godot/scene/animation/tween.cpp
Bojidar Marinov 9b8e8b2220
Bind many more properties to scripts
Notable potentially breaking changes:
- PROPERTY_USAGE_NOEDITOR is now PROPERTY_USAGE_STORAGE | PROPERTY_USAGE_NETWORK, without PROPERTY_USAGE_INTERNAL
- Some properties were renamed, and sometimes even shadowed by new ones
- New getter methods (some virtual) were added
2018-01-12 00:58:14 +02:00

1427 lines
44 KiB
C++

/*************************************************************************/
/* tween.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "tween.h"
#include "method_bind_ext.gen.inc"
void Tween::_add_pending_command(StringName p_key, const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3, const Variant &p_arg4, const Variant &p_arg5, const Variant &p_arg6, const Variant &p_arg7, const Variant &p_arg8, const Variant &p_arg9, const Variant &p_arg10) {
pending_commands.push_back(PendingCommand());
PendingCommand &cmd = pending_commands.back()->get();
cmd.key = p_key;
int &count = cmd.args;
if (p_arg10.get_type() != Variant::NIL)
count = 10;
else if (p_arg9.get_type() != Variant::NIL)
count = 9;
else if (p_arg8.get_type() != Variant::NIL)
count = 8;
else if (p_arg7.get_type() != Variant::NIL)
count = 7;
else if (p_arg6.get_type() != Variant::NIL)
count = 6;
else if (p_arg5.get_type() != Variant::NIL)
count = 5;
else if (p_arg4.get_type() != Variant::NIL)
count = 4;
else if (p_arg3.get_type() != Variant::NIL)
count = 3;
else if (p_arg2.get_type() != Variant::NIL)
count = 2;
else if (p_arg1.get_type() != Variant::NIL)
count = 1;
if (count > 0)
cmd.arg[0] = p_arg1;
if (count > 1)
cmd.arg[1] = p_arg2;
if (count > 2)
cmd.arg[2] = p_arg3;
if (count > 3)
cmd.arg[3] = p_arg4;
if (count > 4)
cmd.arg[4] = p_arg5;
if (count > 5)
cmd.arg[5] = p_arg6;
if (count > 6)
cmd.arg[6] = p_arg7;
if (count > 7)
cmd.arg[7] = p_arg8;
if (count > 8)
cmd.arg[8] = p_arg9;
if (count > 9)
cmd.arg[9] = p_arg10;
}
void Tween::_process_pending_commands() {
for (List<PendingCommand>::Element *E = pending_commands.front(); E; E = E->next()) {
PendingCommand &cmd = E->get();
Variant::CallError err;
Variant *arg[10] = {
&cmd.arg[0],
&cmd.arg[1],
&cmd.arg[2],
&cmd.arg[3],
&cmd.arg[4],
&cmd.arg[5],
&cmd.arg[6],
&cmd.arg[7],
&cmd.arg[8],
&cmd.arg[9],
};
this->call(cmd.key, (const Variant **)arg, cmd.args, err);
}
pending_commands.clear();
}
bool Tween::_set(const StringName &p_name, const Variant &p_value) {
String name = p_name;
if (name == "playback/speed" || name == "speed") { //bw compatibility
set_speed_scale(p_value);
} else if (name == "playback/active") {
set_active(p_value);
} else if (name == "playback/repeat") {
set_repeat(p_value);
}
return true;
}
bool Tween::_get(const StringName &p_name, Variant &r_ret) const {
String name = p_name;
if (name == "playback/speed") { //bw compatibility
r_ret = speed_scale;
} else if (name == "playback/active") {
r_ret = is_active();
} else if (name == "playback/repeat") {
r_ret = is_repeat();
}
return true;
}
void Tween::_get_property_list(List<PropertyInfo> *p_list) const {
p_list->push_back(PropertyInfo(Variant::BOOL, "playback/active", PROPERTY_HINT_NONE, ""));
p_list->push_back(PropertyInfo(Variant::BOOL, "playback/repeat", PROPERTY_HINT_NONE, ""));
p_list->push_back(PropertyInfo(Variant::REAL, "playback/speed", PROPERTY_HINT_RANGE, "-64,64,0.01"));
}
void Tween::_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_ENTER_TREE: {
if (!processing) {
//make sure that a previous process state was not saved
//only process if "processing" is set
set_physics_process_internal(false);
set_process_internal(false);
}
} break;
case NOTIFICATION_READY: {
} break;
case NOTIFICATION_INTERNAL_PROCESS: {
if (tween_process_mode == TWEEN_PROCESS_PHYSICS)
break;
if (processing)
_tween_process(get_process_delta_time());
} break;
case NOTIFICATION_INTERNAL_PHYSICS_PROCESS: {
if (tween_process_mode == TWEEN_PROCESS_IDLE)
break;
if (processing)
_tween_process(get_physics_process_delta_time());
} break;
case NOTIFICATION_EXIT_TREE: {
stop_all();
} break;
}
}
void Tween::_bind_methods() {
ClassDB::bind_method(D_METHOD("is_active"), &Tween::is_active);
ClassDB::bind_method(D_METHOD("set_active", "active"), &Tween::set_active);
ClassDB::bind_method(D_METHOD("is_repeat"), &Tween::is_repeat);
ClassDB::bind_method(D_METHOD("set_repeat", "repeat"), &Tween::set_repeat);
ClassDB::bind_method(D_METHOD("set_speed_scale", "speed"), &Tween::set_speed_scale);
ClassDB::bind_method(D_METHOD("get_speed_scale"), &Tween::get_speed_scale);
ClassDB::bind_method(D_METHOD("set_tween_process_mode", "mode"), &Tween::set_tween_process_mode);
ClassDB::bind_method(D_METHOD("get_tween_process_mode"), &Tween::get_tween_process_mode);
ClassDB::bind_method(D_METHOD("start"), &Tween::start);
ClassDB::bind_method(D_METHOD("reset", "object", "key"), &Tween::reset, DEFVAL(""));
ClassDB::bind_method(D_METHOD("reset_all"), &Tween::reset_all);
ClassDB::bind_method(D_METHOD("stop", "object", "key"), &Tween::stop, DEFVAL(""));
