mirror of
https://github.com/godotengine/godot.git
synced 2024-11-27 09:16:35 +08:00
bf05309af7
As requested by reduz, an import of thekla_atlas into thirdparty/
214 lines
5.8 KiB
C++
214 lines
5.8 KiB
C++
// This code is in the public domain -- castano@gmail.com
|
|
|
|
#pragma once
|
|
#ifndef NV_MATH_QUATERNION_H
|
|
#define NV_MATH_QUATERNION_H
|
|
|
|
#include "nvmath/nvmath.h"
|
|
#include "nvmath/Vector.inl" // @@ Do not include inl files from header files.
|
|
#include "nvmath/Matrix.h"
|
|
|
|
namespace nv
|
|
{
|
|
|
|
class NVMATH_CLASS Quaternion
|
|
{
|
|
public:
|
|
typedef Quaternion const & Arg;
|
|
|
|
Quaternion();
|
|
explicit Quaternion(float f);
|
|
Quaternion(float x, float y, float z, float w);
|
|
Quaternion(Vector4::Arg v);
|
|
|
|
const Quaternion & operator=(Quaternion::Arg v);
|
|
|
|
Vector4 asVector() const;
|
|
|
|
union {
|
|
struct {
|
|
float x, y, z, w;
|
|
};
|
|
float component[4];
|
|
};
|
|
};
|
|
|
|
inline Quaternion::Quaternion() {}
|
|
inline Quaternion::Quaternion(float f) : x(f), y(f), z(f), w(f) {}
|
|
inline Quaternion::Quaternion(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {}
|
|
inline Quaternion::Quaternion(Vector4::Arg v) : x(v.x), y(v.y), z(v.z), w(v.w) {}
|
|
|
|
// @@ Move all these to Quaternion.inl!
|
|
|
|
inline const Quaternion & Quaternion::operator=(Quaternion::Arg v) {
|
|
x = v.x;
|
|
y = v.y;
|
|
z = v.z;
|
|
w = v.w;
|
|
return *this;
|
|
}
|
|
|
|
inline Vector4 Quaternion::asVector() const { return Vector4(x, y, z, w); }
|
|
|
|
inline Quaternion mul(Quaternion::Arg a, Quaternion::Arg b)
|
|
{
|
|
return Quaternion(
|
|
+ a.x*b.w + a.y*b.z - a.z*b.y + a.w*b.x,
|
|
- a.x*b.z + a.y*b.w + a.z*b.x + a.w*b.y,
|
|
+ a.x*b.y - a.y*b.x + a.z*b.w + a.w*b.z,
|
|
- a.x*b.x - a.y*b.y - a.z*b.z + a.w*b.w);
|
|
}
|
|
|
|
inline Quaternion mul(Quaternion::Arg a, Vector3::Arg b)
|
|
{
|
|
return Quaternion(
|
|
+ a.y*b.z - a.z*b.y + a.w*b.x,
|
|
- a.x*b.z + a.z*b.x + a.w*b.y,
|
|
+ a.x*b.y - a.y*b.x + a.w*b.z,
|
|
- a.x*b.x - a.y*b.y - a.z*b.z );
|
|
}
|
|
|
|
inline Quaternion mul(Vector3::Arg a, Quaternion::Arg b)
|
|
{
|
|
return Quaternion(
|
|
+ a.x*b.w + a.y*b.z - a.z*b.y,
|
|
- a.x*b.z + a.y*b.w + a.z*b.x,
|
|
+ a.x*b.y - a.y*b.x + a.z*b.w,
|
|
- a.x*b.x - a.y*b.y - a.z*b.z);
|
|
}
|
|
|
|
inline Quaternion operator *(Quaternion::Arg a, Quaternion::Arg b)
|
|
{
|
|
return mul(a, b);
|
|
}
|
|
|
|
inline Quaternion operator *(Quaternion::Arg a, Vector3::Arg b)
|
|
{
|
|
return mul(a, b);
|
|
}
|
|
|
|
inline Quaternion operator *(Vector3::Arg a, Quaternion::Arg b)
|
|
{
|
|
return mul(a, b);
|
|
}
|
|
|
|
|
|
inline Quaternion scale(Quaternion::Arg q, float s)
|
|
{
|
|
return scale(q.asVector(), s);
|
|
}
|
|
inline Quaternion operator *(Quaternion::Arg q, float s)
|
|
{
|
|
return scale(q, s);
|
|
}
|
|
inline Quaternion operator *(float s, Quaternion::Arg q)
|
|
{
|
|
return scale(q, s);
