}
bool CharacterBody3D::is_on_floor() const {
return collision_state.floor;
}
bool CharacterBody3D::is_on_floor_only() const {
return collision_state.floor && !collision_state.wall && !collision_state.ceiling;
}
bool CharacterBody3D::is_on_wall() const {
return collision_state.wall;
}
bool CharacterBody3D::is_on_wall_only() const {
return collision_state.wall && !collision_state.floor && !collision_state.ceiling;
}
bool CharacterBody3D::is_on_ceiling() const {
return collision_state.ceiling;
}
bool CharacterBody3D::is_on_ceiling_only() const {
return collision_state.ceiling && !collision_state.floor && !collision_state.wall;
}
const Vector3 &CharacterBody3D::get_floor_normal() const {
return floor_normal;
}
const Vector3 &CharacterBody3D::get_wall_normal() const {
return wall_normal;
}
const Vector3 &CharacterBody3D::get_last_motion() const {
return last_motion;
}
Vector3 CharacterBody3D::get_position_delta() const {
return get_transform().origin - previous_position;
}
const Vector3 &CharacterBody3D::get_real_velocity() const {
return real_velocity;
}
real_t CharacterBody3D::get_floor_angle(const Vector3 &p_up_direction) const {
ERR_FAIL_COND_V(p_up_direction == Vector3(), 0);
return Math::acos(floor_normal.dot(p_up_direction));
}
const Vector3 &CharacterBody3D::get_platform_velocity() const {
return platform_velocity;
}
Vector3 CharacterBody3D::get_linear_velocity() const {
return get_real_velocity();
}
int CharacterBody3D::get_slide_collision_count() const {
return motion_results.size();
}
PhysicsServer3D::MotionResult CharacterBody3D::get_slide_collision(int p_bounce) const {
ERR_FAIL_INDEX_V(p_bounce, motion_results.size(), PhysicsServer3D::MotionResult());
return motion_results[p_bounce];
}
Ref<KinematicCollision3D> CharacterBody3D::_get_slide_collision(int p_bounce) {
ERR_FAIL_INDEX_V(p_bounce, motion_results.size(), Ref<KinematicCollision3D>());
if (p_bounce >= slide_colliders.size()) {
slide_colliders.resize(p_bounce + 1);
}
// Create a new instance when the cached reference is invalid or still in use in script.
if (slide_colliders[p_bounce].is_null() || slide_colliders[p_bounce]->reference_get_count() > 1) {
slide_colliders.write[p_bounce].instantiate();
slide_colliders.write[p_bounce]->owner = this;
}
slide_colliders.write[p_bounce]->result = motion_results[p_bounce];
return slide_colliders[p_bounce];
}
Ref<KinematicCollision3D> CharacterBody3D::_get_last_slide_collision() {
if (motion_results.size() == 0) {
return Ref<KinematicCollision3D>();
}
return _get_slide_collision(motion_results.size() - 1);
}
bool CharacterBody3D::is_floor_stop_on_slope_enabled() const {
return floor_stop_on_slope;
}
void CharacterBody3D::set_floor_stop_on_slope_enabled(bool p_enabled) {
floor_stop_on_slope = p_enabled;
}
bool CharacterBody3D::is_floor_constant_speed_enabled() const {
return floor_constant_speed;
}
void CharacterBody3D::set_floor_constant_speed_enabled(bool p_enabled) {
floor_constant_speed = p_enabled;
}
bool CharacterBody3D::is_floor_block_on_wall_enabled() const {
return floor_block_on_wall;
}
void CharacterBody3D::set_floor_block_on_wall_enabled(bool p_enabled) {
floor_block_on_wall = p_enabled;
}
bool CharacterBody3D::is_slide_on_ceiling_enabled() const {
return slide_on_ceiling;
}
void CharacterBody3D::set_slide_on_ceiling_enabled(bool p_enabled) {
slide_on_ceiling = p_enabled;
}
uint32_t CharacterBody3D::get_platform_floor_layers() const {
return platform_floor_layers;
}
void CharacterBody3D::set_platform_floor_layers(uint32_t p_exclude_layers) {
platform_floor_layers = p_exclude_layers;
}
uint32_t CharacterBody3D::get_platform_wall_layers() const {
return platform_wall_layers;
}
void CharacterBody3D::set_platform_wall_layers(uint32_t p_exclude_layers) {
platform_wall_layers = p_exclude_layers;
}
void CharacterBody3D::set_motion_mode(MotionMode p_mode) {
motion_mode = p_mode;
}
CharacterBody3D::MotionMode CharacterBody3D::get_motion_mode() const {
return motion_mode;
}
void CharacterBody3D::set_platform_on_leave(PlatformOnLeave p_on_leave_apply_velocity) {
platform_on_leave = p_on_leave_apply_velocity;
}
CharacterBody3D::PlatformOnLeave CharacterBody3D::get_platform_on_leave() const {
return platform_on_leave;
}
int CharacterBody3D::get_max_slides() const {
return max_slides;
}
void CharacterBody3D::set_max_slides(int p_max_slides) {
ERR_FAIL_COND(p_max_slides < 1);
max_slides = p_max_slides;
}
real_t CharacterBody3D::get_floor_max_angle() const {
return floor_max_angle;
}
void CharacterBody3D::set_floor_max_angle(real_t p_radians) {
floor_max_angle = p_radians;
}
real_t CharacterBody3D::get_floor_snap_length() {
return floor_snap_length;
}
void CharacterBody3D::set_floor_snap_length(real_t p_floor_snap_length) {
ERR_FAIL_COND(p_floor_snap_length < 0);
floor_snap_length = p_floor_snap_length;
}
real_t CharacterBody3D::get_wall_min_slide_angle() const {
return wall_min_slide_angle;
}
void CharacterBody3D::set_wall_min_slide_angle(real_t p_radians) {
wall_min_slide_angle = p_radians;
}
const Vector3 &CharacterBody3D::get_up_direction() const {
return up_direction;
}
void CharacterBody3D::set_up_direction(const Vector3 &p_up_direction) {
ERR_FAIL_COND_MSG(p_up_direction == Vector3(), "up_direction can't be equal to Vector3.ZERO, consider using Floating motion mode instead.");
up_direction = p_up_direction.normalized();
}
void CharacterBody3D::_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_ENTER_TREE: {
// Reset move_and_slide() data.
collision_state.state = 0;
platform_rid = RID();
platform_object_id = ObjectID();
motion_results.clear();
platform_velocity = Vector3();
} break;
}
}
void CharacterBody3D::_bind_methods() {
ClassDB::bind_method(D_METHOD("move_and_slide"), &CharacterBody3D::move_and_slide);
ClassDB::bind_method(D_METHOD("set_velocity", "velocity"), &CharacterBody3D::set_velocity);
ClassDB::bind_method(D_METHOD("get_velocity"), &CharacterBody3D::get_velocity);
ClassDB::bind_method(D_METHOD("set_safe_margin", "margin"), &CharacterBody3D::set_safe_margin);
ClassDB::bind_method(D_METHOD("get_safe_margin"), &CharacterBody3D::get_safe_margin);
ClassDB::bind_method(D_METHOD("is_floor_stop_on_slope_enabled"), &CharacterBody3D::is_floor_stop_on_slope_enabled);
ClassDB::bind_method(D_METHOD("set_floor_stop_on_slope_enabled", "enabled"), &CharacterBody3D::set_floor_stop_on_slope_enabled);
ClassDB::bind_method(D_METHOD("set_floor_constant_speed_enabled", "enabled"), &CharacterBody3D::set_floor_constant_speed_enabled);
ClassDB::bind_method(D_METHOD("is_floor_constant_speed_enabled"), &CharacterBody3D::is_floor_constant_speed_enabled);
ClassDB::bind_method(D_METHOD("set_floor_block_on_wall_enabled", "enabled"), &CharacterBody3D::set_floor_block_on_wall_enabled);
ClassDB::bind_method(D_METHOD("is_floor_block_on_wall_enabled"), &CharacterBody3D::is_floor_block_on_wall_enabled);
ClassDB::bind_method(D_METHOD("set_slide_on_ceiling_enabled", "enabled"), &CharacterBody3D::set_slide_on_ceiling_enabled);
ClassDB::bind_method(D_METHOD("is_slide_on_ceiling_enabled"), &CharacterBody3D::is_slide_on_ceiling_enabled);
ClassDB::bind_method(D_METHOD("set_platform_floor_layers", "exclude_layer"), &CharacterBody3D::set_platform_floor_layers);
ClassDB::bind_method(D_METHOD("get_platform_floor_layers"), &CharacterBody3D::get_platform_floor_layers);
ClassDB::bind_method(D_METHOD("set_platform_wall_layers", "exclude_layer"), &CharacterBody3D::set_platform_wall_layers);
ClassDB::bind_method(D_METHOD("get_platform_wall_layers"), &CharacterBody3D::get_platform_wall_layers);
ClassDB::bind_method(D_METHOD("get_max_slides"), &CharacterBody3D::get_max_slides);
ClassDB::bind_method(D_METHOD("set_max_slides", "max_slides"), &CharacterBody3D::set_max_slides);
ClassDB::bind_method(D_METHOD("get_floor_max_angle"), &CharacterBody3D::get_floor_max_angle);
ClassDB::bind_method(D_METHOD("set_floor_max_angle", "radians"), &CharacterBody3D::set_floor_max_angle);
ClassDB::bind_method(D_METHOD("get_floor_snap_length"), &CharacterBody3D::get_floor_snap_length);
ClassDB::bind_method(D_METHOD("set_floor_snap_length", "floor_snap_length"), &CharacterBody3D::set_floor_snap_length);
ClassDB::bind_method(D_METHOD("get_wall_min_slide_angle"), &CharacterBody3D::get_wall_min_slide_angle);
ClassDB::bind_method(D_METHOD("set_wall_min_slide_angle", "radians"), &CharacterBody3D::set_wall_min_slide_angle);
ClassDB::bind_method(D_METHOD("get_up_direction"), &CharacterBody3D::get_up_direction);
ClassDB::bind_method(D_METHOD("set_up_direction", "up_direction"), &CharacterBody3D::set_up_direction);
ClassDB::bind_method(D_METHOD("set_motion_mode", "mode"), &CharacterBody3D::set_motion_mode);
ClassDB::bind_method(D_METHOD("get_motion_mode"), &CharacterBody3D::get_motion_mode);