ClassDB::bind_method(D_METHOD("stop_all"), &Tween::stop_all);
ClassDB::bind_method(D_METHOD("resume", "object", "key"), &Tween::resume, DEFVAL(""));
ClassDB::bind_method(D_METHOD("resume_all"), &Tween::resume_all);
ClassDB::bind_method(D_METHOD("remove", "object", "key"), &Tween::remove, DEFVAL(""));
ClassDB::bind_method(D_METHOD("_remove", "object", "key", "first_only"), &Tween::_remove);
ClassDB::bind_method(D_METHOD("remove_all"), &Tween::remove_all);
ClassDB::bind_method(D_METHOD("seek", "time"), &Tween::seek);
ClassDB::bind_method(D_METHOD("tell"), &Tween::tell);
ClassDB::bind_method(D_METHOD("get_runtime"), &Tween::get_runtime);
ClassDB::bind_method(D_METHOD("interpolate_property", "object", "property", "initial_val", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::interpolate_property, DEFVAL(0));
ClassDB::bind_method(D_METHOD("interpolate_method", "object", "method", "initial_val", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::interpolate_method, DEFVAL(0));
ClassDB::bind_method(D_METHOD("interpolate_callback", "object", "duration", "callback", "arg1", "arg2", "arg3", "arg4", "arg5"), &Tween::interpolate_callback, DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()));
ClassDB::bind_method(D_METHOD("interpolate_deferred_callback", "object", "duration", "callback", "arg1", "arg2", "arg3", "arg4", "arg5"), &Tween::interpolate_deferred_callback, DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()));
ClassDB::bind_method(D_METHOD("follow_property", "object", "property", "initial_val", "target", "target_property", "duration", "trans_type", "ease_type", "delay"), &Tween::follow_property, DEFVAL(0));
ClassDB::bind_method(D_METHOD("follow_method", "object", "method", "initial_val", "target", "target_method", "duration", "trans_type", "ease_type", "delay"), &Tween::follow_method, DEFVAL(0));
ClassDB::bind_method(D_METHOD("targeting_property", "object", "property", "initial", "initial_val", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::targeting_property, DEFVAL(0));
ClassDB::bind_method(D_METHOD("targeting_method", "object", "method", "initial", "initial_method", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::targeting_method, DEFVAL(0));
ADD_SIGNAL(MethodInfo("tween_started", PropertyInfo(Variant::OBJECT, "object"), PropertyInfo(Variant::STRING, "key")));
ADD_SIGNAL(MethodInfo("tween_step", PropertyInfo(Variant::OBJECT, "object"), PropertyInfo(Variant::STRING, "key"), PropertyInfo(Variant::REAL, "elapsed"), PropertyInfo(Variant::OBJECT, "value")));
ADD_SIGNAL(MethodInfo("tween_completed", PropertyInfo(Variant::OBJECT, "object"), PropertyInfo(Variant::STRING, "key")));
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "repeat"), "set_repeat", "is_repeat");
ADD_PROPERTY(PropertyInfo(Variant::INT, "playback_process_mode", PROPERTY_HINT_ENUM, "Physics,Idle"), "set_tween_process_mode", "get_tween_process_mode");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "playback_speed", PROPERTY_HINT_RANGE, "-64,64,0.01"), "set_speed_scale", "get_speed_scale");
BIND_ENUM_CONSTANT(TWEEN_PROCESS_PHYSICS);
BIND_ENUM_CONSTANT(TWEEN_PROCESS_IDLE);
BIND_ENUM_CONSTANT(TRANS_LINEAR);
BIND_ENUM_CONSTANT(TRANS_SINE);
BIND_ENUM_CONSTANT(TRANS_QUINT);
BIND_ENUM_CONSTANT(TRANS_QUART);
BIND_ENUM_CONSTANT(TRANS_QUAD);
BIND_ENUM_CONSTANT(TRANS_EXPO);
BIND_ENUM_CONSTANT(TRANS_ELASTIC);
BIND_ENUM_CONSTANT(TRANS_CUBIC);
BIND_ENUM_CONSTANT(TRANS_CIRC);
BIND_ENUM_CONSTANT(TRANS_BOUNCE);
BIND_ENUM_CONSTANT(TRANS_BACK);
BIND_ENUM_CONSTANT(EASE_IN);
BIND_ENUM_CONSTANT(EASE_OUT);
BIND_ENUM_CONSTANT(EASE_IN_OUT);
BIND_ENUM_CONSTANT(EASE_OUT_IN);
}
Variant &Tween::_get_initial_val(InterpolateData &p_data) {
switch (p_data.type) {
case INTER_PROPERTY:
case INTER_METHOD:
case FOLLOW_PROPERTY:
case FOLLOW_METHOD:
return p_data.initial_val;
case TARGETING_PROPERTY:
case TARGETING_METHOD: {
Object *object = ObjectDB::get_instance(p_data.target_id);
ERR_FAIL_COND_V(object == NULL, p_data.initial_val);
static Variant initial_val;
if (p_data.type == TARGETING_PROPERTY) {
bool valid = false;
initial_val = object->get_indexed(p_data.target_key, &valid);
ERR_FAIL_COND_V(!valid, p_data.initial_val);
} else {
Variant::CallError error;
initial_val = object->call(p_data.target_key[0], NULL, 0, error);
ERR_FAIL_COND_V(error.error != Variant::CallError::CALL_OK, p_data.initial_val);
}
return initial_val;
} break;
}
return p_data.delta_val;
}
Variant &Tween::_get_delta_val(InterpolateData &p_data) {
switch (p_data.type) {
case INTER_PROPERTY:
case INTER_METHOD:
return p_data.delta_val;
case FOLLOW_PROPERTY:
case FOLLOW_METHOD: {
Object *target = ObjectDB::get_instance(p_data.target_id);
ERR_FAIL_COND_V(target == NULL, p_data.initial_val);
Variant final_val;
if (p_data.type == FOLLOW_PROPERTY) {
bool valid = false;
final_val = target->get_indexed(p_data.target_key, &valid);
ERR_FAIL_COND_V(!valid, p_data.initial_val);
} else {
