/**************************************************************************/ /* line_builder.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "line_builder.h" #include "core/math/geometry_2d.h" // Utility method. static inline Vector2 interpolate(const Rect2 &r, const Vector2 &v) { return Vector2( Math::lerp(r.position.x, r.position.x + r.get_size().x, v.x), Math::lerp(r.position.y, r.position.y + r.get_size().y, v.y)); } LineBuilder::LineBuilder() { } void LineBuilder::build() { // Need at least 2 points to draw a line, so clear the output and return. if (points.size() < 2) { vertices.clear(); colors.clear(); indices.clear(); uvs.clear(); return; } ERR_FAIL_COND(tile_aspect <= 0.f); const float hw = width / 2.f; const float hw_sq = hw * hw; const float sharp_limit_sq = sharp_limit * sharp_limit; const int point_count = points.size(); const bool wrap_around = closed && point_count > 2; _interpolate_color = gradient != nullptr; const bool retrieve_curve = curve != nullptr; const bool distance_required = _interpolate_color || retrieve_curve || texture_mode == Line2D::LINE_TEXTURE_TILE || texture_mode == Line2D::LINE_TEXTURE_STRETCH; // Initial values Vector2 pos0 = points[0]; Vector2 pos1 = points[1]; Vector2 f0 = (pos1 - pos0).normalized(); Vector2 u0 = f0.orthogonal(); Vector2 pos_up0 = pos0; Vector2 pos_down0 = pos0; Color color0; Color color1; float current_distance0 = 0.f; float current_distance1 = 0.f; float total_distance = 0.f; float width_factor = 1.f; float modified_hw = hw; if (retrieve_curve) { width_factor = curve->sample_baked(0.f); modified_hw = hw * width_factor; } if (distance_required) { // Calculate the total distance. for (int i = 1; i < point_count; ++i) { total_distance += points[i].distance_to(points[i - 1]); } if (wrap_around) { total_distance += points[point_count - 1].distance_to(pos0); } else { // Adjust the total distance. // The line's outer length may be a little higher due to the end caps. if (begin_cap_mode == Line2D::LINE_CAP_BOX || begin_cap_mode == Line2D::LINE_CAP_ROUND) { total_distance += modified_hw; } if (end_cap_mode == Line2D::LINE_CAP_BOX || end_cap_mode == Line2D::LINE_CAP_ROUND) { if (retrieve_curve) { total_distance += hw * curve->sample_baked(1.f); } else { total_distance += hw; } } } } if (_interpolate_color) { color0 = gradient->get_color(0); } else { colors.push_back(default_color); } float uvx0 = 0.f; float uvx1 = 0.f; pos_up0 += u0 * modified_hw; pos_down0 -= u0 * modified_hw; // Begin cap if (!wrap_around) { if (begin_cap_mode == Line2D::LINE_CAP_BOX) { // Push back first vertices a little bit. pos_up0 -= f0 * modified_hw; pos_down0 -= f0 * modified_hw; current_distance0 += modified_hw; current_distance1 = current_distance0; } else if (begin_cap_mode == Line2D::LINE_CAP_ROUND) { if (texture_mode == Line2D::LINE_TEXTURE_TILE) { uvx0 = width_factor * 0.5f / tile_aspect; } else if (texture_mode == Line2D::LINE_TEXTURE_STRETCH) { uvx0 = width * width_factor / total_distance; } new_arc(pos0, pos_up0 - pos0, -Math_PI, color0, Rect2(0.f, 0.f, uvx0 * 2, 1.f)); current_distance0 += modified_hw; current_distance1 = current_distance0; } strip_begin(pos_up0, pos_down0, color0, uvx0); } /* * pos_up0 ------------- pos_up1 -------------------- * | | * pos0 - - - - - - - - - pos1 - - - - - - - - - pos2 * | | * pos_down0 ------------ pos_down1 ------------------ * * i-1 i i+1 */ // http://labs.hyperandroid.com/tag/opengl-lines // (not the same implementation but visuals help a lot) // If the polyline wraps around, then draw two more segments with joints: // The last one, which should normally end with an end cap, and the one that matches the end and the beginning. int segments_count = wrap_around ? point_count : (point_count - 2); // The wraparound case starts with a "fake walk" from the end of the polyline // to its beginning, so that its first joint is correct, without drawing anything. int first_point = wrap_around ? -1 : 1; // If the line wraps around, these variables will be used for the final segment. Vector2 