ClassDB::bind_method(D_METHOD("set_platform_on_leave", "on_leave_apply_velocity"), &CharacterBody3D::set_platform_on_leave);
ClassDB::bind_method(D_METHOD("get_platform_on_leave"), &CharacterBody3D::get_platform_on_leave);
ClassDB::bind_method(D_METHOD("is_on_floor"), &CharacterBody3D::is_on_floor);
ClassDB::bind_method(D_METHOD("is_on_floor_only"), &CharacterBody3D::is_on_floor_only);
ClassDB::bind_method(D_METHOD("is_on_ceiling"), &CharacterBody3D::is_on_ceiling);
ClassDB::bind_method(D_METHOD("is_on_ceiling_only"), &CharacterBody3D::is_on_ceiling_only);
ClassDB::bind_method(D_METHOD("is_on_wall"), &CharacterBody3D::is_on_wall);
ClassDB::bind_method(D_METHOD("is_on_wall_only"), &CharacterBody3D::is_on_wall_only);
ClassDB::bind_method(D_METHOD("get_floor_normal"), &CharacterBody3D::get_floor_normal);
ClassDB::bind_method(D_METHOD("get_wall_normal"), &CharacterBody3D::get_wall_normal);
ClassDB::bind_method(D_METHOD("get_last_motion"), &CharacterBody3D::get_last_motion);
ClassDB::bind_method(D_METHOD("get_position_delta"), &CharacterBody3D::get_position_delta);
ClassDB::bind_method(D_METHOD("get_real_velocity"), &CharacterBody3D::get_real_velocity);
ClassDB::bind_method(D_METHOD("get_floor_angle", "up_direction"), &CharacterBody3D::get_floor_angle, DEFVAL(Vector3(0.0, 1.0, 0.0)));
ClassDB::bind_method(D_METHOD("get_platform_velocity"), &CharacterBody3D::get_platform_velocity);
ClassDB::bind_method(D_METHOD("get_slide_collision_count"), &CharacterBody3D::get_slide_collision_count);
ClassDB::bind_method(D_METHOD("get_slide_collision", "slide_idx"), &CharacterBody3D::_get_slide_collision);
ClassDB::bind_method(D_METHOD("get_last_slide_collision"), &CharacterBody3D::_get_last_slide_collision);
ADD_PROPERTY(PropertyInfo(Variant::INT, "motion_mode", PROPERTY_HINT_ENUM, "Grounded,Floating", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_UPDATE_ALL_IF_MODIFIED), "set_motion_mode", "get_motion_mode");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "up_direction"), "set_up_direction", "get_up_direction");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "slide_on_ceiling"), "set_slide_on_ceiling_enabled", "is_slide_on_ceiling_enabled");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "velocity", PROPERTY_HINT_NONE, "suffix:m/s", PROPERTY_USAGE_NO_EDITOR), "set_velocity", "get_velocity");
ADD_PROPERTY(PropertyInfo(Variant::INT, "max_slides", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR), "set_max_slides", "get_max_slides");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "wall_min_slide_angle", PROPERTY_HINT_RANGE, "0,180,0.1,radians", PROPERTY_USAGE_DEFAULT), "set_wall_min_slide_angle", "get_wall_min_slide_angle");
ADD_GROUP("Floor", "floor_");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "floor_stop_on_slope"), "set_floor_stop_on_slope_enabled", "is_floor_stop_on_slope_enabled");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "floor_constant_speed"), "set_floor_constant_speed_enabled", "is_floor_constant_speed_enabled");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "floor_block_on_wall"), "set_floor_block_on_wall_enabled", "is_floor_block_on_wall_enabled");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "floor_max_angle", PROPERTY_HINT_RANGE, "0,180,0.1,radians"), "set_floor_max_angle", "get_floor_max_angle");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "floor_snap_length", PROPERTY_HINT_RANGE, "0,1,0.01,or_greater,suffix:m"), "set_floor_snap_length", "get_floor_snap_length");
ADD_GROUP("Moving Platform", "platform_");
ADD_PROPERTY(PropertyInfo(Variant::INT, "platform_on_leave", PROPERTY_HINT_ENUM, "Add Velocity,Add Upward Velocity,Do Nothing", PROPERTY_USAGE_DEFAULT), "set_platform_on_leave", "get_platform_on_leave");
ADD_PROPERTY(PropertyInfo(Variant::INT, "platform_floor_layers", PROPERTY_HINT_LAYERS_2D_PHYSICS), "set_platform_floor_layers", "get_platform_floor_layers");
ADD_PROPERTY(PropertyInfo(Variant::INT, "platform_wall_layers", PROPERTY_HINT_LAYERS_2D_PHYSICS), "set_platform_wall_layers", "get_platform_wall_layers");
ADD_GROUP("Collision", "");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "safe_margin", PROPERTY_HINT_RANGE, "0.001,256,0.001,suffix:m"), "set_safe_margin", "get_safe_margin");
BIND_ENUM_CONSTANT(MOTION_MODE_GROUNDED);
BIND_ENUM_CONSTANT(MOTION_MODE_FLOATING);
BIND_ENUM_CONSTANT(PLATFORM_ON_LEAVE_ADD_VELOCITY);
BIND_ENUM_CONSTANT(PLATFORM_ON_LEAVE_ADD_UPWARD_VELOCITY);
BIND_ENUM_CONSTANT(PLATFORM_ON_LEAVE_DO_NOTHING);
}
void CharacterBody3D::_validate_property(PropertyInfo &p_property) const {
if (motion_mode == MOTION_MODE_FLOATING) {
if (p_property.name.begins_with("floor_") || p_property.name == "up_direction" || p_property.name == "slide_on_ceiling") {
p_property.usage = PROPERTY_USAGE_NO_EDITOR;
}
}
}
CharacterBody3D::CharacterBody3D() :
PhysicsBody3D(PhysicsServer3D::BODY_MODE_KINEMATIC) {
}
CharacterBody3D::~CharacterBody3D() {
for (int i = 0; i < slide_colliders.size(); i++) {
if (slide_colliders[i].is_valid()) {
slide_colliders.write[i]->owner = nullptr;
}
}
}
///////////////////////////////////////
Vector3 KinematicCollision3D::get_travel() const {
return result.travel;
}
Vector3 KinematicCollision3D::get_remainder() const {
return result.remainder;
}
int KinematicCollision3D::get_collision_count() const {
return result.collision_count;
}
real_t KinematicCollision3D::get_depth() const {
return result.collision_depth;
}
Vector3 KinematicCollision3D::get_position(int p_collision_index) const {
ERR_FAIL_INDEX_V(p_collision_index, result.collision_count, Vector3());
return result.collisions[p_collision_index].position;
}
Vector3 KinematicCollision3D::get_normal(int p_collision_index) const {
ERR_FAIL_INDEX_V(p_collision_index, result.collision_count, Vector3());
return result.collisions[p_collision_index].normal;
}
real_t KinematicCollision3D::get_angle(int p_collision_index, const Vector3 &p_up_direction) const {
ERR_FAIL_INDEX_V(p_collision_index, result.collision_count, 0.0);
ERR_FAIL_COND_V(p_up_direction == Vector3(), 0);
return result.collisions[p_collision_index].get_angle(p_up_direction);
}
Object *KinematicCollision3D::get_local_shape(int p_collision_index) const {
ERR_FAIL_INDEX_V(p_collision_index, result.collision_count, nullptr);
if (!owner) {
return nullptr;
}
uint32_t ownerid = owner->shape_find_owner(result.collisions[p_collision_index].local_shape);
return owner->shape_owner_get_owner(ownerid);
}
Object *KinematicCollision3D::get_collider(int p_collision_index) const {
ERR_FAIL_INDEX_V(p_collision_index, result.collision_count, nullptr);
if (result.collisions[p_collision_index].collider_id.is_valid()) {
return ObjectDB::get_instance(result.collisions[p_collision_index].collider_id);
}
return nullptr;
}
ObjectID KinematicCollision3D::get_collider_id(int p_collision_index) const {
ERR_FAIL_INDEX_V(p_collision_index, result.collision_count, ObjectID());
return result.collisions[p_collision_index].collider_id;
}
RID KinematicCollision3D::get_collider_rid(int p_collision_index) const {
ERR_FAIL_INDEX_V(p_collision_index, result.collision_count, RID());
return result.collisions[p_collision_index].collider;
}
Object *KinematicCollision3D::get_collider_shape(int p_collision_index) const {
Object *collider = get_collider(p_collision_index);
if (collider) {
CollisionObject3D *obj2d = Object::cast_to<CollisionObject3D>(collider);
if (obj2d) {
uint32_t ownerid = obj2d->shape_find_owner(result.collisions[p_collision_index].collider_shape);
return obj2d->shape_owner_get_owner(ownerid);
}
}
return nullptr;
}
int KinematicCollision3D::get_collider_shape_index(int p_collision_index) const {
ERR_FAIL_INDEX_V(p_collision_index, result.collision_count, 0);
return result.collisions[p_collision_index].collider_shape;
}
Vector3 KinematicCollision3D::get_collider_velocity(int p_collision_index) const {
ERR_FAIL_INDEX_V(p_collision_index, result.collision_count, Vector3());
return result.collisions[p_collision_index].collider_velocity;
}
void KinematicCollision3D::_bind_methods() {
ClassDB::bind_method(D_METHOD("get_travel"), &KinematicCollision3D::get_travel);
ClassDB::bind_method(D_METHOD("get_remainder"), &KinematicCollision3D::get_remainder);
ClassDB::bind_method(D_METHOD("get_depth"), &KinematicCollision3D::get_depth);
ClassDB::bind_method(D_METHOD("get_collision_count"), &KinematicCollision3D::get_collision_count);
ClassDB::bind_method(D_METHOD("get_position", "collision_index"), &KinematicCollision3D::get_position, DEFVAL(0));
ClassDB::bind_method(D_METHOD("get_normal", "collision_index"), &KinematicCollision3D::get_normal, DEFVAL(0));
ClassDB::bind_method(D_METHOD("get_angle", "collision_index", "up_direction"), &KinematicCollision3D::get_angle, DEFVAL(0), DEFVAL(Vector3(0.0, 1.0, 0.0)));