Variant::CallError error;
final_val = target->call(p_data.target_key[0], NULL, 0, error);
ERR_FAIL_COND_V(error.error != Variant::CallError::CALL_OK, p_data.initial_val);
}
// convert INT to REAL is better for interpolaters
if (final_val.get_type() == Variant::INT) final_val = final_val.operator real_t();
_calc_delta_val(p_data.initial_val, final_val, p_data.delta_val);
return p_data.delta_val;
} break;
case TARGETING_PROPERTY:
case TARGETING_METHOD: {
Variant initial_val = _get_initial_val(p_data);
// convert INT to REAL is better for interpolaters
if (initial_val.get_type() == Variant::INT) initial_val = initial_val.operator real_t();
//_calc_delta_val(p_data.initial_val, p_data.final_val, p_data.delta_val);
_calc_delta_val(initial_val, p_data.final_val, p_data.delta_val);
return p_data.delta_val;
} break;
}
return p_data.initial_val;
}
Variant Tween::_run_equation(InterpolateData &p_data) {
Variant &initial_val = _get_initial_val(p_data);
Variant &delta_val = _get_delta_val(p_data);
Variant result;
#define APPLY_EQUATION(element) \
r.element = _run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, i.element, d.element, p_data.duration);
switch (initial_val.get_type()) {
case Variant::BOOL:
result = (_run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, initial_val, delta_val, p_data.duration)) >= 0.5;
break;
case Variant::INT:
result = (int)_run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, (int)initial_val, (int)delta_val, p_data.duration);
break;
case Variant::REAL:
result = _run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, (real_t)initial_val, (real_t)delta_val, p_data.duration);
break;
case Variant::VECTOR2: {
Vector2 i = initial_val;
Vector2 d = delta_val;
Vector2 r;
APPLY_EQUATION(x);
APPLY_EQUATION(y);
result = r;
} break;
case Variant::VECTOR3: {
Vector3 i = initial_val;
Vector3 d = delta_val;
Vector3 r;
APPLY_EQUATION(x);
APPLY_EQUATION(y);
APPLY_EQUATION(z);
result = r;
} break;
case Variant::BASIS: {
Basis i = initial_val;
Basis d = delta_val;
Basis r;
APPLY_EQUATION(elements[0][0]);
APPLY_EQUATION(elements[0][1]);
APPLY_EQUATION(elements[0][2]);
APPLY_EQUATION(elements[1][0]);
APPLY_EQUATION(elements[1][1]);
APPLY_EQUATION(elements[1][2]);
APPLY_EQUATION(elements[2][0]);
APPLY_EQUATION(elements[2][1]);
APPLY_EQUATION(elements[2][2]);
result = r;
} break;
case Variant::TRANSFORM2D: {
Transform2D i = initial_val;
Transform2D d = delta_val;
Transform2D r;
APPLY_EQUATION(elements[0][0]);
APPLY_EQUATION(elements[0][1]);
APPLY_EQUATION(elements[1][0]);
APPLY_EQUATION(elements[1][1]);
APPLY_EQUATION(elements[2][0]);
APPLY_EQUATION(elements[2][1]);
result = r;
} break;
case Variant::QUAT: {
Quat i = initial_val;
Quat d = delta_val;
Quat r;
APPLY_EQUATION(x);
APPLY_EQUATION(y);
APPLY_EQUATION(z);
APPLY_EQUATION(w);
result = r;
} break;
case Variant::AABB: {
AABB i = initial_val;
AABB d = delta_val;
AABB r;
APPLY_EQUATION(position.x);
APPLY_EQUATION(position.y);
APPLY_EQUATION(position.z);
APPLY_EQUATION(size.x);
APPLY_EQUATION(size.y);
APPLY_EQUATION(size.z);
result = r;
} break;
case Variant::TRANSFORM: {
Transform i = initial_val;
Transform d = delta_val;
Transform r;
APPLY_EQUATION(basis.elements[0][0]);
APPLY_EQUATION(basis.elements[0][1]);
APPLY_EQUATION(basis.elements[0][2]);
APPLY_EQUATION(basis.elements[1][0]);
APPLY_EQUATION(basis.elements[1][1]);
APPLY_EQUATION(basis.elements[1][2]);
APPLY_EQUATION(basis.elements[2][0]);
APPLY_EQUATION(basis.elements[2][1]);
APPLY_EQUATION(basis.elements[2][2]);
APPLY_EQUATION(origin.x);
APPLY_EQUATION(origin.y);
APPLY_EQUATION(origin.z);
result = r;
} break;
case Variant::COLOR: {
Color i = initial_val;
Color d = delta_val;
Color r;
APPLY_EQUATION(r);
APPLY_EQUATION(g);
APPLY_EQUATION(b);
APPLY_EQUATION(a);
result = r;
} break;
default: {
result = initial_val;
} break;
};
#undef APPLY_EQUATION
return result;
}
bool Tween::_apply_tween_value(InterpolateData &p_data, Variant &value) {
Object *object = ObjectDB::get_instance(p_data.id);
ERR_FAIL_COND_V(object == NULL, false);
switch (p_data.type) {
case INTER_PROPERTY:
case FOLLOW_PROPERTY:
case TARGETING_PROPERTY: {
bool valid = false;
object->set_indexed(p_data.key, value, &valid);
return valid;
}
case INTER_METHOD:
case FOLLOW_METHOD:
case TARGETING_METHOD: {
Variant::CallError error;
if (value.get_type() != Variant::NIL) {
Variant *arg[1] = { &value };
object->call(p_data.key[0], (const Variant **)arg, 1, error);
} else {
object->call(p_data.key[0], NULL, 0, error);
}
if (error.error == Variant::CallError::CALL_OK)
return true;
return false;
}
case INTER_CALLBACK:
break;
};
return true;
}
void Tween::_tween_process(float p_delta) {
_process_pending_commands();
if (speed_scale == 0)
return;
p_delta *= speed_scale;
pending_update++;
// if repeat and all interpolates was finished then reset all interpolates
if (repeat) {
bool all_finished = true;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
InterpolateData &data = E->get();
