/*************************************************************************/ /* collision_solver_2d_sw.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "collision_solver_2d_sw.h" #include "collision_solver_2d_sat.h" #define collision_solver sat_2d_calculate_penetration //#define collision_solver gjk_epa_calculate_penetration bool CollisionSolver2DSW::solve_static_line(const Shape2DSW *p_shape_A,const Matrix32& p_transform_A,const Shape2DSW *p_shape_B,const Matrix32& p_transform_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result) { const LineShape2DSW *line = static_cast(p_shape_A); if (p_shape_B->get_type()==Physics2DServer::SHAPE_LINE) return false; Vector2 n = p_transform_A.basis_xform(line->get_normal()).normalized(); Vector2 p = p_transform_A.xform(line->get_normal()*line->get_d()); real_t d = n.dot(p); Vector2 supports[2]; int support_count; p_shape_B->get_supports(p_transform_A.affine_inverse().basis_xform(-n).normalized(),supports,support_count); bool found=false; for(int i=0;i=d) continue; found=true; Vector2 support_A = supports[i] - n*(pd-d); if (p_result_callback) { if (p_swap_result) p_result_callback(supports[i],support_A,p_userdata); else p_result_callback(support_A,supports[i],p_userdata); } } return found; } bool CollisionSolver2DSW::solve_raycast(const Shape2DSW *p_shape_A,const Matrix32& p_transform_A,const Shape2DSW *p_shape_B,const Matrix32& p_transform_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result,Vector2 *sep_axis) { const RayShape2DSW *ray = static_cast(p_shape_A); if (p_shape_B->get_type()==Physics2DServer::SHAPE_RAY) return false; Vector2 from = p_transform_A.get_origin(); Vector2 to = from+p_transform_A[1]*ray->get_length(); Vector2 support_A=to; Matrix32 invb = p_transform_B.affine_inverse(); from = invb.xform(from); to = invb.xform(to); Vector2 p,n; if (!p_shape_B->intersect_segment(from,to,p,n)) { if (sep_axis) *sep_axis=p_transform_A[1].normalized(); return false; } Vector2 support_B=p_transform_B.xform(p); if (p_result_callback) { if (p_swap_result) p_result_callback(support_B,support_A,p_userdata); else p_result_callback(support_A,support_B,p_userdata); } return true; } /* bool CollisionSolver2DSW::solve_ray(const Shape2DSW *p_shape_A,const Matrix32& p_transform_A,const Shape2DSW *p_shape_B,const Matrix32& p_transform_B,const Matrix32& p_inverse_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result) { const RayShape2DSW *ray = static_cast(p_shape_A); Vector2 from = p_transform_A.origin; Vector2 to = from+p_transform_A.basis.get_axis(2)*ray->get_length(); Vector2 support_A=to; from = p_inverse_B.xform(from); to = p_inverse_B.xform(to); Vector2 p,n; if (!p_shape_B->intersect_segment(from,to,&p,&n)) return false; Vector2 support_B=p_transform_B.xform(p); if (p_result_callback) { if (p_swap_result) p_result_callback(support_B,support_A,p_userdata); else p_result_callback(support_A,support_B,p_userdata); } return true; } */ struct _ConcaveCollisionInfo2D { const Matrix32 *transform_A; const Shape2DSW *shape_A; const Matrix32 *transform_B; Vector2 motion_A; Vector2 motion_B; CollisionSolver2DSW::CallbackResult result_callback; void *userdata; bool swap_result; bool collided; int aabb_tests; int collisions; Vector2 *sep_axis; }; void CollisionSolver2DSW::concave_callback(void *p_userdata, Shape2DSW *p_convex) { _ConcaveCollisionInfo2D &cinfo = *(_ConcaveCollisionInfo2D*)(p_userdata); cinfo.aabb_tests++; if (!cinfo.result_callback && cinfo.collided) return; //already collided and no contacts requested, don't test anymore bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, cinfo.motion_A, p_convex,*cinfo.transform_B, cinfo.motion_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result,cinfo.sep_axis ); if (!collided) return; cinfo.collided=true; cinfo.collisions++; } bool CollisionSolver2DSW::solve_concave(const Shape2DSW *p_shape_A,const Matrix32& p_transform_A,const Vector2& p_motion_A,const Shape2DSW *p_shape_B,const Matrix32& p_transform_B,const Vector2& p_motion_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result,Vector2 *sep_axis) { const ConcaveShape2DSW *concave_B=static_cast(p_shape_B); _ConcaveCollisionInfo2D cinfo; cinfo.transform_A=&p_transform_A; cinfo.shape_A=p_shape_A; cinfo.transform_B=&p_transform_B; cinfo.motion_A=p_motion_A; cinfo.result_callback=p_result_callback; cinfo.userdata=p_userdata; cinfo.swap_result=p_swap_result; cinfo.collided=false; cinfo.collisions=0; cinfo.sep_axis=sep_axis; cinfo.aabb_tests=0; Matrix32 rel_transform = p_transform_A; rel_transform.elements[2]-=p_transform_B.elements[2]; //quickly compute a local Rect2 Rect2 local_aabb; for(int i=0;i<2;i++) { Vector2 axis( p_transform_B.elements[i] ); float axis_scale = 1.0/axis.length(); axis*=axis_scale; float smin,smax; p_shape_A->project_rangev(axis,rel_transform,smin,smax); smin*=axis_scale; smax*=axis_scale; local_aabb.pos[i]=smin; local_aabb.size[i]=smax-smin; } concave_B->cull(local_aabb,concave_callback,&cinfo); // print_line("Rect2 TESTS: "+itos(cinfo.aabb_tests)); return cinfo.collided; } bool CollisionSolver2DSW::solve(const Shape2DSW *p_shape_A,const Matrix32& p_transform_A,const Vector2& p_motion_A,const Shape2DSW *p_shape_B,const Matrix32& p_transform_B,const Vector2& p_motion_B,CallbackResult p_result_callback,void *p_userdata,Vector2 *sep_axis) { Physics2DServer::ShapeType type_A=p_shape_A->get_type(); Physics2DServer::ShapeType type_B=p_shape_B->get_type(); bool concave_A=p_shape_A->is_concave(); bool concave_B=p_shape_B->is_concave(); bool swap = false; if (type_A>type_B) { SWAP(type_A,type_B); SWAP(concave_A,concave_B); swap=true; } if (type_A==Physics2DServer::SHAPE_LINE) { if (type_B==Physics2DServer::SHAPE_LINE || type_B==Physics2DServer::SHAPE_RAY) { return false; //if (type_B==Physics2DServer::SHAPE_RAY) { // return false; } if (swap) { return solve_static_line(p_shape_B,p_transform_B,p_shape_A,p_transform_A,p_result_callback,p_userdata,true); } else { return solve_static_line(p_shape_A,p_transform_A,p_shape_B,p_transform_B,p_result_callback,p_userdata,false); } /*} else if (type_A==Physics2DServer::SHAPE_RAY) { if (type_B==Physics2DServer::SHAPE_RAY) return false; if (swap) { return solve_ray(p_shape_B,p_transform_B,p_shape_A,p_transform_A,p_inverse_A,p_result_callback,p_userdata,true); } else { return solve_ray(p_shape_A,p_transform_A,p_shape_B,p_transform_B,p_inverse_B,p_result_callback,p_userdata,false); } */ } else if (type_A==Physics2DServer::SHAPE_RAY) { if (type_B==Physics2DServer::SHAPE_RAY) { return false; //no ray-ray } if (swap) { return solve_raycast(p_shape_B,p_transform_B,p_shape_A,p_transform_A,p_result_callback,p_userdata,true,sep_axis); } else { return solve_raycast(p_shape_A,p_transform_A,p_shape_B,p_transform_B,p_result_callback,p_userdata,false,sep_axis); } } else if (concave_B) { if (concave_A) return false; if (!swap) return solve_concave(p_shape_A,p_transform_A,p_motion_A,p_shape_B,p_transform_B,p_motion_B,p_result_callback,p_userdata,false,sep_axis); else return solve_concave(p_shape_B,p_transform_B,p_motion_B,p_shape_A,p_transform_A,p_motion_A,p_result_callback,p_userdata,true,sep_axis); } else { return collision_solver(p_shape_A, p_transform_A,p_motion_A, p_shape_B, p_transform_B, p_motion_B,p_result_callback,p_userdata,false,sep_axis); } return false; }