#[versions] primary = "#define MODE_DIRECT_LIGHT"; secondary = "#define MODE_BOUNCE_LIGHT"; dilate = "#define MODE_DILATE"; unocclude = "#define MODE_UNOCCLUDE"; light_probes = "#define MODE_LIGHT_PROBES"; denoise = "#define MODE_DENOISE"; pack_coeffs = "#define MODE_PACK_L1_COEFFS"; #[compute] #version 450 #VERSION_DEFINES #extension GL_EXT_samplerless_texture_functions : enable // One 2D local group focusing in one layer at a time, though all // in parallel (no barriers) makes more sense than a 3D local group // as this can take more advantage of the cache for each group. #ifdef MODE_LIGHT_PROBES layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in; #else layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in; #endif #include "lm_common_inc.glsl" #ifdef MODE_LIGHT_PROBES layout(set = 1, binding = 0, std430) restrict buffer LightProbeData { vec4 data[]; } light_probes; layout(set = 1, binding = 1) uniform texture2DArray source_light; layout(set = 1, binding = 2) uniform texture2D environment; #endif #ifdef MODE_UNOCCLUDE layout(rgba32f, set = 1, binding = 0) uniform restrict image2DArray position; layout(rgba32f, set = 1, binding = 1) uniform restrict readonly image2DArray unocclude; #endif #if defined(MODE_DIRECT_LIGHT) || defined(MODE_BOUNCE_LIGHT) layout(rgba16f, set = 1, binding = 0) uniform restrict writeonly image2DArray dest_light; layout(set = 1, binding = 1) uniform texture2DArray source_light; layout(set = 1, binding = 2) uniform texture2DArray source_position; layout(set = 1, binding = 3) uniform texture2DArray source_normal; layout(rgba16f, set = 1, binding = 4) uniform restrict image2DArray accum_light; #endif #ifdef MODE_BOUNCE_LIGHT layout(set = 1, binding = 5) uniform texture2D environment; #endif #if defined(MODE_DILATE) || defined(MODE_DENOISE) || defined(MODE_PACK_L1_COEFFS) layout(rgba16f, set = 1, binding = 0) uniform restrict writeonly image2DArray dest_light; layout(set = 1, binding = 1) uniform texture2DArray source_light; #endif #ifdef MODE_DENOISE layout(set = 1, binding = 2) uniform texture2DArray source_normal; layout(set = 1, binding = 3) uniform DenoiseParams { float spatial_bandwidth; float light_bandwidth; float albedo_bandwidth; float normal_bandwidth; int half_search_window; float filter_strength; } denoise_params; #endif layout(push_constant, std430) uniform Params { uint atlas_slice; uint ray_count; uint ray_from; uint ray_to; ivec2 region_ofs; uint probe_count; } params; //check it, but also return distance and barycentric coords (for uv lookup) bool ray_hits_triangle(vec3 from, vec3 dir, float max_dist, vec3 p0, vec3 p1, vec3 p2, out float r_distance, out vec3 r_barycentric) { const float EPSILON = 0.00001; const vec3 e0 = p1 - p0; const vec3 e1 = p0 - p2; vec3 triangle_normal = cross(e1, e0); float n_dot_dir = dot(triangle_normal, dir); if (abs(n_dot_dir) < EPSILON) { return false; } const vec3 e2 = (p0 - from) / n_dot_dir; const vec3 i = cross(dir, e2); r_barycentric.y = dot(i, e1); r_barycentric.z = dot(i, e0); r_barycentric.x = 1.0 - (r_barycentric.z + r_barycentric.y); r_distance = dot(triangle_normal, e2); return (r_distance > bake_params.bias) && (r_distance < max_dist) && all(greaterThanEqual(r_barycentric, vec3(0.0))); } const uint RAY_MISS = 0; const uint RAY_FRONT = 1; const uint RAY_BACK = 2; const uint RAY_ANY = 3; bool ray_box_test(vec3 p_from, vec3 p_inv_dir, vec3 p_box_min, vec3 p_box_max) { vec3 t0 = (p_box_min - p_from) * p_inv_dir; vec3 t1 = (p_box_max - p_from) * p_inv_dir; vec3 tmin = min(t0, t1), tmax = max(t0, t1); return max(tmin.x, max(tmin.y, tmin.z)) <= min(tmax.x, min(tmax.y, tmax.z)); } #if CLUSTER_SIZE > 32 #define CLUSTER_TRIANGLE_ITERATION #endif uint trace_ray(vec3 p_from, vec3 p_to, bool p_any_hit, out float r_distance, out vec3 r_normal, out uint r_triangle, out vec3 r_barycentric) { // World coordinates. vec3 rel = p_to - p_from; float rel_len = length(rel); vec3 dir = normalize(rel); vec3 inv_dir = 1.0 / dir; // Cell coordinates. vec3 from_cell = (p_from - bake_params.to_cell_offset) * bake_params.to_cell_size; vec3 to_cell = (p_to - bake_params.to_cell_offset) * bake_params.to_cell_size; // Prepare DDA. vec3 rel_cell = to_cell - from_cell; ivec3 icell = ivec3(from_cell); ivec3 iendcell = ivec3(to_cell); vec3 dir_cell = normalize(rel_cell); vec3 delta = min(abs(1.0 / dir_cell), bake_params.grid_size); // Use bake_params.grid_size as max to prevent infinity values. ivec3 step = ivec3(sign(rel_cell)); vec3 side = (sign(rel_cell) * (vec3(icell) - from_cell) + (sign(rel_cell) * 0.5) + 0.5) * delta; uint iters = 0; while (all(greaterThanEqual(icell, ivec3(0))) && all(lessThan(icell, ivec3(bake_params.grid_size))) && (iters < 1000)) { uvec2 cell_data = texelFetch(grid, icell, 0).xy; uint triangle_count = cell_data.x; if (triangle_count > 0) { uint hit = RAY_MISS; float best_distance = 1e20; uint cluster_start = cluster_indices.data[cell_data.y * 2]; uint cell_triangle_start = cluster_indices.data[cell_data.y * 2 + 1]; uint cluster_count = (triangle_count + CLUSTER_SIZE - 1) / CLUSTER_SIZE; uint cluster_base_index = 0; while (cluster_base_index < cluster_count) { // To minimize divergence, all Ray-AABB tests on the clusters contained in the cell are performed // before checking against the triangles. We do this 32 clusters at a time and store the intersected // clusters on each bit of the 32-bit integer. uint cluster_test_count = min(32, cluster_count - cluster_base_index); uint cluster_hits = 0; for (uint i = 0; i < cluster_test_count; i++) { uint cluster_index = cluster_start + cluster_base_index + i; ClusterAABB cluster_aabb = cluster_aabbs.data[cluster_index]; if (ray_box_test(p_from, inv_dir, cluster_aabb.min_bounds, cluster_aabb.max_bounds)) { cluster_hits |= (1 << i); } } // Check the triangles in any of the clusters that were intersected by toggling off the bits in the // 32-bit integer counter until no bits are left. while (cluster_hits > 0) { uint cluster_index = findLSB(cluster_hits); cluster_hits &= ~(1 << cluster_index); cluster_index += cluster_base_index; // Do the same divergence execution trick with triangles as well. uint triangle_base_index = 0; #ifdef CLUSTER_TRIANGLE_ITERATION while (triangle_base_index < triangle_count) #endif { uint triangle_start_index = cell_triangle_start + cluster_index * CLUSTER_SIZE + triangle_base_index; uint triangle_test_count = min(CLUSTER_SIZE, triangle_count - triangle_base_index); uint triangle_hits = 0; for (uint i = 0; i < triangle_test_count; i++) { uint triangle_index = triangle_indices.data[triangle_start_index + i]; if (ray_box_test(p_from, inv_dir, triangles.data[triangle_index].min_bounds, triangles.data[triangle_index].max_bounds)) { triangle_hits |= (1 << i); } } while (triangle_hits > 0) { uint cluster_triangle_index = findLSB(triangle_hits); triangle_hits &= ~(1 << cluster_triangle_index); cluster_triangle_index += triangle_start_index; uint triangle_index = triangle_indices.data[cluster_triangle_index]; Triangle triangle = triangles.data[triangle_index]; // Gather the triangle vertex positions. vec3 vtx0 = vertices.data[triangle.indices.x].position; vec3 vtx1 = vertices.data[triangle.indices.y].position; vec3 vtx2 = vertices.data[triangle.indices.z].position; vec3 normal = -normalize(cross((vtx0 - vtx1), (vtx0 - vtx2))); bool backface = dot(normal, dir) >= 0.0; float distance; vec3 barycentric; if (ray_hits_triangle(p_from, dir, rel_len, vtx0, vtx1, vtx2, distance, barycentric)) { if (p_any_hit) { // Return early if any hit was requested. return RAY_ANY; } vec3 position = p_from + dir * distance; vec3 hit_cell = (position - bake_params.to_cell_offset) * bake_params.to_cell_size; if (icell != ivec3(hit_cell)) { // It's possible for the ray to hit a triangle in a position outside the bounds of the cell // if it's large enough to cover multiple ones. The hit must be ignored if this is the case. continue; } if (!backface) { // The case of meshes having both a front and back face in the same plane is more common than // expected, so if this is a front-face, bias it closer to the ray origin, so it always wins // over the back-face. distance = max(bake_params.bias, distance - bake_params.bias); } if (distance < best_distance) { hit = backface ? RAY_BACK : RAY_FRONT; best_distance = distance; r_distance = distance; r_normal = normal; r_triangle = triangle_index; r_barycentric = barycentric; } } } #ifdef CLUSTER_TRIANGLE_ITERATION triangle_base_index += CLUSTER_SIZE; #endif } } cluster_base_index += 32; } if (hit != RAY_MISS) { return hit; } } if (icell == iendcell) { break; } // There should be only one axis updated at a time for DDA to work properly. bvec3 mask = bvec3(true, false, false); float m = side.x; if (side.y < m) { m = side.y; mask = bvec3(false, true, false); } if (side.z < m) { mask = bvec3(false, false, true); } side += vec3(mask) * delta; icell += ivec3(vec3(mask)) * step; iters++; } return RAY_MISS; } uint trace_ray_closest_hit_triangle(vec3 p_from, vec3 p_to, out uint r_triangle, out vec3 r_barycentric) { float distance; vec3 normal; return trace_ray(p_from, p_to, false, distance, normal, r_triangle, r_barycentric); } uint trace_ray_closest_hit_distance(vec3 p_from, vec3 p_to, out float r_distance, out vec3 r_normal) { uint triangle; vec3 barycentric; return trace_ray(p_from, p_to, false, r_distance, r_normal, triangle, barycentric); } uint