if (!data.finish) {
all_finished = false;
break;
}
}
if (all_finished)
reset_all();
}
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
InterpolateData &data = E->get();
if (!data.active || data.finish)
continue;
Object *object = ObjectDB::get_instance(data.id);
if (object == NULL)
continue;
bool prev_delaying = data.elapsed <= data.delay;
data.elapsed += p_delta;
if (data.elapsed < data.delay)
continue;
else if (prev_delaying) {
emit_signal("tween_started", object, NodePath(Vector<StringName>(), data.key, false));
_apply_tween_value(data, data.initial_val);
}
if (data.elapsed > (data.delay + data.duration)) {
data.elapsed = data.delay + data.duration;
data.finish = true;
}
if (data.type == INTER_CALLBACK) {
if (data.finish) {
if (data.call_deferred) {
switch (data.args) {
case 0:
object->call_deferred(data.key[0]);
break;
case 1:
object->call_deferred(data.key[0], data.arg[0]);
break;
case 2:
object->call_deferred(data.key[0], data.arg[0], data.arg[1]);
break;
case 3:
object->call_deferred(data.key[0], data.arg[0], data.arg[1], data.arg[2]);
break;
case 4:
object->call_deferred(data.key[0], data.arg[0], data.arg[1], data.arg[2], data.arg[3]);
break;
case 5:
object->call_deferred(data.key[0], data.arg[0], data.arg[1], data.arg[2], data.arg[3], data.arg[4]);
break;
}
} else {
Variant::CallError error;
Variant *arg[5] = {
&data.arg[0],
&data.arg[1],
&data.arg[2],
&data.arg[3],
&data.arg[4],
};
object->call(data.key[0], (const Variant **)arg, data.args, error);
}
}
} else {
Variant result = _run_equation(data);
emit_signal("tween_step", object, NodePath(Vector<StringName>(), data.key, false), data.elapsed, result);
_apply_tween_value(data, result);
}
if (data.finish) {
_apply_tween_value(data, data.final_val);
emit_signal("tween_completed", object, NodePath(Vector<StringName>(), data.key, false));
// not repeat mode, remove completed action
if (!repeat)
call_deferred("_remove", object, NodePath(Vector<StringName>(), data.key, false), true);
}
}
pending_update--;
}
void Tween::set_tween_process_mode(TweenProcessMode p_mode) {
if (tween_process_mode == p_mode)
return;
bool pr = processing;
if (pr)
_set_process(false);
tween_process_mode = p_mode;
if (pr)
_set_process(true);
}
Tween::TweenProcessMode Tween::get_tween_process_mode() const {
return tween_process_mode;
}
void Tween::_set_process(bool p_process, bool p_force) {
if (processing == p_process && !p_force)
return;
switch (tween_process_mode) {
case TWEEN_PROCESS_PHYSICS: set_physics_process_internal(p_process && active); break;
case TWEEN_PROCESS_IDLE: set_process_internal(p_process && active); break;
}
processing = p_process;
}
bool Tween::is_active() const {
return active;
}
void Tween::set_active(bool p_active) {
if (active == p_active)
return;
active = p_active;
_set_process(processing, true);
}
bool Tween::is_repeat() const {
return repeat;
}
void Tween::set_repeat(bool p_repeat) {
repeat = p_repeat;
}
void Tween::set_speed_scale(float p_speed) {
speed_scale = p_speed;
}
float Tween::get_speed_scale() const {
return speed_scale;
}
bool Tween::start() {
set_active(true);
_set_process(true);
return true;
}
bool Tween::reset(Object *p_object, StringName p_key) {
pending_update++;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
InterpolateData &data = E->get();
Object *object = ObjectDB::get_instance(data.id);
if (object == NULL)
continue;
if (object == p_object && (data.concatenated_key == p_key || p_key == "")) {
data.elapsed = 0;
data.finish = false;
if (data.delay == 0)
_apply_tween_value(data, data.initial_val);
}
}
pending_update--;
return true;
}
bool Tween::reset_all() {
pending_update++;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
InterpolateData &data = E->get();
data.elapsed = 0;
data.finish = false;
if (data.delay == 0)
_apply_tween_value(data, data.initial_val);
}
pending_update--;
return true;
}
bool Tween::stop(Object *p_object, StringName p_key) {
pending_update++;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
InterpolateData &data = E->get();
Object *object = ObjectDB::get_instance(data.id);
if (object == NULL)
continue;
if (object == p_object && (data.concatenated_key == p_key || p_key == ""))
data.active = false;
}
pending_update--;
return true;
}
bool Tween::stop_all() {
set_active(false);
_set_process(false);
pending_update++;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
InterpolateData &data = E->get();
data.active = false;
}
pending_update--;
return true;
}
bool Tween::resume(Object *p_object, StringName p_key) {
set_active(true);
_set_process(true);
pending_update++;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
InterpolateData &data = E->get();
Object *object = ObjectDB::get_instance(data.id);
if (object == NULL)
continue;
if (object == p_object && (data.concatenated_key == p_key || p_key == ""))
data.active = true;
}
pending_update--;
return true;
}
bool Tween::resume_all() {
set_active(true);
_set_process(true);
