/**************************************************************************/ /* nav_utils.h */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef NAV_UTILS_H #define NAV_UTILS_H #include "core/math/vector3.h" #include "core/templates/hash_map.h" #include "core/templates/hashfuncs.h" #include "core/templates/local_vector.h" class NavBase; namespace gd { struct Polygon; union PointKey { struct { int64_t x : 21; int64_t y : 22; int64_t z : 21; }; uint64_t key = 0; }; struct EdgeKey { PointKey a; PointKey b; static uint32_t hash(const EdgeKey &p_val) { return hash_one_uint64(p_val.a.key) ^ hash_one_uint64(p_val.b.key); } bool operator==(const EdgeKey &p_key) const { return (a.key == p_key.a.key) && (b.key == p_key.b.key); } EdgeKey(const PointKey &p_a = PointKey(), const PointKey &p_b = PointKey()) : a(p_a), b(p_b) { if (a.key > b.key) { SWAP(a, b); } } }; struct Point { Vector3 pos; PointKey key; }; struct Edge { /// The gateway in the edge, as, in some case, the whole edge might not be navigable. struct Connection { /// Polygon that this connection leads to. Polygon *polygon = nullptr; /// Edge of the source polygon where this connection starts from. int edge = -1; /// Point on the edge where the gateway leading to the poly starts. Vector3 pathway_start; /// Point on the edge where the gateway leading to the poly ends. Vector3 pathway_end; }; /// Connections from this edge to other polygons. LocalVector connections; }; struct Polygon { /// Id of the polygon in the map. uint32_t id = UINT32_MAX; /// Navigation region or link that contains this polygon. const NavBase *owner = nullptr; /// The points of this `Polygon` LocalVector points; /// The edges of this `Polygon` LocalVector edges; real_t surface_area = 0.0; }; struct NavigationPoly { /// This poly. const Polygon *poly = nullptr; /// Index in the heap of traversable polygons. uint32_t traversable_poly_index = UINT32_MAX; /// Those 4 variables are used to travel the path backwards. int back_navigation_poly_id = -1; int back_navigation_edge = -1; Vector3 back_navigation_edge_pathway_start; Vector3 back_navigation_edge_pathway_end; /// The entry position of this poly. Vector3 entry; /// The distance traveled until now (g cost). real_t traveled_distance = 0.0; /// The distance to the destination (h cost). real_t distance_to_destination = 0.0; /// The total travel cost (f cost). real_t total_travel_cost() const { return traveled_distance + distance_to_destination; } bool operator==(const NavigationPoly &p_other) const { return poly == p_other.poly; } bool operator!=(const NavigationPoly &p_other) const { return !(*this == p_other); } }; struct NavPolyTravelCostGreaterThan { // Returns `true` if the travel cost of `a` is higher than that of `b`. bool operator()(const NavigationPoly *p_poly_a, const NavigationPoly *p_poly_b) const { real_t f_cost_a = p_poly_a->total_travel_cost(); real_t h_cost_a = p_poly_a->distance_to_destination; real_t f_cost_b = p_poly_b->total_travel_cost(); real_t h_cost_b = p_poly_b->distance_to_destination; if (f_cost_a != f_cost_b) { return f_cost_a > f_cost_b; } else { return h_cost_a > h_cost_b; } } }; struct NavPolyHeapIndexer { void operator()(NavigationPoly *p_poly, uint32_t p_heap_index) const { p_poly->traversable_poly_index = p_heap_index; } }; struct ClosestPointQueryResult { Vector3 point; Vector3 normal; RID owner; }; template struct NoopIndexer { void operator()(const T &p_value, uint32_t p_index) {} }; /** * A max-heap implementation that notifies of element index changes. */ template , typename Indexer = NoopIndexer> class Heap { LocalVector _buffer; LessThan _less_than; Indexer _indexer; public: void reserve(uint32_t p_size) { _buffer.reserve(p_size); } uint32_t size() const { return _buffer.size(); } bool is_empty() const { return _buffer.is_empty(); } void push(const T &p_element) { _buffer.push_back(p_element); _indexer(p_element, _buffer.size() - 1); _shift_up(_buffer.size() - 1); } T pop() { ERR_FAIL_COND_V_MSG(_buffer.is_empty(), T(), "Can't pop an empty heap."); T value = _buffer[0]; _indexer(value, UINT32_MAX); if (_buffer.size() > 1) { _buffer[0] = _buffer[_buffer.size() - 1]; _indexer(_buffer[0], 0); _buffer.remove_at(_buffer.size() - 1); _shift_down(0); } else { _buffer.remove_at(_buffer.size() - 1); } return value; } /** * Update the position of the element in the heap if necessary. */ void shift(uint32_t p_index) { ERR_FAIL_UNSIGNED_INDEX_MSG(p_index, _buffer.size(), "Heap element index is out of range."); if (!_shift_up(p_index)) { _shift_down(p_index); } } void clear() { for (const T &value : _buffer) { _indexer(value, UINT32_MAX); } _buffer.clear(); } Heap() {} Heap(const LessThan &p_less_than) : _less_than(p_less_than) {} Heap(const Indexer &p_indexer) : _indexer(p_indexer) {} Heap(const LessThan &p_less_than, const Indexer &p_indexer) : _less_than(p_less_than), _indexer(p_indexer) {} private: bool _shift_up(uint32_t p_index) { T value = _buffer[p_index]; uint32_t current_index = p_index; uint32_t parent_index = (current_index - 1) / 2; while (current_index > 0 && _less_than(_buffer[parent_index], value)) { _buffer[current_index] = _buffer[parent_index]; _indexer(_buffer[current_index], current_index); current_index = parent_index; parent_index = (current_index - 1) / 2; } if (current_index != p_index) { _buffer[current_index] = value; _indexer(value, current_index); return true; } else { return false; } } bool _shift_down(uint32_t p_index) { T value = _buffer[p_index]; uint32_t current_index = p_index; uint32_t child_index = 2 * current_index + 1; while (child_index < _buffer.size()) { if (child_index + 1 < _buffer.size() && _less_than(_buffer[child_index], _buffer[child_index + 1])) { child_index++; } if (_less_than(_buffer[child_index], value)) { break; } _buffer[current_index] = _buffer[child_index]; _indexer(_buffer[current_index], current_index); current_index = child_index; child_index = 2 * current_index + 1; } if (current_index != p_index) { _buffer[current_index] = value; _indexer(value, current_index); return true; } else { return false; } } }; struct PerformanceData { int pm_region_count = 0; int pm_agent_count = 0; int pm_link_count = 0; int pm_polygon_count = 0; int pm_edge_count = 0; int pm_edge_merge_count = 0; int pm_edge_connection_count = 0; int pm_edge_free_count = 0; int pm_obstacle_count = 0; }; } // namespace gd #endif // NAV_UTILS_H