mirror of
https://github.com/godotengine/godot.git
synced 2025-01-12 20:22:49 +08:00
e12c89e8c9
Document version and how to extract sources in thirdparty/README.md. Drop unnecessary CMake and Premake files. Simplify SCsub, drop unused one.
99 lines
2.5 KiB
C++
99 lines
2.5 KiB
C++
#include "btPolarDecomposition.h"
|
|
#include "btMinMax.h"
|
|
|
|
namespace
|
|
{
|
|
btScalar abs_column_sum(const btMatrix3x3& a, int i)
|
|
{
|
|
return btFabs(a[0][i]) + btFabs(a[1][i]) + btFabs(a[2][i]);
|
|
}
|
|
|
|
btScalar abs_row_sum(const btMatrix3x3& a, int i)
|
|
{
|
|
return btFabs(a[i][0]) + btFabs(a[i][1]) + btFabs(a[i][2]);
|
|
}
|
|
|
|
btScalar p1_norm(const btMatrix3x3& a)
|
|
{
|
|
const btScalar sum0 = abs_column_sum(a,0);
|
|
const btScalar sum1 = abs_column_sum(a,1);
|
|
const btScalar sum2 = abs_column_sum(a,2);
|
|
return btMax(btMax(sum0, sum1), sum2);
|
|
}
|
|
|
|
btScalar pinf_norm(const btMatrix3x3& a)
|
|
{
|
|
const btScalar sum0 = abs_row_sum(a,0);
|
|
const btScalar sum1 = abs_row_sum(a,1);
|
|
const btScalar sum2 = abs_row_sum(a,2);
|
|
return btMax(btMax(sum0, sum1), sum2);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
btPolarDecomposition::btPolarDecomposition(btScalar tolerance, unsigned int maxIterations)
|
|
: m_tolerance(tolerance)
|
|
, m_maxIterations(maxIterations)
|
|
{
|
|
}
|
|
|
|
unsigned int btPolarDecomposition::decompose(const btMatrix3x3& a, btMatrix3x3& u, btMatrix3x3& h) const
|
|
{
|
|
// Use the 'u' and 'h' matrices for intermediate calculations
|
|
u = a;
|
|
h = a.inverse();
|
|
|
|
for (unsigned int i = 0; i < m_maxIterations; ++i)
|
|
{
|
|
const btScalar h_1 = p1_norm(h);
|
|
const btScalar h_inf = pinf_norm(h);
|
|
const btScalar u_1 = p1_norm(u);
|
|
const btScalar u_inf = pinf_norm(u);
|
|
|
|
const btScalar h_norm = h_1 * h_inf;
|
|
const btScalar u_norm = u_1 * u_inf;
|
|
|
|
// The matrix is effectively singular so we cannot invert it
|
|
if (btFuzzyZero(h_norm) || btFuzzyZero(u_norm))
|
|
break;
|
|
|
|
const btScalar gamma = btPow(h_norm / u_norm, 0.25f);
|
|
const btScalar inv_gamma = btScalar(1.0) / gamma;
|
|
|
|
// Determine the delta to 'u'
|
|
const btMatrix3x3 delta = (u * (gamma - btScalar(2.0)) + h.transpose() * inv_gamma) * btScalar(0.5);
|
|
|
|
// Update the matrices
|
|
u += delta;
|
|
h = u.inverse();
|
|
|
|
// Check for convergence
|
|
if (p1_norm(delta) <= m_tolerance * u_1)
|
|
{
|
|
h = u.transpose() * a;
|
|
h = (h + h.transpose()) * 0.5;
|
|
return i;
|
|
}
|
|
}
|
|
|
|
// The algorithm has failed to converge to the specified tolerance, but we
|
|
// want to make sure that the matrices returned are in the right form.
|
|
h = u.transpose() * a;
|
|
h = (h + h.transpose()) * 0.5;
|
|
|
|
return m_maxIterations;
|
|
}
|
|
|
|
unsigned int btPolarDecomposition::maxIterations() const
|
|
{
|
|
return m_maxIterations;
|
|
}
|
|
|
|
unsigned int polarDecompose(const btMatrix3x3& a, btMatrix3x3& u, btMatrix3x3& h)
|
|
{
|
|
static btPolarDecomposition polar;
|
|
return polar.decompose(a, u, h);
|
|
}
|
|
|