pending_update++;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
InterpolateData &data = E->get();
data.active = true;
}
pending_update--;
return true;
}
bool Tween::remove(Object *p_object, StringName p_key) {
_remove(p_object, p_key, false);
return true;
}
void Tween::_remove(Object *p_object, StringName p_key, bool first_only) {
if (pending_update != 0) {
call_deferred("_remove", p_object, p_key, first_only);
return;
}
List<List<InterpolateData>::Element *> for_removal;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
InterpolateData &data = E->get();
Object *object = ObjectDB::get_instance(data.id);
if (object == NULL)
continue;
if (object == p_object && (data.concatenated_key == p_key || p_key == "")) {
for_removal.push_back(E);
if (first_only) {
break;
}
}
}
for (List<List<InterpolateData>::Element *>::Element *E = for_removal.front(); E; E = E->next()) {
interpolates.erase(E->get());
}
}
bool Tween::remove_all() {
if (pending_update != 0) {
call_deferred("remove_all");
return true;
}
set_active(false);
_set_process(false);
interpolates.clear();
return true;
}
bool Tween::seek(real_t p_time) {
pending_update++;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
InterpolateData &data = E->get();
data.elapsed = p_time;
if (data.elapsed < data.delay) {
data.finish = false;
continue;
} else if (data.elapsed >= (data.delay + data.duration)) {
data.finish = true;
data.elapsed = (data.delay + data.duration);
} else {
data.finish = false;
}
switch (data.type) {
case INTER_PROPERTY:
case INTER_METHOD:
break;
case INTER_CALLBACK:
continue;
}
Variant result = _run_equation(data);
_apply_tween_value(data, result);
}
pending_update--;
return true;
}
real_t Tween::tell() const {
pending_update++;
real_t pos = 0;
for (const List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
const InterpolateData &data = E->get();
if (data.elapsed > pos)
pos = data.elapsed;
}
pending_update--;
return pos;
}
real_t Tween::get_runtime() const {
pending_update++;
real_t runtime = 0;
for (const List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
const InterpolateData &data = E->get();
real_t t = data.delay + data.duration;
if (t > runtime)
runtime = t;
}
pending_update--;
return runtime;
}
bool Tween::_calc_delta_val(const Variant &p_initial_val, const Variant &p_final_val, Variant &p_delta_val) {
const Variant &initial_val = p_initial_val;
const Variant &final_val = p_final_val;
Variant &delta_val = p_delta_val;
switch (initial_val.get_type()) {
case Variant::BOOL:
//delta_val = p_final_val;
delta_val = (int)p_final_val - (int)p_initial_val;
break;
case Variant::INT:
delta_val = (int)final_val - (int)initial_val;
break;
case Variant::REAL:
delta_val = (real_t)final_val - (real_t)initial_val;
break;
case Variant::VECTOR2:
delta_val = final_val.operator Vector2() - initial_val.operator Vector2();
break;
case Variant::VECTOR3:
delta_val = final_val.operator Vector3() - initial_val.operator Vector3();
break;
case Variant::BASIS: {
Basis i = initial_val;
Basis f = final_val;
delta_val = Basis(f.elements[0][0] - i.elements[0][0],
f.elements[0][1] - i.elements[0][1],
f.elements[0][2] - i.elements[0][2],
f.elements[1][0] - i.elements[1][0],
f.elements[1][1] - i.elements[1][1],
f.elements[1][2] - i.elements[1][2],
f.elements[2][0] - i.elements[2][0],
f.elements[2][1] - i.elements[2][1],
f.elements[2][2] - i.elements[2][2]);
} break;
case Variant::TRANSFORM2D: {
Transform2D i = initial_val;
Transform2D f = final_val;
Transform2D d = Transform2D();
d[0][0] = f.elements[0][0] - i.elements[0][0];
d[0][1] = f.elements[0][1] - i.elements[0][1];
d[1][0] = f.elements[1][0] - i.elements[1][0];
d[1][1] = f.elements[1][1] - i.elements[1][1];
d[2][0] = f.elements[2][0] - i.elements[2][0];
d[2][1] = f.elements[2][1] - i.elements[2][1];
delta_val = d;
} break;
case Variant::QUAT:
delta_val = final_val.operator Quat() - initial_val.operator Quat();
break;
case Variant::AABB: {
AABB i = initial_val;
AABB f = final_val;
delta_val = AABB(f.position - i.position, f.size - i.size);
} break;
case Variant::TRANSFORM: {
Transform i = initial_val;
Transform f = final_val;
Transform d;
d.set(f.basis.elements[0][0] - i.basis.elements[0][0],
f.basis.elements[0][1] - i.basis.elements[0][1],
f.basis.elements[0][2] - i.basis.elements[0][2],
f.basis.elements[1][0] - i.basis.elements[1][0],
f.basis.elements[1][1] - i.basis.elements[1][1],
f.basis.elements[1][2] - i.basis.elements[1][2],
f.basis.elements[2][0] - i.basis.elements[2][0],
f.basis.elements[2][1] - i.basis.elements[2][1],
f.basis.elements[2][2] - i.basis.elements[2][2],
f.origin.x - i.origin.x,
f.origin.y - i.origin.y,
f.origin.z - i.origin.z);
delta_val = d;
} break;
case Variant::COLOR: {
Color i = initial_val;
Color f = final_val;
delta_val = Color(f.r - i.r, f.g - i.g, f.b - i.b, f.a - i.a);
} break;
default:
ERR_PRINT("Invalid param type, except(int/real/vector2/vector/matrix/matrix32/quat/aabb/transform/color)");
return false;
};
return true;
}
