mirror of
https://github.com/godotengine/godot.git
synced 2024-11-27 09:16:35 +08:00
bf05309af7
As requested by reduz, an import of thekla_atlas into thirdparty/
271 lines
7.9 KiB
C++
271 lines
7.9 KiB
C++
// This code is in the public domain -- Ignacio Castaño <castano@gmail.com>
|
|
|
|
#include "Basis.h"
|
|
|
|
using namespace nv;
|
|
|
|
|
|
/// Normalize basis vectors.
|
|
void Basis::normalize(float epsilon /*= NV_EPSILON*/)
|
|
{
|
|
normal = ::normalizeSafe(normal, Vector3(0.0f), epsilon);
|
|
tangent = ::normalizeSafe(tangent, Vector3(0.0f), epsilon);
|
|
bitangent = ::normalizeSafe(bitangent, Vector3(0.0f), epsilon);
|
|
}
|
|
|
|
|
|
/// Gram-Schmidt orthogonalization.
|
|
/// @note Works only if the vectors are close to orthogonal.
|
|
void Basis::orthonormalize(float epsilon /*= NV_EPSILON*/)
|
|
{
|
|
// N' = |N|
|
|
// T' = |T - (N' dot T) N'|
|
|
// B' = |B - (N' dot B) N' - (T' dot B) T'|
|
|
|
|
normal = ::normalize(normal, epsilon);
|
|
|
|
tangent -= normal * dot(normal, tangent);
|
|
tangent = ::normalize(tangent, epsilon);
|
|
|
|
bitangent -= normal * dot(normal, bitangent);
|
|
bitangent -= tangent * dot(tangent, bitangent);
|
|
bitangent = ::normalize(bitangent, epsilon);
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Robust orthonormalization.
|
|
/// Returns an orthonormal basis even when the original is degenerate.
|
|
void Basis::robustOrthonormalize(float epsilon /*= NV_EPSILON*/)
|
|
{
|
|
// Normalize all vectors.
|
|
normalize(epsilon);
|
|
|
|
if (lengthSquared(normal) < epsilon*epsilon)
|
|
{
|
|
// Build normal from tangent and bitangent.
|
|
normal = cross(tangent, bitangent);
|
|
|
|
if (lengthSquared(normal) < epsilon*epsilon)
|
|
{
|
|
// Arbitrary basis.
|
|
tangent = Vector3(1, 0, 0);
|
|
bitangent = Vector3(0, 1, 0);
|
|
normal = Vector3(0, 0, 1);
|
|
return;
|
|
}
|
|
|
|
normal = nv::normalize(normal, epsilon);
|
|
}
|
|
|
|
// Project tangents to normal plane.
|
|
tangent -= normal * dot(normal, tangent);
|
|
bitangent -= normal * dot(normal, bitangent);
|
|
|
|
if (lengthSquared(tangent) < epsilon*epsilon)
|
|
{
|
|
if (lengthSquared(bitangent) < epsilon*epsilon)
|
|
{
|
|
// Arbitrary basis.
|
|
buildFrameForDirection(normal);
|
|
}
|
|
else
|
|
{
|
|
// Build tangent from bitangent.
|
|
bitangent = nv::normalize(bitangent, epsilon);
|
|
|
|
tangent = cross(bitangent, normal);
|
|
nvDebugCheck(isNormalized(tangent, epsilon));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tangent = nv::normalize(tangent, epsilon);
|
|
#if 0
|
|
bitangent -= tangent * dot(tangent, bitangent);
|
|
|
|
if (lengthSquared(bitangent) < epsilon*epsilon)
|
|
{
|
|
bitangent = cross(tangent, normal);
|
|
nvDebugCheck(isNormalized(bitangent, epsilon));
|
|
}
|
|
else
|
|
{
|
|
bitangent = nv::normalize(bitangent, epsilon);
|
|
}
|
|
#else
|
|
if (lengthSquared(bitangent) < epsilon*epsilon)
|
|
{
|
|
// Build bitangent from tangent.
|
|
bitangent = cross(tangent, normal);
|
|
nvDebugCheck(isNormalized(bitangent, epsilon));
|
|
}
|
|
else
|
|
{
|
|
bitangent = nv::normalize(bitangent, epsilon);
|
|
|
|
// At this point tangent and bitangent are orthogonal to normal, but we don't know whether their orientation.
|
|
|
|
Vector3 bisector;
|
|
if (lengthSquared(tangent + bitangent) < epsilon*epsilon)
|
|
{
|
|
bisector = tangent;
|
|
}
|
|
else
|
|
{
|
|
bisector = nv::normalize(tangent + bitangent);
|
|
}
|
|
Vector3 axis = nv::normalize(cross(bisector, normal));
|
|
|
|
//nvDebugCheck(isNormalized(axis, epsilon));
|
|
nvDebugCheck(equal(dot(axis, tangent), -dot(axis, bitangent), epsilon));
|
|
|
|
if (dot(axis, tangent) > 0)
|
|
{
|
|
tangent = bisector + axis;
|
|
bitangent = bisector - axis;
|
|
}
|
|
else
|
|
{
|
|
tangent = bisector - axis;
|
|
bitangent = bisector + axis;
|
|
}
|
|
|
|
// Make sure the resulting tangents are still perpendicular to the normal.
|
|
tangent -= normal * dot(normal, tangent);
|
|
bitangent -= normal * dot(normal, bitangent);
|
|
|
|
// Double check.