ClassDB::bind_method(D_METHOD("get_local_shape", "collision_index"), &KinematicCollision3D::get_local_shape, DEFVAL(0));
ClassDB::bind_method(D_METHOD("get_collider", "collision_index"), &KinematicCollision3D::get_collider, DEFVAL(0));
ClassDB::bind_method(D_METHOD("get_collider_id", "collision_index"), &KinematicCollision3D::get_collider_id, DEFVAL(0));
ClassDB::bind_method(D_METHOD("get_collider_rid", "collision_index"), &KinematicCollision3D::get_collider_rid, DEFVAL(0));
ClassDB::bind_method(D_METHOD("get_collider_shape", "collision_index"), &KinematicCollision3D::get_collider_shape, DEFVAL(0));
ClassDB::bind_method(D_METHOD("get_collider_shape_index", "collision_index"), &KinematicCollision3D::get_collider_shape_index, DEFVAL(0));
ClassDB::bind_method(D_METHOD("get_collider_velocity", "collision_index"), &KinematicCollision3D::get_collider_velocity, DEFVAL(0));
}
///////////////////////////////////////
bool PhysicalBone3D::JointData::_set(const StringName &p_name, const Variant &p_value, RID j) {
return false;
}
bool PhysicalBone3D::JointData::_get(const StringName &p_name, Variant &r_ret) const {
return false;
}
void PhysicalBone3D::JointData::_get_property_list(List<PropertyInfo> *p_list) const {
}
void PhysicalBone3D::apply_central_impulse(const Vector3 &p_impulse) {
PhysicsServer3D::get_singleton()->body_apply_central_impulse(get_rid(), p_impulse);
}
void PhysicalBone3D::apply_impulse(const Vector3 &p_impulse, const Vector3 &p_position) {
PhysicsServer3D::get_singleton()->body_apply_impulse(get_rid(), p_impulse, p_position);
}
void PhysicalBone3D::set_linear_velocity(const Vector3 &p_velocity) {
linear_velocity = p_velocity;
PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_LINEAR_VELOCITY, linear_velocity);
}
Vector3 PhysicalBone3D::get_linear_velocity() const {
return linear_velocity;
}
void PhysicalBone3D::set_angular_velocity(const Vector3 &p_velocity) {
angular_velocity = p_velocity;
PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_ANGULAR_VELOCITY, angular_velocity);
}
Vector3 PhysicalBone3D::get_angular_velocity() const {
return angular_velocity;
}
void PhysicalBone3D::set_use_custom_integrator(bool p_enable) {
if (custom_integrator == p_enable) {
return;
}
custom_integrator = p_enable;
PhysicsServer3D::get_singleton()->body_set_omit_force_integration(get_rid(), p_enable);
}
bool PhysicalBone3D::is_using_custom_integrator() {
return custom_integrator;
}
void PhysicalBone3D::reset_physics_simulation_state() {
if (simulate_physics) {
_start_physics_simulation();
} else {
_stop_physics_simulation();
}
}
void PhysicalBone3D::reset_to_rest_position() {
if (parent_skeleton) {
if (-1 == bone_id) {
set_global_transform(parent_skeleton->get_global_transform() * body_offset);
} else {
set_global_transform(parent_skeleton->get_global_transform() * parent_skeleton->get_bone_global_pose(bone_id) * body_offset);
}
}
}
bool PhysicalBone3D::PinJointData::_set(const StringName &p_name, const Variant &p_value, RID j) {
if (JointData::_set(p_name, p_value, j)) {
return true;
}
if ("joint_constraints/bias" == p_name) {
bias = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->pin_joint_set_param(j, PhysicsServer3D::PIN_JOINT_BIAS, bias);
}
} else if ("joint_constraints/damping" == p_name) {
damping = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->pin_joint_set_param(j, PhysicsServer3D::PIN_JOINT_DAMPING, damping);
}
} else if ("joint_constraints/impulse_clamp" == p_name) {
impulse_clamp = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->pin_joint_set_param(j, PhysicsServer3D::PIN_JOINT_IMPULSE_CLAMP, impulse_clamp);
}
} else {
return false;
}
return true;
}
bool PhysicalBone3D::PinJointData::_get(const StringName &p_name, Variant &r_ret) const {
if (JointData::_get(p_name, r_ret)) {
return true;
}
if ("joint_constraints/bias" == p_name) {
r_ret = bias;
} else if ("joint_constraints/damping" == p_name) {
r_ret = damping;
} else if ("joint_constraints/impulse_clamp" == p_name) {
r_ret = impulse_clamp;
} else {
return false;
}
return true;
}
void PhysicalBone3D::PinJointData::_get_property_list(List<PropertyInfo> *p_list) const {
JointData::_get_property_list(p_list);
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/bias"), PROPERTY_HINT_RANGE, "0.01,0.99,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/damping"), PROPERTY_HINT_RANGE, "0.01,8.0,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/impulse_clamp"), PROPERTY_HINT_RANGE, "0.0,64.0,0.01"));
}
bool PhysicalBone3D::ConeJointData::_set(const StringName &p_name, const Variant &p_value, RID j) {
if (JointData::_set(p_name, p_value, j)) {
return true;
}
if ("joint_constraints/swing_span" == p_name) {
swing_span = Math::deg_to_rad(real_t(p_value));
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer3D::CONE_TWIST_JOINT_SWING_SPAN, swing_span);
}
} else if ("joint_constraints/twist_span" == p_name) {
twist_span = Math::deg_to_rad(real_t(p_value));
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer3D::CONE_TWIST_JOINT_TWIST_SPAN, twist_span);
}
} else if ("joint_constraints/bias" == p_name) {
bias = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer3D::CONE_TWIST_JOINT_BIAS, bias);
}
} else if ("joint_constraints/softness" == p_name) {
softness = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer3D::CONE_TWIST_JOINT_SOFTNESS, softness);
}
} else if ("joint_constraints/relaxation" == p_name) {
relaxation = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer3D::CONE_TWIST_JOINT_RELAXATION, relaxation);
}
} else {
return false;
}
return true;
}
bool PhysicalBone3D::ConeJointData::_get(const StringName &p_name, Variant &r_ret) const {
if (JointData::_get(p_name, r_ret)) {
return true;
}
if ("joint_constraints/swing_span" == p_name) {
r_ret = Math::rad_to_deg(swing_span);
} else if ("joint_constraints/twist_span" == p_name) {
r_ret = Math::rad_to_deg(twist_span);
} else if ("joint_constraints/bias" == p_name) {
r_ret = bias;
} else if ("joint_constraints/softness" == p_name) {
r_ret = softness;
} else if ("joint_constraints/relaxation" == p_name) {
r_ret = relaxation;
} else {
return false;
}
return true;
}
void PhysicalBone3D::ConeJointData::_get_property_list(List<PropertyInfo> *p_list) const {
JointData::_get_property_list(p_list);
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/swing_span"), PROPERTY_HINT_RANGE, "-180,180,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/twist_span"), PROPERTY_HINT_RANGE, "-40000,40000,0.1,or_less,or_greater"));
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/bias"), PROPERTY_HINT_RANGE, "0.01,16.0,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/softness"), PROPERTY_HINT_RANGE, "0.01,16.0,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/relaxation"), PROPERTY_HINT_RANGE, "0.01,16.0,0.01"));
}
bool PhysicalBone3D::HingeJointData::_set(const StringName &p_name, const Variant &p_value, RID j) {
if (JointData::_set(p_name, p_value, j)) {
return true;
}
if ("joint_constraints/angular_limit_enabled" == p_name) {
angular_limit_enabled = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->hinge_joint_set_flag(j, PhysicsServer3D::HINGE_JOINT_FLAG_USE_LIMIT, angular_limit_enabled);
}
} else if ("joint_constraints/angular_limit_upper" == p_name) {
angular_limit_upper = Math::deg_to_rad(real_t(p_value));
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->hinge_joint_set_param(j, PhysicsServer3D::HINGE_JOINT_LIMIT_UPPER, angular_limit_upper);
}
} else if ("joint_constraints/angular_limit_lower" == p_name) {
angular_limit_lower = Math::deg_to_rad(real_t(p_value));
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->hinge_joint_set_param(j, PhysicsServer3D::HINGE_JOINT_LIMIT_LOWER, angular_limit_lower);
}
} else if ("joint_constraints/angular_limit_bias" == p_name) {
angular_limit_bias = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->hinge_joint_set_param(j, PhysicsServer3D::HINGE_JOINT_LIMIT_BIAS, angular_limit_bias);
}
} else if ("joint_constraints/angular_limit_softness" == p_name) {
angular_limit_softness = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->hinge_joint_set_param(j, PhysicsServer3D::HINGE_JOINT_LIMIT_SOFTNESS, angular_limit_softness);
}
} else if ("joint_constraints/angular_limit_relaxation" == p_name) {
angular_limit_relaxation = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->hinge_joint_set_param(j, PhysicsServer3D::HINGE_JOINT_LIMIT_RELAXATION, angular_limit_relaxation);
}
} else {
return false;
}
return true;
}
bool PhysicalBone3D::HingeJointData::_get(const StringName &p_name, Variant &r_ret) const {
if (JointData::_get(p_name, r_ret)) {
return true;
}
if ("joint_constraints/angular_limit_enabled" == p_name) {
r_ret = angular_limit_enabled;
} else if ("joint_constraints/angular_limit_upper" == p_name) {