bool Tween::interpolate_property(Object *p_object, NodePath p_property, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
if (pending_update != 0) {
_add_pending_command("interpolate_property", p_object, p_property, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
return true;
}
p_property = p_property.get_as_property_path();
if (p_initial_val.get_type() == Variant::NIL) p_initial_val = p_object->get_indexed(p_property.get_subnames());
// convert INT to REAL is better for interpolaters
if (p_initial_val.get_type() == Variant::INT) p_initial_val = p_initial_val.operator real_t();
if (p_final_val.get_type() == Variant::INT) p_final_val = p_final_val.operator real_t();
ERR_FAIL_COND_V(p_object == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_object), false);
ERR_FAIL_COND_V(p_initial_val.get_type() != p_final_val.get_type(), false);
ERR_FAIL_COND_V(p_duration <= 0, false);
ERR_FAIL_COND_V(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, false);
ERR_FAIL_COND_V(p_ease_type < 0 || p_ease_type >= EASE_COUNT, false);
ERR_FAIL_COND_V(p_delay < 0, false);
bool prop_valid = false;
p_object->get_indexed(p_property.get_subnames(), &prop_valid);
ERR_FAIL_COND_V(!prop_valid, false);
InterpolateData data;
data.active = true;
data.type = INTER_PROPERTY;
data.finish = false;
data.elapsed = 0;
data.id = p_object->get_instance_id();
data.key = p_property.get_subnames();
data.concatenated_key = p_property.get_concatenated_subnames();
data.initial_val = p_initial_val;
data.final_val = p_final_val;
data.duration = p_duration;
data.trans_type = p_trans_type;
data.ease_type = p_ease_type;
data.delay = p_delay;
if (!_calc_delta_val(data.initial_val, data.final_val, data.delta_val))
return false;
interpolates.push_back(data);
return true;
}
bool Tween::interpolate_method(Object *p_object, StringName p_method, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
if (pending_update != 0) {
_add_pending_command("interpolate_method", p_object, p_method, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
return true;
}
// convert INT to REAL is better for interpolaters
if (p_initial_val.get_type() == Variant::INT) p_initial_val = p_initial_val.operator real_t();
if (p_final_val.get_type() == Variant::INT) p_final_val = p_final_val.operator real_t();
ERR_FAIL_COND_V(p_object == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_object), false);
ERR_FAIL_COND_V(p_initial_val.get_type() != p_final_val.get_type(), false);
ERR_FAIL_COND_V(p_duration <= 0, false);
ERR_FAIL_COND_V(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, false);
ERR_FAIL_COND_V(p_ease_type < 0 || p_ease_type >= EASE_COUNT, false);
ERR_FAIL_COND_V(p_delay < 0, false);
ERR_EXPLAIN("Object has no method named: %s" + p_method);
ERR_FAIL_COND_V(!p_object->has_method(p_method), false);
InterpolateData data;
data.active = true;
data.type = INTER_METHOD;
data.finish = false;
data.elapsed = 0;
data.id = p_object->get_instance_id();
data.key.push_back(p_method);
data.concatenated_key = p_method;
data.initial_val = p_initial_val;
data.final_val = p_final_val;
data.duration = p_duration;
data.trans_type = p_trans_type;
data.ease_type = p_ease_type;
data.delay = p_delay;
if (!_calc_delta_val(data.initial_val, data.final_val, data.delta_val))
return false;
interpolates.push_back(data);
return true;
}
bool Tween::interpolate_callback(Object *p_object, real_t p_duration, String p_callback, VARIANT_ARG_DECLARE) {
if (pending_update != 0) {
_add_pending_command("interpolate_callback", p_object, p_duration, p_callback, p_arg1, p_arg2, p_arg3, p_arg4, p_arg5);
return true;
}
ERR_FAIL_COND_V(p_object == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_object), false);
ERR_FAIL_COND_V(p_duration < 0, false);
ERR_EXPLAIN("Object has no callback named: %s" + p_callback);
ERR_FAIL_COND_V(!p_object->has_method(p_callback), false);
InterpolateData data;
data.active = true;
data.type = INTER_CALLBACK;
data.finish = false;
data.call_deferred = false;
data.elapsed = 0;
data.id = p_object->get_instance_id();
data.key.push_back(p_callback);
data.concatenated_key = p_callback;
data.duration = p_duration;
data.delay = 0;
int args = 0;
if (p_arg5.get_type() != Variant::NIL)
args = 5;
else if (p_arg4.get_type() != Variant::NIL)
args = 4;
else if (p_arg3.get_type() != Variant::NIL)
args = 3;
else if (p_arg2.get_type() != Variant::NIL)
args = 2;
else if (p_arg1.get_type() != Variant::NIL)
args = 1;
else
args = 0;
data.args = args;
data.arg[0] = p_arg1;
data.arg[1] = p_arg2;
data.arg[2] = p_arg3;
data.arg[3] = p_arg4;
data.arg[4] = p_arg5;
pending_update++;
interpolates.push_back(data);
pending_update--;
return true;
}
bool Tween::interpolate_deferred_callback(Object *p_object, real_t p_duration, String p_callback, VARIANT_ARG_DECLARE) {
if (pending_update != 0) {
_add_pending_command("interpolate_deferred_callback", p_object, p_duration, p_callback, p_arg1, p_arg2, p_arg3, p_arg4, p_arg5);
return true;
}