|
|
nvDebugCheck(equal(dot(normal, tangent), 0.0f, epsilon));
|
|
nvDebugCheck(equal(dot(normal, bitangent), 0.0f, epsilon));
|
|
|
|
// Normalize.
|
|
tangent = nv::normalize(tangent);
|
|
bitangent = nv::normalize(bitangent);
|
|
|
|
// If tangent and bitangent are not orthogonal, then derive bitangent from tangent, just in case...
|
|
if (!equal(dot(tangent, bitangent), 0.0f, epsilon)) {
|
|
bitangent = cross(tangent, normal);
|
|
bitangent = nv::normalize(bitangent);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*// Check vector lengths.
|
|
if (!isNormalized(normal, epsilon))
|
|
{
|
|
nvDebug("%f %f %f\n", normal.x, normal.y, normal.z);
|
|
nvDebug("%f %f %f\n", tangent.x, tangent.y, tangent.z);
|
|
nvDebug("%f %f %f\n", bitangent.x, bitangent.y, bitangent.z);
|
|
}*/
|
|
|
|
nvDebugCheck(isNormalized(normal, epsilon));
|
|
nvDebugCheck(isNormalized(tangent, epsilon));
|
|
nvDebugCheck(isNormalized(bitangent, epsilon));
|
|
|
|
// Check vector angles.
|
|
nvDebugCheck(equal(dot(normal, tangent), 0.0f, epsilon));
|
|
nvDebugCheck(equal(dot(normal, bitangent), 0.0f, epsilon));
|
|
nvDebugCheck(equal(dot(tangent, bitangent), 0.0f, epsilon));
|
|
|
|
// Check vector orientation.
|
|
const float det = dot(cross(normal, tangent), bitangent);
|
|
nvDebugCheck(equal(det, 1.0f, epsilon) || equal(det, -1.0f, epsilon));
|
|
}
|
|
|
|
|
|
/// Build an arbitrary frame for the given direction.
|
|
void Basis::buildFrameForDirection(Vector3::Arg d, float angle/*= 0*/)
|
|
{
|
|
nvCheck(isNormalized(d));
|
|
normal = d;
|
|
|
|
// Choose minimum axis.
|
|
if (fabsf(normal.x) < fabsf(normal.y) && fabsf(normal.x) < fabsf(normal.z))
|
|
{
|
|
tangent = Vector3(1, 0, 0);
|
|
}
|
|
else if (fabsf(normal.y) < fabsf(normal.z))
|
|
{
|
|
tangent = Vector3(0, 1, 0);
|
|
}
|
|
else
|
|
{
|
|
tangent = Vector3(0, 0, 1);
|
|
}
|
|
|
|
// Ortogonalize
|
|
tangent -= normal * dot(normal, tangent);
|
|
tangent = ::normalize(tangent);
|
|
|
|
bitangent = cross(normal, tangent);
|
|
|
|
// Rotate frame around normal according to angle.
|
|
if (angle != 0.0f) {
|
|
float c = cosf(angle);
|
|
float s = sinf(angle);
|
|
Vector3 tmp = c * tangent - s * bitangent;
|
|
bitangent = s * tangent + c * bitangent;
|
|
tangent = tmp;
|
|
}
|
|
}
|
|
|
|
bool Basis::isValid() const
|
|
{
|
|
if (equal(normal, Vector3(0.0f))) return false;
|
|
if (equal(tangent, Vector3(0.0f))) return false;
|
|
if (equal(bitangent, Vector3(0.0f))) return false;
|
|
|
|
if (equal(determinant(), 0.0f)) return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/// Transform by this basis. (From this basis to object space).
|
|
Vector3 Basis::transform(Vector3::Arg v) const
|
|
{
|
|
Vector3 o = tangent * v.x;
|
|
o += bitangent * v.y;
|
|
o += normal * v.z;
|
|
return o;
|
|
}
|
|
|
|
/// Transform by the transpose. (From object space to this basis).
|
|
Vector3 Basis::transformT(Vector3::Arg v)
|
|
{
|
|
return Vector3(dot(tangent, v), dot(bitangent, v), dot(normal, v));
|
|
}
|
|
|
|
/// Transform by the inverse. (From object space to this basis).
|
|
/// @note Uses Cramer's rule so the inverse is not accurate if the basis is ill-conditioned.
|
|
Vector3 Basis::transformI(Vector3::Arg v) const
|
|
{
|
|
const float det = determinant();
|
|
nvDebugCheck(!equal(det, 0.0f, 0.0f));
|
|
|
|
const float idet = 1.0f / det;
|
|
|
|
// Rows of the inverse matrix.
|
|
Vector3 r0(
|
|
(bitangent.y * normal.z - bitangent.z * normal.y),
|
|
-(bitangent.x * normal.z - bitangent.z * normal.x),
|
|
(bitangent.x * normal.y - bitangent.y * normal.x));
|
|
|
|
Vector3 r1(
|
|
-(tangent.y * normal.z - tangent.z * normal.y),
|
|
(tangent.x * normal.z - tangent.z * normal.x),
|
|
-(tangent.x * normal.y - tangent.y * normal.x));
|
|
|
|
Vector3 r2(
|
|
(tangent.y * bitangent.z - tangent.z * bitangent.y),
|
|
-(tangent.x * bitangent.z - tangent.z * bitangent.x),
|
|
(tangent.x * bitangent.y - tangent.y * bitangent.x));
|
|
|
|
return Vector3(dot(v, r0), dot(v, r1), dot(v, r2)) * idet;
|
|
}
|
|
|
|
|