r_ret = Math::rad_to_deg(angular_limit_upper);
} else if ("joint_constraints/angular_limit_lower" == p_name) {
r_ret = Math::rad_to_deg(angular_limit_lower);
} else if ("joint_constraints/angular_limit_bias" == p_name) {
r_ret = angular_limit_bias;
} else if ("joint_constraints/angular_limit_softness" == p_name) {
r_ret = angular_limit_softness;
} else if ("joint_constraints/angular_limit_relaxation" == p_name) {
r_ret = angular_limit_relaxation;
} else {
return false;
}
return true;
}
void PhysicalBone3D::HingeJointData::_get_property_list(List<PropertyInfo> *p_list) const {
JointData::_get_property_list(p_list);
p_list->push_back(PropertyInfo(Variant::BOOL, PNAME("joint_constraints/angular_limit_enabled")));
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/angular_limit_upper"), PROPERTY_HINT_RANGE, "-180,180,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/angular_limit_lower"), PROPERTY_HINT_RANGE, "-180,180,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/angular_limit_bias"), PROPERTY_HINT_RANGE, "0.01,0.99,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/angular_limit_softness"), PROPERTY_HINT_RANGE, "0.01,16,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/angular_limit_relaxation"), PROPERTY_HINT_RANGE, "0.01,16,0.01"));
}
bool PhysicalBone3D::SliderJointData::_set(const StringName &p_name, const Variant &p_value, RID j) {
if (JointData::_set(p_name, p_value, j)) {
return true;
}
if ("joint_constraints/linear_limit_upper" == p_name) {
linear_limit_upper = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_UPPER, linear_limit_upper);
}
} else if ("joint_constraints/linear_limit_lower" == p_name) {
linear_limit_lower = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_LOWER, linear_limit_lower);
}
} else if ("joint_constraints/linear_limit_softness" == p_name) {
linear_limit_softness = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS, linear_limit_softness);
}
} else if ("joint_constraints/linear_limit_restitution" == p_name) {
linear_limit_restitution = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION, linear_limit_restitution);
}
} else if ("joint_constraints/linear_limit_damping" == p_name) {
linear_limit_damping = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_DAMPING, linear_limit_restitution);
}
} else if ("joint_constraints/angular_limit_upper" == p_name) {
angular_limit_upper = Math::deg_to_rad(real_t(p_value));
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_UPPER, angular_limit_upper);
}
} else if ("joint_constraints/angular_limit_lower" == p_name) {
angular_limit_lower = Math::deg_to_rad(real_t(p_value));
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_LOWER, angular_limit_lower);
}
} else if ("joint_constraints/angular_limit_softness" == p_name) {
angular_limit_softness = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS, angular_limit_softness);
}
} else if ("joint_constraints/angular_limit_restitution" == p_name) {
angular_limit_restitution = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS, angular_limit_softness);
}
} else if ("joint_constraints/angular_limit_damping" == p_name) {
angular_limit_damping = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING, angular_limit_damping);
}
} else {
return false;
}
return true;
}
bool PhysicalBone3D::SliderJointData::_get(const StringName &p_name, Variant &r_ret) const {
if (JointData::_get(p_name, r_ret)) {
return true;
}
if ("joint_constraints/linear_limit_upper" == p_name) {
r_ret = linear_limit_upper;
} else if ("joint_constraints/linear_limit_lower" == p_name) {
r_ret = linear_limit_lower;
} else if ("joint_constraints/linear_limit_softness" == p_name) {
r_ret = linear_limit_softness;
} else if ("joint_constraints/linear_limit_restitution" == p_name) {
r_ret = linear_limit_restitution;
} else if ("joint_constraints/linear_limit_damping" == p_name) {
r_ret = linear_limit_damping;
} else if ("joint_constraints/angular_limit_upper" == p_name) {
r_ret = Math::rad_to_deg(angular_limit_upper);
} else if ("joint_constraints/angular_limit_lower" == p_name) {
r_ret = Math::rad_to_deg(angular_limit_lower);
} else if ("joint_constraints/angular_limit_softness" == p_name) {
r_ret = angular_limit_softness;
} else if ("joint_constraints/angular_limit_restitution" == p_name) {
r_ret = angular_limit_restitution;
} else if ("joint_constraints/angular_limit_damping" == p_name) {
r_ret = angular_limit_damping;
} else {
return false;
}
return true;
}
void PhysicalBone3D::SliderJointData::_get_property_list(List<PropertyInfo> *p_list) const {
JointData::_get_property_list(p_list);
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/linear_limit_upper")));
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/linear_limit_lower")));
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/linear_limit_softness"), PROPERTY_HINT_RANGE, "0.01,16.0,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/linear_limit_restitution"), PROPERTY_HINT_RANGE, "0.01,16.0,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/linear_limit_damping"), PROPERTY_HINT_RANGE, "0,16.0,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/angular_limit_upper"), PROPERTY_HINT_RANGE, "-180,180,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/angular_limit_lower"), PROPERTY_HINT_RANGE, "-180,180,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/angular_limit_softness"), PROPERTY_HINT_RANGE, "0.01,16.0,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/angular_limit_restitution"), PROPERTY_HINT_RANGE, "0.01,16.0,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/angular_limit_damping"), PROPERTY_HINT_RANGE, "0,16.0,0.01"));
}
bool PhysicalBone3D::SixDOFJointData::_set(const StringName &p_name, const Variant &p_value, RID j) {
if (JointData::_set(p_name, p_value, j)) {
return true;
}
String path = p_name;
if (!path.begins_with("joint_constraints/")) {
return false;
}
Vector3::Axis axis;
{
const String axis_s = path.get_slicec('/', 1);
if ("x" == axis_s) {
axis = Vector3::AXIS_X;
} else if ("y" == axis_s) {
axis = Vector3::AXIS_Y;
} else if ("z" == axis_s) {
axis = Vector3::AXIS_Z;
} else {
return false;
}
}
String var_name = path.get_slicec('/', 2);
if ("linear_limit_enabled" == var_name) {
axis_data[axis].linear_limit_enabled = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(j, axis, PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT, axis_data[axis].linear_limit_enabled);
}
} else if ("linear_limit_upper" == var_name) {
axis_data[axis].linear_limit_upper = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_UPPER_LIMIT, axis_data[axis].linear_limit_upper);
}
} else if ("linear_limit_lower" == var_name) {
axis_data[axis].linear_limit_lower = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_LOWER_LIMIT, axis_data[axis].linear_limit_lower);
}
} else if ("linear_limit_softness" == var_name) {
axis_data[axis].linear_limit_softness = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS, axis_data[axis].linear_limit_softness);
}
} else if ("linear_spring_enabled" == var_name) {
axis_data[axis].linear_spring_enabled = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(j, axis, PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_SPRING, axis_data[axis].linear_spring_enabled);
}
} else if ("linear_spring_stiffness" == var_name) {
axis_data[axis].linear_spring_stiffness = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_STIFFNESS, axis_data[axis].linear_spring_stiffness);
}
} else if ("linear_spring_damping" == var_name) {
axis_data[axis].linear_spring_damping = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_DAMPING, axis_data[axis].linear_spring_damping);
}
} else if ("linear_equilibrium_point" == var_name) {
axis_data[axis].linear_equilibrium_point = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_EQUILIBRIUM_POINT, axis_data[axis].linear_equilibrium_point);
}
} else if ("linear_restitution" == var_name) {
axis_data[axis].linear_restitution = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_RESTITUTION, axis_data[axis].linear_restitution);
}
} else if ("linear_damping" == var_name) {
axis_data[axis].linear_damping = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_DAMPING, axis_data[axis].linear_damping);
}
} else if ("angular_limit_enabled" == var_name) {
axis_data[axis].angular_limit_enabled = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(j, axis, PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT, axis_data[axis].angular_limit_enabled);
}
} else if ("angular_limit_upper" == var_name) {
axis_data[axis].angular_limit_upper = Math::deg_to_rad(real_t(p_value));
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_UPPER_LIMIT, axis_data[axis].angular_limit_upper);
}
} else if ("angular_limit_lower" == var_name) {