ERR_FAIL_COND_V(p_object == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_object), false);
ERR_FAIL_COND_V(p_duration < 0, false);
ERR_EXPLAIN("Object has no callback named: %s" + p_callback);
ERR_FAIL_COND_V(!p_object->has_method(p_callback), false);
InterpolateData data;
data.active = true;
data.type = INTER_CALLBACK;
data.finish = false;
data.call_deferred = true;
data.elapsed = 0;
data.id = p_object->get_instance_id();
data.key.push_back(p_callback);
data.concatenated_key = p_callback;
data.duration = p_duration;
data.delay = 0;
int args = 0;
if (p_arg5.get_type() != Variant::NIL)
args = 5;
else if (p_arg4.get_type() != Variant::NIL)
args = 4;
else if (p_arg3.get_type() != Variant::NIL)
args = 3;
else if (p_arg2.get_type() != Variant::NIL)
args = 2;
else if (p_arg1.get_type() != Variant::NIL)
args = 1;
else
args = 0;
data.args = args;
data.arg[0] = p_arg1;
data.arg[1] = p_arg2;
data.arg[2] = p_arg3;
data.arg[3] = p_arg4;
data.arg[4] = p_arg5;
pending_update++;
interpolates.push_back(data);
pending_update--;
return true;
}
bool Tween::follow_property(Object *p_object, NodePath p_property, Variant p_initial_val, Object *p_target, NodePath p_target_property, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
if (pending_update != 0) {
_add_pending_command("follow_property", p_object, p_property, p_initial_val, p_target, p_target_property, p_duration, p_trans_type, p_ease_type, p_delay);
return true;
}
p_property = p_property.get_as_property_path();
p_target_property = p_target_property.get_as_property_path();
if (p_initial_val.get_type() == Variant::NIL) p_initial_val = p_object->get_indexed(p_property.get_subnames());
// convert INT to REAL is better for interpolaters
if (p_initial_val.get_type() == Variant::INT) p_initial_val = p_initial_val.operator real_t();
ERR_FAIL_COND_V(p_object == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_object), false);
ERR_FAIL_COND_V(p_target == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_target), false);
ERR_FAIL_COND_V(p_duration <= 0, false);
ERR_FAIL_COND_V(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, false);
ERR_FAIL_COND_V(p_ease_type < 0 || p_ease_type >= EASE_COUNT, false);
ERR_FAIL_COND_V(p_delay < 0, false);
bool prop_valid = false;
p_object->get_indexed(p_property.get_subnames(), &prop_valid);
ERR_FAIL_COND_V(!prop_valid, false);
bool target_prop_valid = false;
Variant target_val = p_target->get_indexed(p_target_property.get_subnames(), &target_prop_valid);
ERR_FAIL_COND_V(!target_prop_valid, false);
// convert INT to REAL is better for interpolaters
if (target_val.get_type() == Variant::INT) target_val = target_val.operator real_t();
ERR_FAIL_COND_V(target_val.get_type() != p_initial_val.get_type(), false);
InterpolateData data;
data.active = true;
data.type = FOLLOW_PROPERTY;
data.finish = false;
data.elapsed = 0;
data.id = p_object->get_instance_id();
data.key = p_property.get_subnames();
data.concatenated_key = p_property.get_concatenated_subnames();
data.initial_val = p_initial_val;
data.target_id = p_target->get_instance_id();
data.target_key = p_target_property.get_subnames();
data.duration = p_duration;
data.trans_type = p_trans_type;
data.ease_type = p_ease_type;
data.delay = p_delay;
interpolates.push_back(data);
return true;
}
bool Tween::follow_method(Object *p_object, StringName p_method, Variant p_initial_val, Object *p_target, StringName p_target_method, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
if (pending_update != 0) {
_add_pending_command("follow_method", p_object, p_method, p_initial_val, p_target, p_target_method, p_duration, p_trans_type, p_ease_type, p_delay);
return true;
}
// convert INT to REAL is better for interpolaters
if (p_initial_val.get_type() == Variant::INT) p_initial_val = p_initial_val.operator real_t();
ERR_FAIL_COND_V(p_object == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_object), false);
ERR_FAIL_COND_V(p_target == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_target), false);
ERR_FAIL_COND_V(p_duration <= 0, false);
ERR_FAIL_COND_V(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, false);
ERR_FAIL_COND_V(p_ease_type < 0 || p_ease_type >= EASE_COUNT, false);
ERR_FAIL_COND_V(p_delay < 0, false);
ERR_EXPLAIN("Object has no method named: %s" + p_method);
ERR_FAIL_COND_V(!p_object->has_method(p_method), false);
ERR_EXPLAIN("Target has no method named: %s" + p_target_method);
ERR_FAIL_COND_V(!p_target->has_method(p_target_method), false);
Variant::CallError error;
Variant target_val = p_target->call(p_target_method, NULL, 0, error);
ERR_FAIL_COND_V(error.error != Variant::CallError::CALL_OK, false);
// convert INT to REAL is better for interpolaters
if (target_val.get_type() == Variant::INT) target_val = target_val.operator real_t();
ERR_FAIL_COND_V(target_val.get_type() != p_initial_val.get_type(), false);
InterpolateData data;
data.active = true;
data.type = FOLLOW_METHOD;
data.finish = false;
data.elapsed = 0;
