mirror of
https://github.com/godotengine/godot.git
synced 2024-11-27 09:16:35 +08:00
bf05309af7
As requested by reduz, an import of thekla_atlas into thirdparty/
205 lines
6.2 KiB
C++
205 lines
6.2 KiB
C++
// This code is in the public domain -- castanyo@yahoo.es
|
|
|
|
#pragma once
|
|
#ifndef NV_MATH_SPARSE_H
|
|
#define NV_MATH_SPARSE_H
|
|
|
|
#include "nvmath.h"
|
|
#include "nvcore/Array.h"
|
|
|
|
|
|
// Full and sparse vector and matrix classes. BLAS subset.
|
|
|
|
namespace nv
|
|
{
|
|
class FullVector;
|
|
class FullMatrix;
|
|
class SparseMatrix;
|
|
|
|
|
|
/// Fixed size vector class.
|
|
class FullVector
|
|
{
|
|
public:
|
|
|
|
FullVector(uint dim);
|
|
FullVector(const FullVector & v);
|
|
|
|
const FullVector & operator=(const FullVector & v);
|
|
|
|
uint dimension() const { return m_array.count(); }
|
|
|
|
const float & operator[]( uint index ) const { return m_array[index]; }
|
|
float & operator[] ( uint index ) { return m_array[index]; }
|
|
|
|
void fill(float f);
|
|
|
|
void operator+= (const FullVector & v);
|
|
void operator-= (const FullVector & v);
|
|
void operator*= (const FullVector & v);
|
|
|
|
void operator+= (float f);
|
|
void operator-= (float f);
|
|
void operator*= (float f);
|
|
|
|
|
|
private:
|
|
|
|
Array<float> m_array;
|
|
|
|
};
|
|
|
|
// Pseudo-BLAS interface.
|
|
NVMATH_API void saxpy(float a, const FullVector & x, FullVector & y); // y = a * x + y
|
|
NVMATH_API void copy(const FullVector & x, FullVector & y);
|
|
NVMATH_API void scal(float a, FullVector & x);
|
|
NVMATH_API float dot(const FullVector & x, const FullVector & y);
|
|
|
|
|
|
enum Transpose
|
|
{
|
|
NoTransposed = 0,
|
|
Transposed = 1
|
|
};
|
|
|
|
/// Full matrix class.
|
|
class FullMatrix
|
|
{
|
|
public:
|
|
|
|
FullMatrix(uint d);
|
|
FullMatrix(uint w, uint h);
|
|
FullMatrix(const FullMatrix & m);
|
|
|
|
const FullMatrix & operator=(const FullMatrix & m);
|
|
|
|
uint width() const { return m_width; }
|
|
uint height() const { return m_height; }
|
|
bool isSquare() const { return m_width == m_height; }
|
|
|
|
float getCoefficient(uint x, uint y) const;
|
|
|
|
void setCoefficient(uint x, uint y, float f);
|
|
void addCoefficient(uint x, uint y, float f);
|
|
void mulCoefficient(uint x, uint y, float f);
|
|
|
|
float dotRow(uint y, const FullVector & v) const;
|
|
void madRow(uint y, float alpha, FullVector & v) const;
|
|
|
|
protected:
|
|
|
|
bool isValid() const {
|
|
return m_array.size() == (m_width * m_height);
|
|
}
|
|
|
|
private:
|
|
|
|
const uint m_width;
|
|
const uint m_height;
|
|
Array<float> m_array;
|
|
|
|
};
|
|
|
|
NVMATH_API void mult(const FullMatrix & M, const FullVector & x, FullVector & y);
|
|
NVMATH_API void mult(Transpose TM, const FullMatrix & M, const FullVector & x, FullVector & y);
|
|
|
|
// y = alpha*A*x + beta*y
|
|
NVMATH_API void sgemv(float alpha, const FullMatrix & A, const FullVector & x, float beta, FullVector & y);
|
|
NVMATH_API void sgemv(float alpha, Transpose TA, const FullMatrix & A, const FullVector & x, float beta, FullVector & y);
|
|
|
|
NVMATH_API void mult(const FullMatrix & A, const FullMatrix & B, FullMatrix & C);
|
|
NVMATH_API void mult(Transpose TA, const FullMatrix & A, Transpose TB, const FullMatrix & B, FullMatrix & C);
|
|
|
|
// C = alpha*A*B + beta*C
|
|
NVMATH_API void sgemm(float alpha, const FullMatrix & A, const FullMatrix & B, float beta, FullMatrix & C);
|
|
NVMATH_API void sgemm(float alpha, Transpose TA, const FullMatrix & A, Transpose TB, const FullMatrix & B, float beta, FullMatrix & C);
|
|
|
|
|
|
/**
|
|
* Sparse matrix class. The matrix is assumed to be sparse and to have
|
|
* very few non-zero elements, for this reason it's stored in indexed
|
|
* format. To multiply column vectors efficiently, the matrix stores
|
|
* the elements in indexed-column order, there is a list of indexed
|
|
* elements for each row of the matrix. As with the FullVector the
|
|
* dimension of the matrix is constant.