first_pos_up, first_pos_down; bool is_first_joint_sharp = false; // For each additional segment for (int i = first_point; i <= segments_count; ++i) { pos1 = points[(i == -1) ? point_count - 1 : i % point_count]; // First point. Vector2 pos2 = points[(i + 1) % point_count]; // Second point. Vector2 f1 = (pos2 - pos1).normalized(); Vector2 u1 = f1.orthogonal(); // Determine joint orientation. float dp = u0.dot(f1); const Orientation orientation = (dp > 0.f ? UP : DOWN); if (distance_required && i >= 1) { current_distance1 += pos0.distance_to(pos1); } if (_interpolate_color) { color1 = gradient->get_color_at_offset(current_distance1 / total_distance); } if (retrieve_curve) { width_factor = curve->sample_baked(current_distance1 / total_distance); modified_hw = hw * width_factor; } Vector2 inner_normal0 = u0 * modified_hw; Vector2 inner_normal1 = u1 * modified_hw; if (orientation == DOWN) { inner_normal0 = -inner_normal0; inner_normal1 = -inner_normal1; } /* * --------------------------- * / * 0 / 1 * / / * --------------------x------ / * / / (here shown with orientation == DOWN) * / / * / / * / / * 2 / * / */ // Find inner intersection at the joint. Vector2 corner_pos_in, corner_pos_out; bool is_intersecting = Geometry2D::segment_intersects_segment( pos0 + inner_normal0, pos1 + inner_normal0, pos1 + inner_normal1, pos2 + inner_normal1, &corner_pos_in); if (is_intersecting) { // Inner parts of the segments intersect. corner_pos_out = 2.f * pos1 - corner_pos_in; } else { // No intersection, segments are too sharp or they overlap. corner_pos_in = pos1 + inner_normal0; corner_pos_out = pos1 - inner_normal0; } Vector2 corner_pos_up, corner_pos_down; if (orientation == UP) { corner_pos_up = corner_pos_in; corner_pos_down = corner_pos_out; } else { corner_pos_up = corner_pos_out; corner_pos_down = corner_pos_in; } Line2D::LineJointMode current_joint_mode = joint_mode; Vector2 pos_up1, pos_down1; if (is_intersecting) { // Fallback on bevel if sharp angle is too high (because it would produce very long miters). float width_factor_sq = width_factor * width_factor; if (current_joint_mode == Line2D::LINE_JOINT_SHARP && corner_pos_out.distance_squared_to(pos1) / (hw_sq * width_factor_sq) > sharp_limit_sq) { current_joint_mode = Line2D::LINE_JOINT_BEVEL; } if (current_joint_mode == Line2D::LINE_JOINT_SHARP) { // In this case, we won't create joint geometry, // The previous and next line quads will directly share an edge. pos_up1 = corner_pos_up; pos_down1 = corner_pos_down; } else { // Bevel or round if (orientation == UP) { pos_up1 = corner_pos_up; pos_down1 = pos1 - u0 * modified_hw; } else { pos_up1 = pos1 + u0 * modified_hw; pos_down1 = corner_pos_down; } } } else { // No intersection: fallback if (current_joint_mode == Line2D::LINE_JOINT_SHARP) { // There is no fallback implementation for LINE_JOINT_SHARP so switch to the LINE_JOINT_BEVEL. current_joint_mode = Line2D::LINE_JOINT_BEVEL; } pos_up1 = corner_pos_up; pos_down1 = corner_pos_down; } // Triangles are clockwise. if (texture_mode == Line2D::LINE_TEXTURE_TILE) { uvx1 = current_distance1 / (width * tile_aspect); } else if (texture_mode == Line2D::LINE_TEXTURE_STRETCH) { uvx1 = current_distance1 / total_distance; } // Swap vars for use in the next line. color0 = color1; u0 = u1; f0 = f1; pos0 = pos1; if (is_intersecting) { if (current_joint_mode == Line2D::LINE_JOINT_SHARP) { pos_up0 = pos_up1; pos_down0 = pos_down1; } else { if (orientation == UP) { pos_up0 = corner_pos_up; pos_down0 = pos1 - u1 * modified_hw; } else { pos_up0 = pos1 + u1 * modified_hw; pos_down0 = corner_pos_down; } } } else { pos_up0 = pos1 + u1 * modified_hw; pos_down0 = pos1 - u1 * modified_hw; } // End the "fake pass" in the closed line case before the drawing subroutine. if (i == -1) { continue; } // For wrap-around polylines, store some kind of start positions of the first joint for the final connection. if (wrap_around && i == 0) { Vector2 first_pos_center = (pos_up1 + pos_down1) / 2; float lerp_factor = 1.0 / width_factor; first_pos_up = first_pos_center.lerp(pos_up1, lerp_factor); first_pos_down = first_pos_center.lerp(pos_down1, lerp_factor); is_first_joint_sharp = current_joint_mode == Line2D::LINE_JOINT_SHARP; } // Add current line body quad. if (wrap_around && retrieve_curve && !is_first_joint_sharp && i == segments_count) { // If the width curve is not seamless, we might need to fetch the line's start points to use them for the final connection. Vector2 first_pos_center = (first_pos_up + first_pos_down) / 2; strip_add_quad(first_pos_center.lerp(first_pos_up, width_factor), first_pos_center.lerp(first_pos_down, width_factor), color1, uvx1); return; } else { strip_add_quad(pos_up1, pos_down1, color1, uvx1); } // From this point, bu0 and bd0 concern the next segment. // Add joint geometry. if (current_joint_mode != Line2D::LINE_JOINT_SHARP) { /* ________________ cbegin * / \ * / \ * ____________/_ _ _\ cend * | | * | | * | | */ Vector2 cbegin, cend; if (orientation == UP) { cbegin = pos_down1; cend = pos_down0; } else { cbegin = pos_up1; cend = pos_up0; } if (current_joint_mode == Line2D::LINE_JOINT_BEVEL && !(wrap_around && i == segments_count)) { strip_add_tri(cend, orientation); } else if (current_joint_mode == Line2D::LINE_JOINT_ROUND && !(wrap_around && i == segments_count)) { Vector2 vbegin = cbegin - pos1; Vector2 vend = cend - pos1; // We want to use vbegin.angle_to(vend) below, which evaluates to // Math::atan2(vbegin.cross(vend), vbegin.dot(vend)) but we need to // calculate this ourselves as we need to check if the cross product // in that calculation ends up being -0.f and flip it if so, effectively // flipping the resulting angle_delta to not return -PI but +PI instead float cross_product = vbegin.cross(vend); float dot_product = vbegin.dot(vend); // Note that we're comparing against -0.f for clarity but 0.f would // match as well, therefore we need the explicit signbit check too. if (cross_product == -0.f && signbit(cross_product)) { cross_product = 0.f; } float angle_delta = Math::atan2(cross_product, dot_product); strip_add_arc(pos1, angle_delta, orientation); } if (!is_intersecting) { // In this case the joint is too corrupted to be reused, // start again the strip with fallback points strip_begin(pos_up0, pos_down0, color1, uvx1); } } } // Draw the last (or only) segment, with its end cap logic. if (!wrap_around) { pos1 = points[point_count - 1]; if (distance_required) { current_distance1 += pos0.distance_to(pos1); } if (_interpolate_color) { color1 = gradient->get_color(gradient->get_point_count() - 1); } if (retrieve_curve) { width_factor = curve->sample_baked(1.f); modified_hw = hw * width_factor; } Vector2 pos_up1 = pos1 + u0 * modified_hw; Vector2 pos_down1 = pos1 - u0 * modified_hw; // Add extra distance for a box end cap. if (end_cap_mode == Line2D::LINE_CAP_BOX) { pos_up1 += f0 * modified_hw; pos_down1 += f0 * modified_hw; current_distance1 += modified_hw; } if (texture_mode == Line2D::LINE_TEXTURE_TILE) { uvx1 = current_distance1 / (width * tile_aspect); } else if (texture_mode == Line2D::LINE_TEXTURE_STRETCH) { uvx1 = current_distance1 / total_distance; } strip_add_quad(pos_up1, pos_down1, color1, uvx1); // Custom drawing for a round end cap. if (end_cap_mode == Line2D::LINE_CAP_ROUND) { // Note: color is not used in case we don't interpolate. Color color = _interpolate_color ? gradient->get_color(gradient->get_point_count() - 1) : Color(0, 0, 0); float dist = 0; if (texture_mode == Line2D::LINE_TEXTURE_TILE) { dist = width_factor / tile_aspect; } else if (texture_mode == Line2D::LINE_TEXTURE_STRETCH) { dist = width * width_factor / total_distance; } new_arc(pos1, pos_up1 - pos1, Math_PI, color, Rect2(uvx1 - 0.5f * dist, 0.f, dist, 1.f)); } } } void LineBuilder::strip_begin(Vector2 up, Vector2 down, Color color, float uvx) { int vi = vertices.size(); vertices.push_back(up); vertices.push_back(down); if (_interpolate_color) { colors.push_back(color); colors.push_back(color); } if (texture_mode != Line2D::LINE_TEXTURE_NONE) { uvs.push_back(Vector2(uvx, 