|
|
}
|
|
|
|
inline Quaternion scale(Quaternion::Arg q, Vector4::Arg s)
|
|
{
|
|
return scale(q.asVector(), s);
|
|
}
|
|
/*inline Quaternion operator *(Quaternion::Arg q, Vector4::Arg s)
|
|
{
|
|
return scale(q, s);
|
|
}
|
|
inline Quaternion operator *(Vector4::Arg s, Quaternion::Arg q)
|
|
{
|
|
return scale(q, s);
|
|
}*/
|
|
|
|
inline Quaternion conjugate(Quaternion::Arg q)
|
|
{
|
|
return scale(q, Vector4(-1, -1, -1, 1));
|
|
}
|
|
|
|
inline float length(Quaternion::Arg q)
|
|
{
|
|
return length(q.asVector());
|
|
}
|
|
|
|
inline bool isNormalized(Quaternion::Arg q, float epsilon = NV_NORMAL_EPSILON)
|
|
{
|
|
return equal(length(q), 1, epsilon);
|
|
}
|
|
|
|
inline Quaternion normalize(Quaternion::Arg q, float epsilon = NV_EPSILON)
|
|
{
|
|
float l = length(q);
|
|
nvDebugCheck(!isZero(l, epsilon));
|
|
Quaternion n = scale(q, 1.0f / l);
|
|
nvDebugCheck(isNormalized(n));
|
|
return n;
|
|
}
|
|
|
|
inline Quaternion inverse(Quaternion::Arg q)
|
|
{
|
|
return conjugate(normalize(q));
|
|
}
|
|
|
|
/// Create a rotation quaternion for @a angle alpha around normal vector @a v.
|
|
inline Quaternion axisAngle(Vector3::Arg v, float alpha)
|
|
{
|
|
float s = sinf(alpha * 0.5f);
|
|
float c = cosf(alpha * 0.5f);
|
|
return Quaternion(Vector4(v * s, c));
|
|
}
|
|
|
|
inline Vector3 imag(Quaternion::Arg q)
|
|
{
|
|
return q.asVector().xyz();
|
|
}
|
|
|
|
inline float real(Quaternion::Arg q)
|
|
{
|
|
return q.w;
|
|
}
|
|
|
|
|
|
/// Transform vector.
|
|
inline Vector3 transform(Quaternion::Arg q, Vector3::Arg v)
|
|
{
|
|
//Quaternion t = q * v * conjugate(q);
|
|
//return imag(t);
|
|
|
|
// Faster method by Fabian Giesen and others:
|
|
// http://molecularmusings.wordpress.com/2013/05/24/a-faster-quaternion-vector-multiplication/
|
|
// http://mollyrocket.com/forums/viewtopic.php?t=833&sid=3a84e00a70ccb046cfc87ac39881a3d0
|
|
|
|
Vector3 t = 2 * cross(imag(q), v);
|
|
return v + q.w * t + cross(imag(q), t);
|
|
}
|
|
|
|
// @@ Not tested.
|
|
// From Insomniac's Mike Day:
|
|
// http://www.insomniacgames.com/converting-a-rotation-matrix-to-a-quaternion/
|
|
inline Quaternion fromMatrix(const Matrix & m) {
|
|
if (m(2, 2) < 0) {
|
|
if (m(0, 0) < m(1,1)) {
|
|
float t = 1 - m(0, 0) - m(1, 1) - m(2, 2);
|
|
return Quaternion(t, m(0,1)+m(1,0), m(2,0)+m(0,2), m(1,2)-m(2,1));
|
|
}
|
|
else {
|
|
float t = 1 - m(0, 0) + m(1, 1) - m(2, 2);
|
|
return Quaternion(t, m(0,1) + m(1,0), m(1,2) + m(2,1), m(2,0) - m(0,2));
|
|
}
|
|
}
|
|
else {
|
|
if (m(0, 0) < -m(1, 1)) {
|
|
float t = 1 - m(0, 0) - m(1, 1) + m(2, 2);
|
|
return Quaternion(t, m(2,0) + m(0,2), m(1,2) + m(2,1), m(0,1) - m(1,0));
|
|
}
|
|
else {
|
|
float t = 1 + m(0, 0) + m(1, 1) + m(2, 2);
|
|
return Quaternion(t, m(1,2) - m(2,1), m(2,0) - m(0,2), m(0,1) - m(1,0));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
} // nv namespace
|
|
|
|
#endif // NV_MATH_QUATERNION_H
|