|
|
**/
|
|
class SparseMatrix
|
|
{
|
|
friend class FullMatrix;
|
|
public:
|
|
|
|
// An element of the sparse array.
|
|
struct Coefficient {
|
|
uint x; // column
|
|
float v; // value
|
|
};
|
|
|
|
|
|
public:
|
|
|
|
SparseMatrix(uint d);
|
|
SparseMatrix(uint w, uint h);
|
|
SparseMatrix(const SparseMatrix & m);
|
|
|
|
const SparseMatrix & operator=(const SparseMatrix & m);
|
|
|
|
|
|
uint width() const { return m_width; }
|
|
uint height() const { return m_array.count(); }
|
|
bool isSquare() const { return width() == height(); }
|
|
|
|
float getCoefficient(uint x, uint y) const; // x is column, y is row
|
|
|
|
void setCoefficient(uint x, uint y, float f);
|
|
void addCoefficient(uint x, uint y, float f);
|
|
void mulCoefficient(uint x, uint y, float f);
|
|
|
|
float sumRow(uint y) const;
|
|
float dotRow(uint y, const FullVector & v) const;
|
|
void madRow(uint y, float alpha, FullVector & v) const;
|
|
|
|
void clearRow(uint y);
|
|
void scaleRow(uint y, float f);
|
|
void normalizeRow(uint y);
|
|
|
|
void clearColumn(uint x);
|
|
void scaleColumn(uint x, float f);
|
|
|
|
const Array<Coefficient> & getRow(uint y) const;
|
|
|
|
bool isSymmetric() const;
|
|
|
|
private:
|
|
|
|
/// Number of columns.
|
|
const uint m_width;
|
|
|
|
/// Array of matrix elements.
|
|
Array< Array<Coefficient> > m_array;
|
|
|
|
};
|
|
|
|
NVMATH_API void transpose(const SparseMatrix & A, SparseMatrix & B);
|
|
|
|
NVMATH_API void mult(const SparseMatrix & M, const FullVector & x, FullVector & y);
|
|
NVMATH_API void mult(Transpose TM, const SparseMatrix & M, const FullVector & x, FullVector & y);
|
|
|
|
// y = alpha*A*x + beta*y
|
|
NVMATH_API void sgemv(float alpha, const SparseMatrix & A, const FullVector & x, float beta, FullVector & y);
|
|
NVMATH_API void sgemv(float alpha, Transpose TA, const SparseMatrix & A, const FullVector & x, float beta, FullVector & y);
|
|
|
|
NVMATH_API void mult(const SparseMatrix & A, const SparseMatrix & B, SparseMatrix & C);
|
|
NVMATH_API void mult(Transpose TA, const SparseMatrix & A, Transpose TB, const SparseMatrix & B, SparseMatrix & C);
|
|
|
|
// C = alpha*A*B + beta*C
|
|
NVMATH_API void sgemm(float alpha, const SparseMatrix & A, const SparseMatrix & B, float beta, SparseMatrix & C);
|
|
NVMATH_API void sgemm(float alpha, Transpose TA, const SparseMatrix & A, Transpose TB, const SparseMatrix & B, float beta, SparseMatrix & C);
|
|
|
|
// C = At * A
|
|
NVMATH_API void sqm(const SparseMatrix & A, SparseMatrix & C);
|
|
|
|
} // nv namespace
|
|
|
|
|
|
#endif // NV_MATH_SPARSE_H
|