trace_ray_any_hit(vec3 p_from, vec3 p_to) { float distance; vec3 normal; uint triangle; vec3 barycentric; return trace_ray(p_from, p_to, true, distance, normal, triangle, barycentric); } // https://www.reedbeta.com/blog/hash-functions-for-gpu-rendering/ uint hash(uint value) { uint state = value * 747796405u + 2891336453u; uint word = ((state >> ((state >> 28u) + 4u)) ^ state) * 277803737u; return (word >> 22u) ^ word; } uint random_seed(ivec3 seed) { return hash(seed.x ^ hash(seed.y ^ hash(seed.z))); } // generates a random value in range [0.0, 1.0) float randomize(inout uint value) { value = hash(value); return float(value / 4294967296.0); } const float PI = 3.14159265f; // http://www.realtimerendering.com/raytracinggems/unofficial_RayTracingGems_v1.4.pdf (chapter 15) vec3 generate_hemisphere_cosine_weighted_direction(inout uint noise) { float noise1 = randomize(noise); float noise2 = randomize(noise) * 2.0 * PI; return vec3(sqrt(noise1) * cos(noise2), sqrt(noise1) * sin(noise2), sqrt(1.0 - noise1)); } // Distribution generation adapted from "Generating uniformly distributed numbers on a sphere" // <http://corysimon.github.io/articles/uniformdistn-on-sphere/> vec3 generate_sphere_uniform_direction(inout uint noise) { float theta = 2.0 * PI * randomize(noise); float phi = acos(1.0 - 2.0 * randomize(noise)); return vec3(sin(phi) * cos(theta), sin(phi) * sin(theta), cos(phi)); } vec3 generate_ray_dir_from_normal(vec3 normal, inout uint noise) { vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0); vec3 tangent = normalize(cross(v0, normal)); vec3 bitangent = normalize(cross(tangent, normal)); mat3 normal_mat = mat3(tangent, bitangent, normal); return normal_mat * generate_hemisphere_cosine_weighted_direction(noise); } #if defined(MODE_DIRECT_LIGHT) || defined(MODE_BOUNCE_LIGHT) || defined(MODE_LIGHT_PROBES) float get_omni_attenuation(float distance, float inv_range, float decay) { float nd = distance * inv_range; nd *= nd; nd *= nd; // nd^4 nd = max(1.0 - nd, 0.0); nd *= nd; // nd^2 return nd * pow(max(distance, 0.0001), -decay); } const int AA_SAMPLES = 16; const vec2 halton_map[AA_SAMPLES] = vec2[]( vec2(0.5, 0.33333333), vec2(0.25, 0.66666667), vec2(0.75, 0.11111111), vec2(0.125, 0.44444444), vec2(0.625, 0.77777778), vec2(0.375, 0.22222222), vec2(0.875, 0.55555556), vec2(0.0625, 0.88888889), vec2(0.5625, 0.03703704), vec2(0.3125, 0.37037037), vec2(0.8125, 0.7037037), vec2(0.1875, 0.14814815), vec2(0.6875, 0.48148148), vec2(0.4375, 0.81481481), vec2(0.9375, 0.25925926), vec2(0.03125, 0.59259259)); vec2 get_vogel_disk(float p_i, float p_rotation, float p_sample_count_sqrt) { const float golden_angle = 2.4; float r = sqrt(p_i + 0.5) / p_sample_count_sqrt; float theta = p_i * golden_angle + p_rotation; return vec2(cos(theta), sin(theta)) * r; } void trace_direct_light(vec3 p_position, vec3 p_normal, uint p_light_index, bool p_soft_shadowing, out vec3 r_light, out vec3 r_light_dir, inout uint r_noise, float p_texel_size) { r_light = vec3(0.0f); vec3 light_pos; float dist; float attenuation; float soft_shadowing_disk_size; Light light_data = lights.data[p_light_index]; if (light_data.type == LIGHT_TYPE_DIRECTIONAL) { vec3 light_vec = light_data.direction; light_pos = p_position - light_vec * length(bake_params.world_size); r_light_dir = normalize(light_pos - p_position); dist = length(bake_params.world_size); attenuation = 1.0; soft_shadowing_disk_size = light_data.size; } else { light_pos = light_data.position; r_light_dir = normalize(light_pos - p_position); dist = distance(p_position, light_pos); if (dist > light_data.range) { return; } soft_shadowing_disk_size = light_data.size / dist; attenuation = get_omni_attenuation(dist, 1.0 / light_data.range, light_data.attenuation); if (light_data.type == LIGHT_TYPE_SPOT) { vec3 rel = normalize(p_position - light_pos); float cos_spot_angle = light_data.cos_spot_angle; float cos_angle = dot(rel, light_data.direction); if (cos_angle < cos_spot_angle) { return; } float scos = max(cos_angle, cos_spot_angle); float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - cos_spot_angle)); attenuation *= 1.0 - pow(spot_rim, light_data.inv_spot_attenuation); } } attenuation *= max(0.0, dot(p_normal, r_light_dir)); if (attenuation <= 0.0001) { return; } float penumbra = 0.0; if (p_soft_shadowing) { const bool use_soft_shadows = (light_data.size > 0.0); const uint ray_count = AA_SAMPLES; const uint total_ray_count = use_soft_shadows ? params.ray_count : ray_count; const uint shadowing_rays_check_penumbra_denom = 2; const uint shadowing_ray_count = max(1, params.ray_count / ray_count); const float shadowing_ray_count_sqrt = sqrt(float(total_ray_count)); // Setup tangent pass to calculate AA samples over the current texel. vec3 aux = p_normal.y < 0.777 ? vec3(0.0, 1.0, 0.0) : vec3(1.0, 0.0, 0.0); vec3 tangent = normalize(cross(p_normal, aux)); vec3 bitan = normalize(cross(p_normal, tangent)); // Setup light tangent pass to calculate samples over disk aligned towards the light vec3 light_to_point = -r_light_dir; vec3 light_aux = light_to_point.y < 0.777 ? vec3(0.0, 1.0, 0.0) : vec3(1.0, 0.0, 0.0); vec3 light_to_point_tan = normalize(cross(light_to_point, light_aux)); vec3 light_to_point_bitan = normalize(cross(light_to_point, light_to_point_tan)); uint hits = 0; for (uint i = 0; i < ray_count; i++) { // Create a random sample within the texel. vec2 disk_sample = (halton_map[i] - vec2(0.5)) * p_texel_size * light_data.shadow_blur; // Align the sample to world space. vec3 disk_aligned = (disk_sample.x * tangent + disk_sample.y * bitan); vec3 origin = p_position - disk_aligned; vec3 light_dir = normalize(light_pos - origin); if (use_soft_shadows) { uint soft_shadow_hits = 0; for (uint j = 0; j < shadowing_ray_count; j++) { // Optimization: // Once already traced an important proportion of rays, if all are hits or misses, // assume we're not in the penumbra so we can infer the rest would have the same result. if (j == shadowing_ray_count / shadowing_rays_check_penumbra_denom) { if (soft_shadow_hits == j) { // Assume totally lit soft_shadow_hits = shadowing_ray_count; break; } else if (soft_shadow_hits == 0) { // Assume totally dark soft_shadow_hits = 0; break; } } float a = randomize(r_noise) * 2.0 * PI; float vogel_index = float(total_ray_count - 1 - (i * shadowing_ray_count + j)); // Start from (total_ray_count - 1) so we check the outer points first. vec2 light_disk_sample = get_vogel_disk(vogel_index, a, shadowing_ray_count_sqrt) * soft_shadowing_disk_size * light_data.shadow_blur; vec3 light_disk_to_point = normalize(light_to_point + light_disk_sample.x * light_to_point_tan + light_disk_sample.y * light_to_point_bitan); // Offset the ray origin for AA, offset the light position for soft shadows. if (trace_ray_any_hit(origin - light_disk_to_point * (bake_params.bias + length(disk_sample)), p_position - light_disk_to_point * dist) == RAY_MISS) { soft_shadow_hits++; } } hits += soft_shadow_hits; } else { // Offset the ray origin based on the disk. Also increase the bias for further samples to avoid bleeding. if (trace_ray_any_hit(origin + light_dir * (bake_params.bias + length(disk_sample)), light_pos) == RAY_MISS) { hits++; } } } penumbra = float(hits) / float(total_ray_count); } else { if (trace_ray_any_hit(p_position + r_light_dir * bake_params.bias, light_pos) == RAY_MISS) { penumbra = 1.0; } } r_light = light_data.color * light_data.energy * attenuation * penumbra; } #endif #if defined(MODE_BOUNCE_LIGHT) || defined(MODE_LIGHT_PROBES) vec3 trace_environment_color(vec3 ray_dir) { vec3 sky_dir = normalize(mat3(bake_params.env_transform) * ray_dir); vec2 st = vec2(atan(sky_dir.x, sky_dir.z), acos(sky_dir.y)); if (st.x < 0.0) { st.x += PI * 2.0; } return textureLod(sampler2D(environment, linear_sampler), st / vec2(PI * 2.0, PI), 0.0).rgb; } vec3 trace_indirect_light(vec3 p_position, vec3 p_ray_dir, inout uint r_noise, float p_texel_size) { // The lower limit considers the case where the lightmapper might have bounces disabled but light probes are requested. vec3 position = p_position; vec3 ray_dir = p_ray_dir; uint max_depth = max(bake_params.bounces, 1); vec3 throughput = vec3(1.0); vec3 light = vec3(0.0); for (uint depth = 0; depth < max_depth; depth++) { uint tidx; vec3 barycentric; uint trace_result = trace_ray_closest_hit_triangle(position + ray_dir * bake_params.bias, position + ray_dir * length(bake_params.world_size), tidx, barycentric); if (trace_result == RAY_FRONT) { Vertex vert0 = vertices.data[triangles.data[tidx].indices.x]; Vertex vert1 = vertices.data[triangles.data[tidx].indices.y]; Vertex vert2 = vertices.data[triangles.data[tidx].indices.z]; vec3 uvw = vec3(barycentric.x * vert0.uv + barycentric.y * vert1.uv + barycentric.z * vert2.uv, float(triangles.data[tidx].slice)); position = barycentric.x * vert0.position + barycentric.y * vert1.position + barycentric.z * vert2.position; vec3 norm0 = vec3(vert0.normal_xy, vert0.normal_z); vec3 norm1 = vec3(vert1.normal_xy, vert1.normal_z); vec3 norm2 = vec3(vert2.normal_xy, vert2.normal_z); vec3 normal = barycentric.x * norm0 + barycentric.y * norm1 + barycentric.z * norm2; vec3 direct_light = vec3(0.0f); #ifdef USE_LIGHT_TEXTURE_FOR_BOUNCES direct_light += textureLod(sampler2DArray(source_light, linear_sampler), uvw, 0.0).rgb; #else // Trace the lights