axis_data[axis].angular_limit_lower = Math::deg_to_rad(real_t(p_value));
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_LOWER_LIMIT, axis_data[axis].angular_limit_lower);
}
} else if ("angular_limit_softness" == var_name) {
axis_data[axis].angular_limit_softness = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS, axis_data[axis].angular_limit_softness);
}
} else if ("angular_restitution" == var_name) {
axis_data[axis].angular_restitution = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_RESTITUTION, axis_data[axis].angular_restitution);
}
} else if ("angular_damping" == var_name) {
axis_data[axis].angular_damping = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_DAMPING, axis_data[axis].angular_damping);
}
} else if ("erp" == var_name) {
axis_data[axis].erp = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_ERP, axis_data[axis].erp);
}
} else if ("angular_spring_enabled" == var_name) {
axis_data[axis].angular_spring_enabled = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(j, axis, PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_SPRING, axis_data[axis].angular_spring_enabled);
}
} else if ("angular_spring_stiffness" == var_name) {
axis_data[axis].angular_spring_stiffness = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_STIFFNESS, axis_data[axis].angular_spring_stiffness);
}
} else if ("angular_spring_damping" == var_name) {
axis_data[axis].angular_spring_damping = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_DAMPING, axis_data[axis].angular_spring_damping);
}
} else if ("angular_equilibrium_point" == var_name) {
axis_data[axis].angular_equilibrium_point = p_value;
if (j.is_valid()) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_EQUILIBRIUM_POINT, axis_data[axis].angular_equilibrium_point);
}
} else {
return false;
}
return true;
}
bool PhysicalBone3D::SixDOFJointData::_get(const StringName &p_name, Variant &r_ret) const {
if (JointData::_get(p_name, r_ret)) {
return true;
}
String path = p_name;
if (!path.begins_with("joint_constraints/")) {
return false;
}
int axis;
{
const String axis_s = path.get_slicec('/', 1);
if ("x" == axis_s) {
axis = 0;
} else if ("y" == axis_s) {
axis = 1;
} else if ("z" == axis_s) {
axis = 2;
} else {
return false;
}
}
String var_name = path.get_slicec('/', 2);
if ("linear_limit_enabled" == var_name) {
r_ret = axis_data[axis].linear_limit_enabled;
} else if ("linear_limit_upper" == var_name) {
r_ret = axis_data[axis].linear_limit_upper;
} else if ("linear_limit_lower" == var_name) {
r_ret = axis_data[axis].linear_limit_lower;
} else if ("linear_limit_softness" == var_name) {
r_ret = axis_data[axis].linear_limit_softness;
} else if ("linear_spring_enabled" == var_name) {
r_ret = axis_data[axis].linear_spring_enabled;
} else if ("linear_spring_stiffness" == var_name) {
r_ret = axis_data[axis].linear_spring_stiffness;
} else if ("linear_spring_damping" == var_name) {
r_ret = axis_data[axis].linear_spring_damping;
} else if ("linear_equilibrium_point" == var_name) {
r_ret = axis_data[axis].linear_equilibrium_point;
} else if ("linear_restitution" == var_name) {
r_ret = axis_data[axis].linear_restitution;
} else if ("linear_damping" == var_name) {
r_ret = axis_data[axis].linear_damping;
} else if ("angular_limit_enabled" == var_name) {
r_ret = axis_data[axis].angular_limit_enabled;
} else if ("angular_limit_upper" == var_name) {
r_ret = Math::rad_to_deg(axis_data[axis].angular_limit_upper);
} else if ("angular_limit_lower" == var_name) {
r_ret = Math::rad_to_deg(axis_data[axis].angular_limit_lower);
} else if ("angular_limit_softness" == var_name) {
r_ret = axis_data[axis].angular_limit_softness;
} else if ("angular_restitution" == var_name) {
r_ret = axis_data[axis].angular_restitution;
} else if ("angular_damping" == var_name) {
r_ret = axis_data[axis].angular_damping;
} else if ("erp" == var_name) {
r_ret = axis_data[axis].erp;
} else if ("angular_spring_enabled" == var_name) {
r_ret = axis_data[axis].angular_spring_enabled;
} else if ("angular_spring_stiffness" == var_name) {
r_ret = axis_data[axis].angular_spring_stiffness;
} else if ("angular_spring_damping" == var_name) {
r_ret = axis_data[axis].angular_spring_damping;
} else if ("angular_equilibrium_point" == var_name) {
r_ret = axis_data[axis].angular_equilibrium_point;
} else {
return false;
}
return true;
}
void PhysicalBone3D::SixDOFJointData::_get_property_list(List<PropertyInfo> *p_list) const {
const StringName axis_names[] = { PNAME("x"), PNAME("y"), PNAME("z") };
for (int i = 0; i < 3; ++i) {
const String prefix = vformat("%s/%s/", PNAME("joint_constraints"), axis_names[i]);
p_list->push_back(PropertyInfo(Variant::BOOL, prefix + PNAME("linear_limit_enabled")));
p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("linear_limit_upper")));
p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("linear_limit_lower")));
p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("linear_limit_softness"), PROPERTY_HINT_RANGE, "0.01,16,0.01"));
p_list->push_back(PropertyInfo(Variant::BOOL, prefix + PNAME("linear_spring_enabled")));
p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("linear_spring_stiffness")));
p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("linear_spring_damping")));
p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("linear_equilibrium_point")));
p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("linear_restitution"), PROPERTY_HINT_RANGE, "0.01,16,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("linear_damping"), PROPERTY_HINT_RANGE, "0.01,16,0.01"));
p_list->push_back(PropertyInfo(Variant::BOOL, prefix + PNAME("angular_limit_enabled")));
p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("angular_limit_upper"), PROPERTY_HINT_RANGE, "-180,180,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("angular_limit_lower"), PROPERTY_HINT_RANGE, "-180,180,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("angular_limit_softness"), PROPERTY_HINT_RANGE, "0.01,16,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("angular_restitution"), PROPERTY_HINT_RANGE, "0.01,16,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("angular_damping"), PROPERTY_HINT_RANGE, "0.01,16,0.01"));
p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("erp")));
p_list->push_back(PropertyInfo(Variant::BOOL, prefix + PNAME("angular_spring_enabled")));
p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("angular_spring_stiffness")));
p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("angular_spring_damping")));
p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("angular_equilibrium_point")));
}
}
bool PhysicalBone3D::_set(const StringName &p_name, const Variant &p_value) {
if (p_name == "bone_name") {
set_bone_name(p_value);
return true;
}
if (joint_data) {
if (joint_data->_set(p_name, p_value, joint)) {
#ifdef TOOLS_ENABLED
update_gizmos();
#endif
return true;
}
}
return false;
}
bool PhysicalBone3D::_get(const StringName &p_name, Variant &r_ret) const {
if (p_name == "bone_name") {
r_ret = get_bone_name();
return true;
}
if (joint_data) {
return joint_data->_get(p_name, r_ret);
}
return false;
}
void PhysicalBone3D::_get_property_list(List<PropertyInfo> *p_list) const {
Skeleton3D *parent = find_skeleton_parent(get_parent());
if (parent) {
String names;
for (int i = 0; i < parent->get_bone_count(); i++) {
if (i > 0) {
names += ",";
}
names += parent->get_bone_name(i);
}
p_list->push_back(PropertyInfo(Variant::STRING_NAME, PNAME("bone_name"), PROPERTY_HINT_ENUM, names));
} else {
p_list->push_back(PropertyInfo(Variant::STRING_NAME, PNAME("bone_name")));
}
if (joint_data) {
joint_data->_get_property_list(p_list);
}
}
void PhysicalBone3D::_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_ENTER_TREE:
parent_skeleton = find_skeleton_parent(get_parent());
update_bone_id();
reset_to_rest_position();
reset_physics_simulation_state();
if (joint_data) {
_reload_joint();
}
break;
case NOTIFICATION_EXIT_TREE: {
if (parent_skeleton) {
if (-1 != bone_id) {
parent_skeleton->unbind_physical_bone_from_bone(bone_id);
bone_id = -1;
}
}
parent_skeleton = nullptr;
PhysicsServer3D::get_singleton()->joint_clear(joint);
} break;
case NOTIFICATION_TRANSFORM_CHANGED: {
if (Engine::get_singleton()->is_editor_hint()) {
update_offset();
}
} break;
}
}
void PhysicalBone3D::_body_state_changed_callback(void *p_instance, PhysicsDirectBodyState3D *p_state) {
PhysicalBone3D *bone = (PhysicalBone3D *)p_instance;
bone->_body_state_changed(p_state);
}
void PhysicalBone3D::_body_state_changed(PhysicsDirectBodyState3D *p_state) {
if (!simulate_physics || !_internal_simulate_physics) {
return;
}
linear_velocity = p_state->get_linear_velocity();
angular_velocity = p_state->get_angular_velocity();
GDVIRTUAL_CALL(_integrate_forces, p_state);
/// Update bone transform.