data.id = p_object->get_instance_id();
data.key.push_back(p_method);
data.concatenated_key = p_method;
data.initial_val = p_initial_val;
data.target_id = p_target->get_instance_id();
data.target_key.push_back(p_target_method);
data.duration = p_duration;
data.trans_type = p_trans_type;
data.ease_type = p_ease_type;
data.delay = p_delay;
interpolates.push_back(data);
return true;
}
bool Tween::targeting_property(Object *p_object, NodePath p_property, Object *p_initial, NodePath p_initial_property, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
if (pending_update != 0) {
_add_pending_command("targeting_property", p_object, p_property, p_initial, p_initial_property, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
return true;
}
p_property = p_property.get_as_property_path();
p_initial_property = p_initial_property.get_as_property_path();
// convert INT to REAL is better for interpolaters
if (p_final_val.get_type() == Variant::INT) p_final_val = p_final_val.operator real_t();
ERR_FAIL_COND_V(p_object == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_object), false);
ERR_FAIL_COND_V(p_initial == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_initial), false);
ERR_FAIL_COND_V(p_duration <= 0, false);
ERR_FAIL_COND_V(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, false);
ERR_FAIL_COND_V(p_ease_type < 0 || p_ease_type >= EASE_COUNT, false);
ERR_FAIL_COND_V(p_delay < 0, false);
bool prop_valid = false;
p_object->get_indexed(p_property.get_subnames(), &prop_valid);
ERR_FAIL_COND_V(!prop_valid, false);
bool initial_prop_valid = false;
Variant initial_val = p_initial->get_indexed(p_initial_property.get_subnames(), &initial_prop_valid);
ERR_FAIL_COND_V(!initial_prop_valid, false);
// convert INT to REAL is better for interpolaters
if (initial_val.get_type() == Variant::INT) initial_val = initial_val.operator real_t();
ERR_FAIL_COND_V(initial_val.get_type() != p_final_val.get_type(), false);
InterpolateData data;
data.active = true;
data.type = TARGETING_PROPERTY;
data.finish = false;
data.elapsed = 0;
data.id = p_object->get_instance_id();
data.key = p_property.get_subnames();
data.concatenated_key = p_property.get_concatenated_subnames();
data.target_id = p_initial->get_instance_id();
data.target_key = p_initial_property.get_subnames();
data.initial_val = initial_val;
data.final_val = p_final_val;
data.duration = p_duration;
data.trans_type = p_trans_type;
data.ease_type = p_ease_type;
data.delay = p_delay;
if (!_calc_delta_val(data.initial_val, data.final_val, data.delta_val))
return false;
interpolates.push_back(data);
return true;
}
bool Tween::targeting_method(Object *p_object, StringName p_method, Object *p_initial, StringName p_initial_method, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
if (pending_update != 0) {
_add_pending_command("targeting_method", p_object, p_method, p_initial, p_initial_method, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
return true;
}
// convert INT to REAL is better for interpolaters
if (p_final_val.get_type() == Variant::INT) p_final_val = p_final_val.operator real_t();
ERR_FAIL_COND_V(p_object == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_object), false);
ERR_FAIL_COND_V(p_initial == NULL, false);
ERR_FAIL_COND_V(!ObjectDB::instance_validate(p_initial), false);
ERR_FAIL_COND_V(p_duration <= 0, false);
ERR_FAIL_COND_V(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, false);
ERR_FAIL_COND_V(p_ease_type < 0 || p_ease_type >= EASE_COUNT, false);
ERR_FAIL_COND_V(p_delay < 0, false);
ERR_EXPLAIN("Object has no method named: %s" + p_method);
ERR_FAIL_COND_V(!p_object->has_method(p_method), false);
ERR_EXPLAIN("Initial Object has no method named: %s" + p_initial_method);
ERR_FAIL_COND_V(!p_initial->has_method(p_initial_method), false);
Variant::CallError error;
Variant initial_val = p_initial->call(p_initial_method, NULL, 0, error);
ERR_FAIL_COND_V(error.error != Variant::CallError::CALL_OK, false);
// convert INT to REAL is better for interpolaters
if (initial_val.get_type() == Variant::INT) initial_val = initial_val.operator real_t();
ERR_FAIL_COND_V(initial_val.get_type() != p_final_val.get_type(), false);
InterpolateData data;
data.active = true;
data.type = TARGETING_METHOD;
data.finish = false;
data.elapsed = 0;
data.id = p_object->get_instance_id();
data.key.push_back(p_method);
data.concatenated_key = p_method;
data.target_id = p_initial->get_instance_id();
data.target_key.push_back(p_initial_method);
data.initial_val = initial_val;
data.final_val = p_final_val;
data.duration = p_duration;
data.trans_type = p_trans_type;
data.ease_type = p_ease_type;
data.delay = p_delay;
if (!_calc_delta_val(data.initial_val, data.final_val, data.delta_val))
return false;
interpolates.push_back(data);
return true;
}
Tween::Tween() {
//String autoplay;
tween_process_mode = TWEEN_PROCESS_IDLE;
processing = false;
active = false;
repeat = false;
speed_scale = 1;
pending_update = 0;
}
Tween::~Tween() {
}