directly. Significantly more expensive but more accurate in scenarios // where the lightmap texture isn't reliable. for (uint i = 0; i < bake_params.light_count; i++) { vec3 light; vec3 light_dir; trace_direct_light(position, normal, i, false, light, light_dir, r_noise, p_texel_size); direct_light += light * lights.data[i].indirect_energy; } direct_light *= bake_params.exposure_normalization; #endif vec3 albedo = textureLod(sampler2DArray(albedo_tex, linear_sampler), uvw, 0).rgb; vec3 emissive = textureLod(sampler2DArray(emission_tex, linear_sampler), uvw, 0).rgb; emissive *= bake_params.exposure_normalization; light += throughput * emissive; throughput *= albedo; light += throughput * direct_light * bake_params.bounce_indirect_energy; // Use Russian Roulette to determine a probability to terminate the bounce earlier as an optimization. // <https://computergraphics.stackexchange.com/questions/2316/is-russian-roulette-really-the-answer> float p = max(max(throughput.x, throughput.y), throughput.z); if (randomize(r_noise) > p) { break; } // Boost the throughput from the probability of the ray being terminated early. throughput *= 1.0 / p; // Generate a new ray direction for the next bounce from this surface's normal. ray_dir = generate_ray_dir_from_normal(normal, r_noise); } else if (trace_result == RAY_MISS) { // Look for the environment color and stop bouncing. light += throughput * trace_environment_color(ray_dir); break; } else { // Ignore any other trace results. break; } } return light; } #endif void main() { // Check if invocation is out of bounds. #ifdef MODE_LIGHT_PROBES int probe_index = int(gl_GlobalInvocationID.x); if (probe_index >= params.probe_count) { return; } #else ivec2 atlas_pos = ivec2(gl_GlobalInvocationID.xy) + params.region_ofs; if (any(greaterThanEqual(atlas_pos, bake_params.atlas_size))) { return; } #endif #ifdef MODE_DIRECT_LIGHT vec3 normal = texelFetch(sampler2DArray(source_normal, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz; if (length(normal) < 0.5) { return; //empty texel, no process } vec3 position = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz; vec4 neighbor_position = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos + ivec2(1, 0), params.atlas_slice), 0).xyzw; if (neighbor_position.w < 0.001) { // Empty texel, try again. neighbor_position.xyz = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos + ivec2(-1, 0), params.atlas_slice), 0).xyz; } float texel_size_world_space = distance(position, neighbor_position.xyz); vec3 light_for_texture = vec3(0.0); vec3 light_for_bounces = vec3(0.0); #ifdef USE_SH_LIGHTMAPS vec4 sh_accum[4] = vec4[]( vec4(0.0, 0.0, 0.0, 1.0), vec4(0.0, 0.0, 0.0, 1.0), vec4(0.0, 0.0, 0.0, 1.0), vec4(0.0, 0.0, 0.0, 1.0)); #endif // Use atlas position and a prime number as the seed. uint noise = random_seed(ivec3(atlas_pos, 43573547)); for (uint i = 0; i < bake_params.light_count; i++) { vec3 light; vec3 light_dir; trace_direct_light(position, normal, i, true, light, light_dir, noise, texel_size_world_space); if (lights.data[i].static_bake) { light_for_texture += light; #ifdef USE_SH_LIGHTMAPS // These coefficients include the factored out SH evaluation, diffuse convolution, and final application, as well as the BRDF 1/PI and the spherical monte carlo factor. // LO: 1/(2*sqrtPI) * 1/(2*sqrtPI) * PI * PI * 1/PI = 0.25 // L1: sqrt(3/(4*pi)) * sqrt(3/(4*pi)) * (PI*2/3) * (2 * PI) * 1/PI = 1.0 // Note: This only works because we aren't scaling, rotating, or combing harmonics, we are just directing applying them in the shader. float c[4] = float[]( 0.25, //l0 light_dir.y, //l1n1 light_dir.z, //l1n0 light_dir.x //l1p1 ); for (uint j = 0; j < 4; j++) { sh_accum[j].rgb += light * c[j] * bake_params.exposure_normalization; } #endif } light_for_bounces += light * lights.data[i].indirect_energy; } light_for_bounces *= bake_params.exposure_normalization; imageStore(dest_light, ivec3(atlas_pos, params.atlas_slice), vec4(light_for_bounces, 1.0)); #ifdef USE_SH_LIGHTMAPS // Keep for adding at the end. imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + 0), sh_accum[0]); imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + 1), sh_accum[1]); imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + 2), sh_accum[2]); imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + 3), sh_accum[3]); #else light_for_texture *= bake_params.exposure_normalization; imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice), vec4(light_for_texture, 1.0)); #endif #endif #ifdef MODE_BOUNCE_LIGHT #ifdef USE_SH_LIGHTMAPS vec4 sh_accum[4] = vec4[]( vec4(0.0, 0.0, 0.0, 1.0), vec4(0.0, 0.0, 0.0, 1.0), vec4(0.0, 0.0, 0.0, 1.0), vec4(0.0, 0.0, 0.0, 1.0)); #else vec3 light_accum = vec3(0.0); #endif // Retrieve starting normal and position. vec3 normal = texelFetch(sampler2DArray(source_normal, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz; if (length(normal) < 0.5) { // The pixel is empty, skip processing it. return; } vec3 position = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz; int neighbor_offset = atlas_pos.x < bake_params.atlas_size.x - 1 ? 