Transform3D global_transform(p_state->get_transform());
set_ignore_transform_notification(true);
set_global_transform(global_transform);
set_ignore_transform_notification(false);
_on_transform_changed();
// Update skeleton
if (parent_skeleton) {
if (-1 != bone_id) {
parent_skeleton->set_bone_global_pose_override(bone_id, parent_skeleton->get_global_transform().affine_inverse() * (global_transform * body_offset_inverse), 1.0, true);
}
}
}
void PhysicalBone3D::_bind_methods() {
ClassDB::bind_method(D_METHOD("apply_central_impulse", "impulse"), &PhysicalBone3D::apply_central_impulse);
ClassDB::bind_method(D_METHOD("apply_impulse", "impulse", "position"), &PhysicalBone3D::apply_impulse, Vector3());
ClassDB::bind_method(D_METHOD("set_joint_type", "joint_type"), &PhysicalBone3D::set_joint_type);
ClassDB::bind_method(D_METHOD("get_joint_type"), &PhysicalBone3D::get_joint_type);
ClassDB::bind_method(D_METHOD("set_joint_offset", "offset"), &PhysicalBone3D::set_joint_offset);
ClassDB::bind_method(D_METHOD("get_joint_offset"), &PhysicalBone3D::get_joint_offset);
ClassDB::bind_method(D_METHOD("set_joint_rotation", "euler"), &PhysicalBone3D::set_joint_rotation);
ClassDB::bind_method(D_METHOD("get_joint_rotation"), &PhysicalBone3D::get_joint_rotation);
ClassDB::bind_method(D_METHOD("set_body_offset", "offset"), &PhysicalBone3D::set_body_offset);
ClassDB::bind_method(D_METHOD("get_body_offset"), &PhysicalBone3D::get_body_offset);
ClassDB::bind_method(D_METHOD("get_simulate_physics"), &PhysicalBone3D::get_simulate_physics);
ClassDB::bind_method(D_METHOD("is_simulating_physics"), &PhysicalBone3D::is_simulating_physics);
ClassDB::bind_method(D_METHOD("get_bone_id"), &PhysicalBone3D::get_bone_id);
ClassDB::bind_method(D_METHOD("set_mass", "mass"), &PhysicalBone3D::set_mass);
ClassDB::bind_method(D_METHOD("get_mass"), &PhysicalBone3D::get_mass);
ClassDB::bind_method(D_METHOD("set_friction", "friction"), &PhysicalBone3D::set_friction);
ClassDB::bind_method(D_METHOD("get_friction"), &PhysicalBone3D::get_friction);
ClassDB::bind_method(D_METHOD("set_bounce", "bounce"), &PhysicalBone3D::set_bounce);
ClassDB::bind_method(D_METHOD("get_bounce"), &PhysicalBone3D::get_bounce);
ClassDB::bind_method(D_METHOD("set_gravity_scale", "gravity_scale"), &PhysicalBone3D::set_gravity_scale);
ClassDB::bind_method(D_METHOD("get_gravity_scale"), &PhysicalBone3D::get_gravity_scale);
ClassDB::bind_method(D_METHOD("set_linear_damp_mode", "linear_damp_mode"), &PhysicalBone3D::set_linear_damp_mode);
ClassDB::bind_method(D_METHOD("get_linear_damp_mode"), &PhysicalBone3D::get_linear_damp_mode);
ClassDB::bind_method(D_METHOD("set_angular_damp_mode", "angular_damp_mode"), &PhysicalBone3D::set_angular_damp_mode);
ClassDB::bind_method(D_METHOD("get_angular_damp_mode"), &PhysicalBone3D::get_angular_damp_mode);
ClassDB::bind_method(D_METHOD("set_linear_damp", "linear_damp"), &PhysicalBone3D::set_linear_damp);
ClassDB::bind_method(D_METHOD("get_linear_damp"), &PhysicalBone3D::get_linear_damp);
ClassDB::bind_method(D_METHOD("set_angular_damp", "angular_damp"), &PhysicalBone3D::set_angular_damp);
ClassDB::bind_method(D_METHOD("get_angular_damp"), &PhysicalBone3D::get_angular_damp);
ClassDB::bind_method(D_METHOD("set_linear_velocity", "linear_velocity"), &PhysicalBone3D::set_linear_velocity);
ClassDB::bind_method(D_METHOD("get_linear_velocity"), &PhysicalBone3D::get_linear_velocity);
ClassDB::bind_method(D_METHOD("set_angular_velocity", "angular_velocity"), &PhysicalBone3D::set_angular_velocity);
ClassDB::bind_method(D_METHOD("get_angular_velocity"), &PhysicalBone3D::get_angular_velocity);
ClassDB::bind_method(D_METHOD("set_use_custom_integrator", "enable"), &PhysicalBone3D::set_use_custom_integrator);
ClassDB::bind_method(D_METHOD("is_using_custom_integrator"), &PhysicalBone3D::is_using_custom_integrator);
ClassDB::bind_method(D_METHOD("set_can_sleep", "able_to_sleep"), &PhysicalBone3D::set_can_sleep);
ClassDB::bind_method(D_METHOD("is_able_to_sleep"), &PhysicalBone3D::is_able_to_sleep);
GDVIRTUAL_BIND(_integrate_forces, "state");
ADD_GROUP("Joint", "joint_");
ADD_PROPERTY(PropertyInfo(Variant::INT, "joint_type", PROPERTY_HINT_ENUM, "None,PinJoint,ConeJoint,HingeJoint,SliderJoint,6DOFJoint"), "set_joint_type", "get_joint_type");
ADD_PROPERTY(PropertyInfo(Variant::TRANSFORM3D, "joint_offset", PROPERTY_HINT_NONE, "suffix:m"), "set_joint_offset", "get_joint_offset");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "joint_rotation", PROPERTY_HINT_RANGE, "-360,360,0.01,or_less,or_greater,radians"), "set_joint_rotation", "get_joint_rotation");
ADD_PROPERTY(PropertyInfo(Variant::TRANSFORM3D, "body_offset", PROPERTY_HINT_NONE, "suffix:m"), "set_body_offset", "get_body_offset");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "mass", PROPERTY_HINT_RANGE, "0.01,1000,0.01,or_greater,exp,suffix:kg"), "set_mass", "get_mass");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "friction", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_friction", "get_friction");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "bounce", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_bounce", "get_bounce");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "gravity_scale", PROPERTY_HINT_RANGE, "-10,10,0.01"), "set_gravity_scale", "get_gravity_scale");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "custom_integrator"), "set_use_custom_integrator", "is_using_custom_integrator");
ADD_PROPERTY(PropertyInfo(Variant::INT, "linear_damp_mode", PROPERTY_HINT_ENUM, "Combine,Replace"), "set_linear_damp_mode", "get_linear_damp_mode");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "linear_damp", PROPERTY_HINT_RANGE, "0,100,0.001,or_greater"), "set_linear_damp", "get_linear_damp");
ADD_PROPERTY(PropertyInfo(Variant::INT, "angular_damp_mode", PROPERTY_HINT_ENUM, "Combine,Replace"), "set_angular_damp_mode", "get_angular_damp_mode");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "angular_damp", PROPERTY_HINT_RANGE, "0,100,0.001,or_greater"), "set_angular_damp", "get_angular_damp");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "linear_velocity", PROPERTY_HINT_NONE, "suffix:m/s"), "set_linear_velocity", "get_linear_velocity");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "angular_velocity", PROPERTY_HINT_NONE, U"radians,suffix:\u00B0/s"), "set_angular_velocity", "get_angular_velocity");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "can_sleep"), "set_can_sleep", "is_able_to_sleep");
BIND_ENUM_CONSTANT(DAMP_MODE_COMBINE);
BIND_ENUM_CONSTANT(DAMP_MODE_REPLACE);
BIND_ENUM_CONSTANT(JOINT_TYPE_NONE);
BIND_ENUM_CONSTANT(JOINT_TYPE_PIN);
BIND_ENUM_CONSTANT(JOINT_TYPE_CONE);
BIND_ENUM_CONSTANT(JOINT_TYPE_HINGE);
BIND_ENUM_CONSTANT(JOINT_TYPE_SLIDER);
BIND_ENUM_CONSTANT(JOINT_TYPE_6DOF);
}
Skeleton3D *PhysicalBone3D::find_skeleton_parent(Node *p_parent) {
if (!p_parent) {
return nullptr;
}
Skeleton3D *s = Object::cast_to<Skeleton3D>(p_parent);
return s ? s : find_skeleton_parent(p_parent->get_parent());
}
void PhysicalBone3D::_update_joint_offset() {
_fix_joint_offset();
set_ignore_transform_notification(true);
reset_to_rest_position();
set_ignore_transform_notification(false);
#ifdef TOOLS_ENABLED
update_gizmos();
#endif
}
void PhysicalBone3D::_fix_joint_offset() {
// Clamp joint origin to bone origin
if (parent_skeleton) {
