godot/thirdparty/thekla_atlas/nvmath/Quaternion.h
Hein-Pieter van Braam bf05309af7 Import thekla_atlas
As requested by reduz, an import of thekla_atlas into thirdparty/
2017-12-08 15:47:15 +01:00

214 lines
5.8 KiB
C++

// This code is in the public domain -- castano@gmail.com
#pragma once
#ifndef NV_MATH_QUATERNION_H
#define NV_MATH_QUATERNION_H
#include "nvmath/nvmath.h"
#include "nvmath/Vector.inl" // @@ Do not include inl files from header files.
#include "nvmath/Matrix.h"
namespace nv
{
class NVMATH_CLASS Quaternion
{
public:
typedef Quaternion const & Arg;
Quaternion();
explicit Quaternion(float f);
Quaternion(float x, float y, float z, float w);
Quaternion(Vector4::Arg v);
const Quaternion & operator=(Quaternion::Arg v);
Vector4 asVector() const;
union {
struct {
float x, y, z, w;
};
float component[4];
};
};
inline Quaternion::Quaternion() {}
inline Quaternion::Quaternion(float f) : x(f), y(f), z(f), w(f) {}
inline Quaternion::Quaternion(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {}
inline Quaternion::Quaternion(Vector4::Arg v) : x(v.x), y(v.y), z(v.z), w(v.w) {}
// @@ Move all these to Quaternion.inl!
inline const Quaternion & Quaternion::operator=(Quaternion::Arg v) {
x = v.x;
y = v.y;
z = v.z;
w = v.w;
return *this;
}
inline Vector4 Quaternion::asVector() const { return Vector4(x, y, z, w); }
inline Quaternion mul(Quaternion::Arg a, Quaternion::Arg b)
{
return Quaternion(
+ a.x*b.w + a.y*b.z - a.z*b.y + a.w*b.x,
- a.x*b.z + a.y*b.w + a.z*b.x + a.w*b.y,
+ a.x*b.y - a.y*b.x + a.z*b.w + a.w*b.z,
- a.x*b.x - a.y*b.y - a.z*b.z + a.w*b.w);
}
inline Quaternion mul(Quaternion::Arg a, Vector3::Arg b)
{
return Quaternion(
+ a.y*b.z - a.z*b.y + a.w*b.x,
- a.x*b.z + a.z*b.x + a.w*b.y,
+ a.x*b.y - a.y*b.x + a.w*b.z,
- a.x*b.x - a.y*b.y - a.z*b.z );
}
inline Quaternion mul(Vector3::Arg a, Quaternion::Arg b)
{
return Quaternion(
+ a.x*b.w + a.y*b.z - a.z*b.y,
- a.x*b.z + a.y*b.w + a.z*b.x,
+ a.x*b.y - a.y*b.x + a.z*b.w,
- a.x*b.x - a.y*b.y - a.z*b.z);
}
inline Quaternion operator *(Quaternion::Arg a, Quaternion::Arg b)
{
return mul(a, b);
}
inline Quaternion operator *(Quaternion::Arg a, Vector3::Arg b)
{
return mul(a, b);
}
inline Quaternion operator *(Vector3::Arg a, Quaternion::Arg b)
{
return mul(a, b);
}
inline Quaternion scale(Quaternion::Arg q, float s)
{
return scale(q.asVector(), s);
}
inline Quaternion operator *(Quaternion::Arg q, float s)
{
return scale(q, s);
}
inline Quaternion operator *(float s, Quaternion::Arg q)
{
return scale(q, s);
}
inline Quaternion scale(Quaternion::Arg q, Vector4::Arg s)
{
return scale(q.asVector(), s);
}
/*inline Quaternion operator *(Quaternion::Arg q, Vector4::Arg s)
{
return scale(q, s);
}
inline Quaternion operator *(Vector4::Arg s, Quaternion::Arg q)
{
return scale(q, s);
}*/
inline Quaternion conjugate(Quaternion::Arg q)
{
return scale(q, Vector4(-1, -1, -1, 1));
}
inline float length(Quaternion::Arg q)
{
return length(q.asVector());
}
inline bool isNormalized(Quaternion::Arg q, float epsilon = NV_NORMAL_EPSILON)
{
return equal(length(q), 1, epsilon);
}
inline Quaternion normalize(Quaternion::Arg q, float epsilon = NV_EPSILON)
{
float l = length(q);
nvDebugCheck(!isZero(l, epsilon));
Quaternion n = scale(q, 1.0f / l);
nvDebugCheck(isNormalized(n));
return n;
}
inline Quaternion inverse(Quaternion::Arg q)
{
return conjugate(normalize(q));
}
/// Create a rotation quaternion for @a angle alpha around normal vector @a v.
inline Quaternion axisAngle(Vector3::Arg v, float alpha)
{
float s = sinf(alpha * 0.5f);
float c = cosf(alpha * 0.5f);
return Quaternion(Vector4(v * s, c));
}
inline Vector3 imag(Quaternion::Arg q)
{
return q.asVector().xyz();
}
inline float real(Quaternion::Arg q)
{
return q.w;
}
/// Transform vector.
inline Vector3 transform(Quaternion::Arg q, Vector3::Arg v)
{
//Quaternion t = q * v * conjugate(q);
//return imag(t);
// Faster method by Fabian Giesen and others:
// http://molecularmusings.wordpress.com/2013/05/24/a-faster-quaternion-vector-multiplication/
// http://mollyrocket.com/forums/viewtopic.php?t=833&sid=3a84e00a70ccb046cfc87ac39881a3d0
Vector3 t = 2 * cross(imag(q), v);
return v + q.w * t + cross(imag(q), t);
}
// @@ Not tested.
// From Insomniac's Mike Day:
// http://www.insomniacgames.com/converting-a-rotation-matrix-to-a-quaternion/
inline Quaternion fromMatrix(const Matrix & m) {
if (m(2, 2) < 0) {
if (m(0, 0) < m(1,1)) {
float t = 1 - m(0, 0) - m(1, 1) - m(2, 2);
return Quaternion(t, m(0,1)+m(1,0), m(2,0)+m(0,2), m(1,2)-m(2,1));
}
else {
float t = 1 - m(0, 0) + m(1, 1) - m(2, 2);
return Quaternion(t, m(0,1) + m(1,0), m(1,2) + m(2,1), m(2,0) - m(0,2));
}
}
else {
if (m(0, 0) < -m(1, 1)) {
float t = 1 - m(0, 0) - m(1, 1) + m(2, 2);
return Quaternion(t, m(2,0) + m(0,2), m(1,2) + m(2,1), m(0,1) - m(1,0));
}
else {
float t = 1 + m(0, 0) + m(1, 1) + m(2, 2);
return Quaternion(t, m(1,2) - m(2,1), m(2,0) - m(0,2), m(0,1) - m(1,0));
}
}
}
} // nv namespace
#endif // NV_MATH_QUATERNION_H