1 : -1; vec3 neighbor_position = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos + ivec2(neighbor_offset, 0), params.atlas_slice), 0).xyz; float texel_size_world_space = distance(position, neighbor_position); uint noise = random_seed(ivec3(params.ray_from, atlas_pos)); for (uint i = params.ray_from; i < params.ray_to; i++) { vec3 ray_dir = generate_ray_dir_from_normal(normal, noise); vec3 light = trace_indirect_light(position, ray_dir, noise, texel_size_world_space); #ifdef USE_SH_LIGHTMAPS // These coefficients include the factored out SH evaluation, diffuse convolution, and final application, as well as the BRDF 1/PI and the spherical monte carlo factor. // LO: 1/(2*sqrtPI) * 1/(2*sqrtPI) * PI * PI * 1/PI = 0.25 // L1: sqrt(3/(4*pi)) * sqrt(3/(4*pi)) * (PI*2/3) * (2 * PI) * 1/PI = 1.0 // Note: This only works because we aren't scaling, rotating, or combing harmonics, we are just directing applying them in the shader. float c[4] = float[]( 0.25, //l0 ray_dir.y, //l1n1 ray_dir.z, //l1n0 ray_dir.x //l1p1 ); for (uint j = 0; j < 4; j++) { sh_accum[j].rgb += light * c[j]; } #else light_accum += light; #endif } // Add the averaged result to the accumulated light texture. #ifdef USE_SH_LIGHTMAPS for (int i = 0; i < 4; i++) { vec4 accum = imageLoad(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + i)); accum.rgb += sh_accum[i].rgb / float(params.ray_count); imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + i), accum); } #else vec4 accum = imageLoad(accum_light, ivec3(atlas_pos, params.atlas_slice)); accum.rgb += light_accum / float(params.ray_count); imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice), accum); #endif #endif #ifdef MODE_UNOCCLUDE //texel_size = 0.5; //compute tangents vec4 position_alpha = imageLoad(position, ivec3(atlas_pos, params.atlas_slice)); if (position_alpha.a < 0.5) { return; } vec3 vertex_pos = position_alpha.xyz; vec4 normal_tsize = imageLoad(unocclude, ivec3(atlas_pos, params.atlas_slice)); vec3 face_normal = normal_tsize.xyz; float texel_size = normal_tsize.w; vec3 v0 = abs(face_normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0); vec3 tangent = normalize(cross(v0, face_normal)); vec3 bitangent = normalize(cross(tangent, face_normal)); vec3 base_pos = vertex_pos + face_normal * bake_params.bias; // Raise a bit. vec3 rays[4] = vec3[](tangent, bitangent, -tangent, -bitangent); float min_d = 1e20; for (int i = 0; i < 4; i++) { vec3 ray_to = base_pos + rays[i] * texel_size; float d; vec3 norm; if (trace_ray_closest_hit_distance(base_pos, ray_to, d, norm) == RAY_BACK) { if (d < min_d) { // This bias needs to be greater than the regular bias, because otherwise later, rays will go the other side when pointing back. vertex_pos = base_pos + rays[i] * d + norm * bake_params.bias * 10.0; min_d = d; } } } position_alpha.xyz = vertex_pos; imageStore(position, ivec3(atlas_pos, params.atlas_slice), position_alpha); #endif #ifdef MODE_LIGHT_PROBES vec3 position = probe_positions.data[probe_index].xyz; vec4 probe_sh_accum[9] = vec4[]( vec4(0.0), vec4(0.0), vec4(0.0), vec4(0.0), vec4(0.0), vec4(0.0), vec4(0.0), vec4(0.0), vec4(0.0)); uint noise = random_seed(ivec3(params.ray_from, probe_index, 49502741 /* some prime */)); for (uint i = params.ray_from; i < params.ray_to; i++) { vec3 ray_dir = generate_sphere_uniform_direction(noise); vec3 light = trace_indirect_light(position, ray_dir, noise, 0.0); float c[9] = float[]( 0.282095, //l0 0.488603 * ray_dir.y, //l1n1 0.488603 * ray_dir.z, //l1n0 0.488603 * ray_dir.x, //l1p1 1.092548 * ray_dir.x * ray_dir.y, //l2n2 1.092548 * ray_dir.y * ray_dir.z, //l2n1 //0.315392 * (ray_dir.x * ray_dir.x + ray_dir.y * ray_dir.y + 2.0 * ray_dir.z * ray_dir.z), //l20 0.315392 * (3.0 * ray_dir.z * ray_dir.z - 1.0), //l20 1.092548 * ray_dir.x * ray_dir.z, //l2p1 0.546274 * (ray_dir.x * ray_dir.x - ray_dir.y * ray_dir.y) //l2p2 ); for (uint j = 0; j < 9; j++) { probe_sh_accum[j].rgb += light * c[j]; } } if (params.ray_from > 0) { for (uint j = 0; j < 9; j++) { //accum from existing probe_sh_accum[j] += light_probes.data[probe_index * 9 + j]; } } if (params.ray_to == params.ray_count) { for (uint j = 0; j < 9; j++) { //accum from existing probe_sh_accum[j] *= 4.0 / float(params.ray_count); } } for (uint