joint_offset.origin = body_offset.affine_inverse().origin;
}
}
void PhysicalBone3D::_reload_joint() {
if (!parent_skeleton) {
PhysicsServer3D::get_singleton()->joint_clear(joint);
return;
}
PhysicalBone3D *body_a = parent_skeleton->get_physical_bone_parent(bone_id);
if (!body_a) {
PhysicsServer3D::get_singleton()->joint_clear(joint);
return;
}
Transform3D joint_transf = get_global_transform() * joint_offset;
Transform3D local_a = body_a->get_global_transform().affine_inverse() * joint_transf;
local_a.orthonormalize();
switch (get_joint_type()) {
case JOINT_TYPE_PIN: {
PhysicsServer3D::get_singleton()->joint_make_pin(joint, body_a->get_rid(), local_a.origin, get_rid(), joint_offset.origin);
const PinJointData *pjd(static_cast<const PinJointData *>(joint_data));
PhysicsServer3D::get_singleton()->pin_joint_set_param(joint, PhysicsServer3D::PIN_JOINT_BIAS, pjd->bias);
PhysicsServer3D::get_singleton()->pin_joint_set_param(joint, PhysicsServer3D::PIN_JOINT_DAMPING, pjd->damping);
PhysicsServer3D::get_singleton()->pin_joint_set_param(joint, PhysicsServer3D::PIN_JOINT_IMPULSE_CLAMP, pjd->impulse_clamp);
} break;
case JOINT_TYPE_CONE: {
PhysicsServer3D::get_singleton()->joint_make_cone_twist(joint, body_a->get_rid(), local_a, get_rid(), joint_offset);
const ConeJointData *cjd(static_cast<const ConeJointData *>(joint_data));
PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer3D::CONE_TWIST_JOINT_SWING_SPAN, cjd->swing_span);
PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer3D::CONE_TWIST_JOINT_TWIST_SPAN, cjd->twist_span);
PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer3D::CONE_TWIST_JOINT_BIAS, cjd->bias);
PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer3D::CONE_TWIST_JOINT_SOFTNESS, cjd->softness);
PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer3D::CONE_TWIST_JOINT_RELAXATION, cjd->relaxation);
} break;
case JOINT_TYPE_HINGE: {
PhysicsServer3D::get_singleton()->joint_make_hinge(joint, body_a->get_rid(), local_a, get_rid(), joint_offset);
const HingeJointData *hjd(static_cast<const HingeJointData *>(joint_data));
PhysicsServer3D::get_singleton()->hinge_joint_set_flag(joint, PhysicsServer3D::HINGE_JOINT_FLAG_USE_LIMIT, hjd->angular_limit_enabled);
PhysicsServer3D::get_singleton()->hinge_joint_set_param(joint, PhysicsServer3D::HINGE_JOINT_LIMIT_UPPER, hjd->angular_limit_upper);
PhysicsServer3D::get_singleton()->hinge_joint_set_param(joint, PhysicsServer3D::HINGE_JOINT_LIMIT_LOWER, hjd->angular_limit_lower);
PhysicsServer3D::get_singleton()->hinge_joint_set_param(joint, PhysicsServer3D::HINGE_JOINT_LIMIT_BIAS, hjd->angular_limit_bias);
PhysicsServer3D::get_singleton()->hinge_joint_set_param(joint, PhysicsServer3D::HINGE_JOINT_LIMIT_SOFTNESS, hjd->angular_limit_softness);
PhysicsServer3D::get_singleton()->hinge_joint_set_param(joint, PhysicsServer3D::HINGE_JOINT_LIMIT_RELAXATION, hjd->angular_limit_relaxation);
} break;
case JOINT_TYPE_SLIDER: {
PhysicsServer3D::get_singleton()->joint_make_slider(joint, body_a->get_rid(), local_a, get_rid(), joint_offset);
const SliderJointData *sjd(static_cast<const SliderJointData *>(joint_data));
PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_UPPER, sjd->linear_limit_upper);
PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_LOWER, sjd->linear_limit_lower);
PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS, sjd->linear_limit_softness);
PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION, sjd->linear_limit_restitution);
PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_DAMPING, sjd->linear_limit_restitution);
PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_UPPER, sjd->angular_limit_upper);
PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_LOWER, sjd->angular_limit_lower);
PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS, sjd->angular_limit_softness);
PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS, sjd->angular_limit_softness);
PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING, sjd->angular_limit_damping);
} break;
case JOINT_TYPE_6DOF: {
PhysicsServer3D::get_singleton()->joint_make_generic_6dof(joint, body_a->get_rid(), local_a, get_rid(), joint_offset);
const SixDOFJointData *g6dofjd(static_cast<const SixDOFJointData *>(joint_data));
for (int axis = 0; axis < 3; ++axis) {
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT, g6dofjd->axis_data[axis].linear_limit_enabled);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_UPPER_LIMIT, g6dofjd->axis_data[axis].linear_limit_upper);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_LOWER_LIMIT, g6dofjd->axis_data[axis].linear_limit_lower);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS, g6dofjd->axis_data[axis].linear_limit_softness);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_SPRING, g6dofjd->axis_data[axis].linear_spring_enabled);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_STIFFNESS, g6dofjd->axis_data[axis].linear_spring_stiffness);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_DAMPING, g6dofjd->axis_data[axis].linear_spring_damping);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_EQUILIBRIUM_POINT, g6dofjd->axis_data[axis].linear_equilibrium_point);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_RESTITUTION, g6dofjd->axis_data[axis].linear_restitution);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_DAMPING, g6dofjd->axis_data[axis].linear_damping);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT, g6dofjd->axis_data[axis].angular_limit_enabled);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_UPPER_LIMIT, g6dofjd->axis_data[axis].angular_limit_upper);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_LOWER_LIMIT, g6dofjd->axis_data[axis].angular_limit_lower);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS, g6dofjd->axis_data[axis].angular_limit_softness);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_RESTITUTION, g6dofjd->axis_data[axis].angular_restitution);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_DAMPING, g6dofjd->axis_data[axis].angular_damping);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_ERP, g6dofjd->axis_data[axis].erp);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_SPRING, g6dofjd->axis_data[axis].angular_spring_enabled);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_STIFFNESS, g6dofjd->axis_data[axis].angular_spring_stiffness);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_DAMPING, g6dofjd->axis_data[axis].angular_spring_damping);
PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast<Vector3::Axis>(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_EQUILIBRIUM_POINT, g6dofjd->axis_data[axis].angular_equilibrium_point);
}
} break;
case JOINT_TYPE_NONE: {
} break;
}
}
void PhysicalBone3D::_on_bone_parent_changed() {
_reload_joint();
}
#ifdef TOOLS_ENABLED
void PhysicalBone3D::_set_gizmo_move_joint(bool p_move_joint) {
gizmo_move_joint = p_move_joint;
}
Transform3D PhysicalBone3D::get_global_gizmo_transform() const {
return gizmo_move_joint ? get_global_transform() * joint_offset : get_global_transform();
}
Transform3D PhysicalBone3D::get_local_gizmo_transform() const {
return gizmo_move_joint ? get_transform() * joint_offset : get_transform();
}
#endif
const PhysicalBone3D::JointData *PhysicalBone3D::get_joint_data() const {
return joint_data;
}
Skeleton3D *PhysicalBone3D::find_skeleton_parent() {