0.f)); uvs.push_back(Vector2(uvx, 1.f)); } _last_index[UP] = vi; _last_index[DOWN] = vi + 1; } void LineBuilder::strip_add_quad(Vector2 up, Vector2 down, Color color, float uvx) { int vi = vertices.size(); vertices.push_back(up); vertices.push_back(down); if (_interpolate_color) { colors.push_back(color); colors.push_back(color); } if (texture_mode != Line2D::LINE_TEXTURE_NONE) { uvs.push_back(Vector2(uvx, 0.f)); uvs.push_back(Vector2(uvx, 1.f)); } indices.push_back(_last_index[UP]); indices.push_back(vi + 1); indices.push_back(_last_index[DOWN]); indices.push_back(_last_index[UP]); indices.push_back(vi); indices.push_back(vi + 1); _last_index[UP] = vi; _last_index[DOWN] = vi + 1; } void LineBuilder::strip_add_tri(Vector2 up, Orientation orientation) { int vi = vertices.size(); vertices.push_back(up); if (_interpolate_color) { colors.push_back(colors[colors.size() - 1]); } Orientation opposite_orientation = orientation == UP ? DOWN : UP; if (texture_mode != Line2D::LINE_TEXTURE_NONE) { // UVs are just one slice of the texture all along // (otherwise we can't share the bottom vertex) uvs.push_back(uvs[_last_index[opposite_orientation]]); } indices.push_back(_last_index[opposite_orientation]); indices.push_back(vi); indices.push_back(_last_index[orientation]); _last_index[opposite_orientation] = vi; } void LineBuilder::strip_add_arc(Vector2 center, float angle_delta, Orientation orientation) { // Take the two last vertices and extrude an arc made of triangles // that all share one of the initial vertices Orientation opposite_orientation = orientation == UP ? DOWN : UP; Vector2 vbegin = vertices[_last_index[opposite_orientation]] - center; float radius = vbegin.length(); float angle_step = Math_PI / static_cast(round_precision); float steps = Math::abs(angle_delta) / angle_step; if (angle_delta < 0.f) { angle_step = -angle_step; } float t = Vector2(1, 0).angle_to(vbegin); float end_angle = t + angle_delta; Vector2 rpos(0, 0); // Arc vertices for (int ti = 0; ti < steps; ++ti, t += angle_step) { rpos = center + Vector2(Math::cos(t), Math::sin(t)) * radius; strip_add_tri(rpos, orientation); } // Last arc vertex rpos = center + Vector2(Math::cos(end_angle), Math::sin(end_angle)) * radius; strip_add_tri(rpos, orientation); } void LineBuilder::new_arc(Vector2 center, Vector2 vbegin, float angle_delta, Color color, Rect2 uv_rect) { // Make a standalone arc that doesn't use existing vertices, // with undistorted UVs from within a square section float radius = vbegin.length(); float angle_step = Math_PI / static_cast(round_precision); float steps = Math::abs(angle_delta) / angle_step; if (angle_delta < 0.f) { angle_step = -angle_step; } float t = Vector2(1, 0).angle_to(vbegin); float end_angle = t + angle_delta; Vector2 rpos(0, 0); float tt_begin = -Math_PI / 2.0f; float tt = tt_begin; // Center vertice int vi = vertices.size(); vertices.push_back(center); if (_interpolate_color) { colors.push_back(color); } if (texture_mode != Line2D::LINE_TEXTURE_NONE) { uvs.push_back(interpolate(uv_rect, Vector2(0.5f, 0.5f))); } // Arc vertices for (int ti = 0; ti < steps; ++ti, t += angle_step) { Vector2 sc = Vector2(Math::cos(t), Math::sin(t)); rpos = center + sc * radius; vertices.push_back(rpos); if (_interpolate_color) { colors.push_back(color); } if (texture_mode != Line2D::LINE_TEXTURE_NONE) { Vector2 tsc = Vector2(Math::cos(tt), Math::sin(tt)); uvs.push_back(interpolate(uv_rect, 0.5f * (tsc + Vector2(1.f, 1.f)))); tt += angle_step; } } // Last arc vertex Vector2 sc = Vector2(Math::cos(end_angle), Math::sin(end_angle)); rpos = center + sc * radius; vertices.push_back(rpos); if (_interpolate_color) { colors.push_back(color); } if (texture_mode != Line2D::LINE_TEXTURE_NONE) { tt = tt_begin + angle_delta; Vector2 tsc = Vector2(Math::cos(tt), Math::sin(tt)); uvs.push_back(interpolate(uv_rect, 0.5f * (tsc + Vector2(1.f, 1.f)))); } // Make up triangles int vi0 = vi; for (int ti = 0; ti < steps; ++ti) { indices.push_back(vi0); indices.push_back(++vi); indices.push_back(vi + 1); } }