j = 0; j < 9; j++) { //accum from existing light_probes.data[probe_index * 9 + j] = probe_sh_accum[j]; } #endif #ifdef MODE_DILATE vec4 c = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0); //sides first, as they are closer c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, 0), params.atlas_slice), 0); c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(0, 1), params.atlas_slice), 0); c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, 0), params.atlas_slice), 0); c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(0, -1), params.atlas_slice), 0); //endpoints second c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, -1), params.atlas_slice), 0); c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, 1), params.atlas_slice), 0); c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, -1), params.atlas_slice), 0); c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, 1), params.atlas_slice), 0); //far sides third c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, 0), params.atlas_slice), 0); c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(0, 2), params.atlas_slice), 0); c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, 0), params.atlas_slice), 0); c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(0, -2), params.atlas_slice), 0); //far-mid endpoints c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, -1), params.atlas_slice), 0); c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, 1), params.atlas_slice), 0); c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, -1), params.atlas_slice), 0); c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, 1), params.atlas_slice), 0); c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, -2), params.atlas_slice), 0); c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, 2), params.atlas_slice), 0); c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, -2), params.atlas_slice), 0); c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, 2), params.atlas_slice), 0); //far endpoints c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, -2), params.atlas_slice), 0); c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, 2), params.atlas_slice), 0); c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, -2), params.atlas_slice), 0); c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, 2), params.atlas_slice), 0); imageStore(dest_light, ivec3(atlas_pos, params.atlas_slice), c); #endif #ifdef MODE_DENOISE // Joint Non-local means (JNLM) denoiser. // // Based on YoctoImageDenoiser's JNLM implementation with corrections from "Nonlinearly Weighted First-order Regression for Denoising Monte Carlo Renderings". // // <https://github.com/ManuelPrandini/YoctoImageDenoiser/blob/06e19489dd64e47792acffde536393802ba48607/libs/yocto_extension/yocto_extension.cpp#L207> // <https://benedikt-bitterli.me/nfor/nfor.pdf> // // MIT License // // Copyright (c) 2020 ManuelPrandini // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. // // Most of the constants below have been hand-picked to fit the common scenarios lightmaps // are generated with, but they can be altered freely to experiment and achieve better results. // Half the size of the patch window around each pixel that is weighted to compute the denoised pixel. // A value of 1 represents a 3x3 window, a value of 2 a 5x5 window, etc. const int HALF_PATCH_WINDOW = 3; // Half the size of the search window around each pixel that is denoised and weighted to compute the denoised pixel. const int HALF_SEARCH_WINDOW = denoise_params.half_search_window; // For all of the following sigma values, smaller values will give less weight to pixels that have a bigger distance // in the feature being evaluated. Therefore, smaller values are likely to cause more noise to appear, but will also // cause less features to be erased in the process. // Controls how much the spatial distance of the pixels influences the denoising weight. const float SIGMA_SPATIAL = denoise_params.spatial_bandwidth; // Controls how much the light color distance of the pixels influences the denoising weight. const float SIGMA_LIGHT = denoise_params.light_bandwidth; // Controls how much the albedo color distance of the pixels influences the denoising weight. const float SIGMA_ALBEDO = denoise_params.albedo_bandwidth; // Controls how much the normal vector distance of the pixels influences the denoising weight. const float SIGMA_NORMAL = denoise_params.normal_bandwidth; // Strength of the filter. The original paper recommends values around 10 to 15 times the Sigma parameter. const float FILTER_VALUE = denoise_params.filter_strength * SIGMA_LIGHT; // Formula constants. const int