return find_skeleton_parent(this);
}
void PhysicalBone3D::set_joint_type(JointType p_joint_type) {
if (p_joint_type == get_joint_type()) {
return;
}
if (joint_data) {
memdelete(joint_data);
}
joint_data = nullptr;
switch (p_joint_type) {
case JOINT_TYPE_PIN:
joint_data = memnew(PinJointData);
break;
case JOINT_TYPE_CONE:
joint_data = memnew(ConeJointData);
break;
case JOINT_TYPE_HINGE:
joint_data = memnew(HingeJointData);
break;
case JOINT_TYPE_SLIDER:
joint_data = memnew(SliderJointData);
break;
case JOINT_TYPE_6DOF:
joint_data = memnew(SixDOFJointData);
break;
case JOINT_TYPE_NONE:
break;
}
_reload_joint();
#ifdef TOOLS_ENABLED
notify_property_list_changed();
update_gizmos();
#endif
}
PhysicalBone3D::JointType PhysicalBone3D::get_joint_type() const {
return joint_data ? joint_data->get_joint_type() : JOINT_TYPE_NONE;
}
void PhysicalBone3D::set_joint_offset(const Transform3D &p_offset) {
joint_offset = p_offset;
_update_joint_offset();
}
const Transform3D &PhysicalBone3D::get_joint_offset() const {
return joint_offset;
}
void PhysicalBone3D::set_joint_rotation(const Vector3 &p_euler_rad) {
joint_offset.basis.set_euler_scale(p_euler_rad, joint_offset.basis.get_scale());
_update_joint_offset();
}
Vector3 PhysicalBone3D::get_joint_rotation() const {
return joint_offset.basis.get_euler_normalized();
}
const Transform3D &PhysicalBone3D::get_body_offset() const {
return body_offset;
}
void PhysicalBone3D::set_body_offset(const Transform3D &p_offset) {
body_offset = p_offset;
body_offset_inverse = body_offset.affine_inverse();
_update_joint_offset();
}
void PhysicalBone3D::set_simulate_physics(bool p_simulate) {
if (simulate_physics == p_simulate) {
return;
}
simulate_physics = p_simulate;
reset_physics_simulation_state();
}
bool PhysicalBone3D::get_simulate_physics() {
return simulate_physics;
}
bool PhysicalBone3D::is_simulating_physics() {
return _internal_simulate_physics;
}
void PhysicalBone3D::set_bone_name(const String &p_name) {
bone_name = p_name;
bone_id = -1;
update_bone_id();
reset_to_rest_position();
}
const String &PhysicalBone3D::get_bone_name() const {
return bone_name;
}
void PhysicalBone3D::set_mass(real_t p_mass) {
ERR_FAIL_COND(p_mass <= 0);
mass = p_mass;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_MASS, mass);
}
real_t PhysicalBone3D::get_mass() const {
return mass;
}
void PhysicalBone3D::set_friction(real_t p_friction) {
ERR_FAIL_COND(p_friction < 0 || p_friction > 1);
friction = p_friction;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_FRICTION, friction);
}
real_t PhysicalBone3D::get_friction() const {
return friction;
}
void PhysicalBone3D::set_bounce(real_t p_bounce) {
ERR_FAIL_COND(p_bounce < 0 || p_bounce > 1);
bounce = p_bounce;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_BOUNCE, bounce);
}
real_t PhysicalBone3D::get_bounce() const {
return bounce;
}
void PhysicalBone3D::set_gravity_scale(real_t p_gravity_scale) {
gravity_scale = p_gravity_scale;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_GRAVITY_SCALE, gravity_scale);
}
real_t PhysicalBone3D::get_gravity_scale() const {
return gravity_scale;
}
void PhysicalBone3D::set_linear_damp_mode(DampMode p_mode) {
linear_damp_mode = p_mode;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_LINEAR_DAMP_MODE, linear_damp_mode);
}
PhysicalBone3D::DampMode PhysicalBone3D::get_linear_damp_mode() const {
return linear_damp_mode;
}
void PhysicalBone3D::set_angular_damp_mode(DampMode p_mode) {
angular_damp_mode = p_mode;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_ANGULAR_DAMP_MODE, angular_damp_mode);
}
PhysicalBone3D::DampMode PhysicalBone3D::get_angular_damp_mode() const {
return angular_damp_mode;
}
void PhysicalBone3D::set_linear_damp(real_t p_linear_damp) {
ERR_FAIL_COND(p_linear_damp < 0);
linear_damp = p_linear_damp;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_LINEAR_DAMP, linear_damp);
}
real_t PhysicalBone3D::get_linear_damp() const {
return linear_damp;
}
void PhysicalBone3D::set_angular_damp(real_t p_angular_damp) {
ERR_FAIL_COND(p_angular_damp < 0);
angular_damp = p_angular_damp;
PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_ANGULAR_DAMP, angular_damp);
}
real_t PhysicalBone3D::get_angular_damp() const {
return angular_damp;
}
void PhysicalBone3D::set_can_sleep(bool p_active) {
can_sleep = p_active;
PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_CAN_SLEEP, p_active);
}
bool PhysicalBone3D::is_able_to_sleep() const {
return can_sleep;
}
PhysicalBone3D::PhysicalBone3D() :
PhysicsBody3D(PhysicsServer3D::BODY_MODE_STATIC) {
joint = PhysicsServer3D::get_singleton()->joint_create();
reset_physics_simulation_state();
}
PhysicalBone3D::~PhysicalBone3D() {
if (joint_data) {
memdelete(joint_data);
}
PhysicsServer3D::get_singleton()->free(joint);
}
void PhysicalBone3D::update_bone_id() {
if (!parent_skeleton) {
return;
}
const int new_bone_id = parent_skeleton->find_bone(bone_name);
if (new_bone_id != bone_id) {
if (-1 != bone_id) {
// Assert the unbind from old node
parent_skeleton->unbind_physical_bone_from_bone(bone_id);
}
bone_id = new_bone_id;
parent_skeleton->bind_physical_bone_to_bone(bone_id, this);
_fix_joint_offset();
reset_physics_simulation_state();
}
}
void PhysicalBone3D::update_offset() {
#ifdef TOOLS_ENABLED
if (parent_skeleton) {
Transform3D bone_transform(parent_skeleton->get_global_transform());
if (-1 != bone_id) {
bone_transform *= parent_skeleton->get_bone_global_pose(bone_id);
}
if (gizmo_move_joint) {
bone_transform *= body_offset;
set_joint_offset(bone_transform.affine_inverse() * get_global_transform());
} else {
set_body_offset(bone_transform.affine_inverse() * get_global_transform());
}
}
#endif
}
void PhysicalBone3D::_start_physics_simulation() {
if (_internal_simulate_physics || !parent_skeleton) {
return;
}
reset_to_rest_position();
set_body_mode(PhysicsServer3D::BODY_MODE_RIGID);
PhysicsServer3D::get_singleton()->body_set_collision_layer(get_rid(), get_collision_layer());
PhysicsServer3D::get_singleton()->body_set_collision_mask(get_rid(), get_collision_mask());
PhysicsServer3D::get_singleton()->body_set_collision_priority(get_rid(), get_collision_priority());
PhysicsServer3D::get_singleton()->body_set_state_sync_callback(get_rid(), this, _body_state_changed_callback);
set_as_top_level(true);
_internal_simulate_physics = true;
}
void PhysicalBone3D::_stop_physics_simulation() {
if (!parent_skeleton) {
return;
}
if (parent_skeleton->get_animate_physical_bones()) {
set_body_mode(PhysicsServer3D::BODY_MODE_KINEMATIC);
PhysicsServer3D::get_singleton()->body_set_collision_layer(get_rid(), get_collision_layer());
PhysicsServer3D::get_singleton()->body_set_collision_mask(get_rid(), get_collision_mask());
PhysicsServer3D::get_singleton()->body_set_collision_priority(get_rid(), get_collision_priority());
} else {
set_body_mode(PhysicsServer3D::BODY_MODE_STATIC);
PhysicsServer3D::get_singleton()->body_set_collision_layer(get_rid(), 0);
PhysicsServer3D::get_singleton()->body_set_collision_mask(get_rid(), 0);
PhysicsServer3D::get_singleton()->body_set_collision_priority(get_rid(), 1.0);
}
if (_internal_simulate_physics) {
PhysicsServer3D::get_singleton()->body_set_state_sync_callback(get_rid(), nullptr, nullptr);
parent_skeleton->set_bone_global_pose_override(bone_id, Transform3D(), 0.0, false);
set_as_top_level(false);
_internal_simulate_physics = false;
}
}