PATCH_WINDOW_DIMENSION = (HALF_PATCH_WINDOW * 2 + 1); const int PATCH_WINDOW_DIMENSION_SQUARE = (PATCH_WINDOW_DIMENSION * PATCH_WINDOW_DIMENSION); const float TWO_SIGMA_SPATIAL_SQUARE = 2.0f * SIGMA_SPATIAL * SIGMA_SPATIAL; const float TWO_SIGMA_LIGHT_SQUARE = 2.0f * SIGMA_LIGHT * SIGMA_LIGHT; const float TWO_SIGMA_ALBEDO_SQUARE = 2.0f * SIGMA_ALBEDO * SIGMA_ALBEDO; const float TWO_SIGMA_NORMAL_SQUARE = 2.0f * SIGMA_NORMAL * SIGMA_NORMAL; const float FILTER_SQUARE_TWO_SIGMA_LIGHT_SQUARE = FILTER_VALUE * FILTER_VALUE * TWO_SIGMA_LIGHT_SQUARE; const float EPSILON = 1e-6f; #ifdef USE_SH_LIGHTMAPS const uint slice_count = 4; const uint slice_base = params.atlas_slice * slice_count; #else const uint slice_count = 1; const uint slice_base = params.atlas_slice; #endif for (uint i = 0; i < slice_count; i++) { uint lightmap_slice = slice_base + i; vec3 denoised_rgb = vec3(0.0f); vec4 input_light = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos, lightmap_slice), 0); vec3 input_albedo = texelFetch(sampler2DArray(albedo_tex, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).rgb; vec3 input_normal = texelFetch(sampler2DArray(source_normal, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz; if (length(input_normal) > EPSILON) { // Compute the denoised pixel if the normal is valid. float sum_weights = 0.0f; vec3 input_rgb = input_light.rgb; for (int search_y = -HALF_SEARCH_WINDOW; search_y <= HALF_SEARCH_WINDOW; search_y++) { for (int search_x = -HALF_SEARCH_WINDOW; search_x <= HALF_SEARCH_WINDOW; search_x++) { ivec2 search_pos = atlas_pos + ivec2(search_x, search_y); vec3 search_rgb = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(search_pos, lightmap_slice), 0).rgb; vec3 search_albedo = texelFetch(sampler2DArray(albedo_tex, linear_sampler), ivec3(search_pos, params.atlas_slice), 0).rgb; vec3 search_normal = texelFetch(sampler2DArray(source_normal, linear_sampler), ivec3(search_pos, params.atlas_slice), 0).xyz; float patch_square_dist = 0.0f; for (int offset_y = -HALF_PATCH_WINDOW; offset_y <= HALF_PATCH_WINDOW; offset_y++) { for (int offset_x = -HALF_PATCH_WINDOW; offset_x <= HALF_PATCH_WINDOW; offset_x++) { ivec2 offset_input_pos = atlas_pos + ivec2(offset_x, offset_y); ivec2 offset_search_pos = search_pos + ivec2(offset_x, offset_y); vec3 offset_input_rgb = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(offset_input_pos, lightmap_slice), 0).rgb; vec3 offset_search_rgb = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(offset_search_pos, lightmap_slice), 0).rgb; vec3 offset_delta_rgb = offset_input_rgb - offset_search_rgb; patch_square_dist += dot(offset_delta_rgb, offset_delta_rgb) - TWO_SIGMA_LIGHT_SQUARE; } } patch_square_dist = max(0.0f, patch_square_dist / (3.0f * PATCH_WINDOW_DIMENSION_SQUARE)); float weight = 1.0f; // Ignore weight if search position is out of bounds. weight *= step(0, search_pos.x) * step(search_pos.x, bake_params.atlas_size.x - 1); weight *= step(0, search_pos.y) * step(search_pos.y, bake_params.atlas_size.y - 1); // Ignore weight if normal is zero length. weight *= step(EPSILON, length(search_normal)); // Weight with pixel distance. vec2 pixel_delta = vec2(search_x, search_y); float pixel_square_dist = dot(pixel_delta, pixel_delta); weight *= exp(-pixel_square_dist / TWO_SIGMA_SPATIAL_SQUARE); // Weight with patch. weight *= exp(-patch_square_dist / FILTER_SQUARE_TWO_SIGMA_LIGHT_SQUARE); // Weight with albedo. vec3 albedo_delta = input_albedo - search_albedo; float albedo_square_dist = dot(albedo_delta, albedo_delta); weight *= exp(-albedo_square_dist / TWO_SIGMA_ALBEDO_SQUARE); // Weight with normal. vec3 normal_delta = input_normal - search_normal; float normal_square_dist = dot(normal_delta, normal_delta); weight *= exp(-normal_square_dist / TWO_SIGMA_NORMAL_SQUARE); denoised_rgb += weight * search_rgb; sum_weights += weight; } } denoised_rgb /= sum_weights; } else { // Ignore pixels where the normal is empty, just copy the light color. denoised_rgb = input_light.rgb; } imageStore(dest_light, ivec3(atlas_pos, lightmap_slice), vec4(denoised_rgb, input_light.a)); } #endif #ifdef MODE_PACK_L1_COEFFS vec4 base_coeff = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos, params.atlas_slice * 4), 0); for (int i = 1; i < 4; i++) { vec4 c = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos, params.atlas_slice * 4 + i), 0); if (abs(base_coeff.r) > 0.0) { c.r /= (base_coeff.r * 8); } if (abs(base_coeff.g) > 0.0) { c.g /= (base_coeff.g * 8); } if (abs(base_coeff.b) > 0.0) { c.b /= (base_coeff.b * 8); } c.rgb += vec3(0.5); c.rgb = clamp(c.rgb, vec3(0.0), vec3(1.0)); imageStore(dest_light, ivec3(atlas_pos, params.atlas_slice * 4 + i), c); } #endif }