// basisu_backend.h // Copyright (C) 2019-2024 Binomial LLC. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "../transcoder/basisu.h" #include "basisu_enc.h" #include "../transcoder/basisu_transcoder_internal.h" #include "basisu_frontend.h" namespace basisu { struct etc1_selector_palette_entry { etc1_selector_palette_entry() { clear(); } void clear() { basisu::clear_obj(*this); } uint8_t operator[] (uint32_t i) const { assert(i < 16); return m_selectors[i]; } uint8_t& operator[] (uint32_t i) { assert(i < 16); return m_selectors[i]; } void set_uint32(uint32_t v) { for (uint32_t byte_index = 0; byte_index < 4; byte_index++) { uint32_t b = (v >> (byte_index * 8)) & 0xFF; m_selectors[byte_index * 4 + 0] = b & 3; m_selectors[byte_index * 4 + 1] = (b >> 2) & 3; m_selectors[byte_index * 4 + 2] = (b >> 4) & 3; m_selectors[byte_index * 4 + 3] = (b >> 6) & 3; } } uint32_t get_uint32() const { return get_byte(0) | (get_byte(1) << 8) | (get_byte(2) << 16) | (get_byte(3) << 24); } uint32_t get_byte(uint32_t byte_index) const { assert(byte_index < 4); return m_selectors[byte_index * 4 + 0] | (m_selectors[byte_index * 4 + 1] << 2) | (m_selectors[byte_index * 4 + 2] << 4) | (m_selectors[byte_index * 4 + 3] << 6); } uint8_t operator()(uint32_t x, uint32_t y) const { assert((x < 4) && (y < 4)); return m_selectors[x + y * 4]; } uint8_t& operator()(uint32_t x, uint32_t y) { assert((x < 4) && (y < 4)); return m_selectors[x + y * 4]; } bool operator< (const etc1_selector_palette_entry& other) const { for (uint32_t i = 0; i < 16; i++) { if (m_selectors[i] < other.m_selectors[i]) return true; else if (m_selectors[i] != other.m_selectors[i]) return false; } return false; } bool operator== (const etc1_selector_palette_entry& other) const { for (uint32_t i = 0; i < 16; i++) { if (m_selectors[i] != other.m_selectors[i]) return false; } return true; } private: uint8_t m_selectors[16]; }; typedef basisu::vector etc1_selector_palette_entry_vec; struct encoder_block { encoder_block() { clear(); } uint32_t m_endpoint_predictor; int m_endpoint_index; int m_selector_index; int m_selector_history_buf_index; bool m_is_cr_target; void clear() { m_endpoint_predictor = 0; m_endpoint_index = 0; m_selector_index = 0; m_selector_history_buf_index = 0; m_is_cr_target = false; } }; typedef basisu::vector encoder_block_vec; typedef vector2D encoder_block_vec2D; struct etc1_endpoint_palette_entry { etc1_endpoint_palette_entry() { clear(); } color_rgba m_color5; uint32_t m_inten5; bool m_color5_valid; void clear() { clear_obj(*this); } }; typedef basisu::vector etc1_endpoint_palette_entry_vec; struct basisu_backend_params { bool m_etc1s; bool m_debug, m_debug_images; float m_endpoint_rdo_quality_thresh; float m_selector_rdo_quality_thresh; uint32_t m_compression_level; bool m_used_global_codebooks; bool m_validate; basisu_backend_params() { clear(); } void clear() { m_etc1s = false; m_debug = false; m_debug_images = false; m_endpoint_rdo_quality_thresh = 0.0f; m_selector_rdo_quality_thresh = 0.0f; m_compression_level = 0; m_used_global_codebooks = false; m_validate = true; } }; struct basisu_backend_slice_desc { basisu_backend_slice_desc() { clear(); } void clear() { clear_obj(*this); } uint32_t m_first_block_index; uint32_t m_orig_width; uint32_t m_orig_height; uint32_t m_width; uint32_t m_height; uint32_t m_num_blocks_x; uint32_t m_num_blocks_y; uint32_t m_num_macroblocks_x; uint32_t m_num_macroblocks_y; uint32_t m_source_file_index; // also the basis image index uint32_t m_mip_index; bool m_alpha; bool m_iframe; }; typedef basisu::vector basisu_backend_slice_desc_vec; struct basisu_backend_output { basist::basis_tex_format m_tex_format; bool m_etc1s; bool m_uses_global_codebooks; bool m_srgb; uint32_t m_num_endpoints; uint32_t m_num_selectors; uint8_vec m_endpoint_palette; uint8_vec m_selector_palette; basisu_backend_slice_desc_vec m_slice_desc; uint8_vec m_slice_image_tables; basisu::vector m_slice_image_data; uint16_vec m_slice_image_crcs; basisu_backend_output() { clear(); } void clear() { m_tex_format = basist::basis_tex_format::cETC1S; m_etc1s = false; m_uses_global_codebooks = false; m_srgb = true; m_num_endpoints = 0; m_num_selectors = 0; m_endpoint_palette.clear(); m_selector_palette.clear(); m_slice_desc.clear(); m_slice_image_tables.clear(); m_slice_image_data.clear(); m_slice_image_crcs.clear(); } uint32_t get_output_size_estimate() const { uint32_t total_compressed_bytes = (uint32_t)(m_slice_image_tables.size() + m_endpoint_palette.size() + m_selector_palette.size()); for (uint32_t i = 0; i < m_slice_image_data.size(); i++) total_compressed_bytes += (uint32_t)m_slice_image_data[i].size(); return total_compressed_bytes; } }; class basisu_backend { BASISU_NO_EQUALS_OR_COPY_CONSTRUCT(basisu_backend); public: basisu_backend(); void clear(); void init(basisu_frontend *pFront_end, basisu_backend_params ¶ms, const basisu_backend_slice_desc_vec &slice_desc); uint32_t encode(); const basisu_backend_output &get_output() const { return m_output; } const basisu_backend_params& get_params() const { return m_params; } private: basisu_frontend *m_pFront_end; basisu_backend_params m_params; basisu_backend_slice_desc_vec m_slices; basisu_backend_output m_output; etc1_endpoint_palette_entry_vec m_endpoint_palette; etc1_selector_palette_entry_vec m_selector_palette; struct etc1_global_selector_cb_entry_desc { uint32_t m_pal_index; uint32_t m_mod_index; bool m_was_used; }; typedef basisu::vector etc1_global_selector_cb_entry_desc_vec; etc1_global_selector_cb_entry_desc_vec m_global_selector_palette_desc; basisu::vector m_slice_encoder_blocks; // Maps OLD to NEW endpoint/selector indices uint_vec m_endpoint_remap_table_old_to_new; uint_vec m_endpoint_remap_table_new_to_old; bool_vec m_old_endpoint_was_used; bool_vec m_new_endpoint_was_used; uint_vec m_selector_remap_table_old_to_new; // Maps NEW to OLD endpoint/selector indices uint_vec m_selector_remap_table_new_to_old; uint32_t get_total_slices() const { return (uint32_t)m_slices.size(); } uint32_t get_total_slice_blocks() const { return m_pFront_end->get_total_output_blocks(); } uint32_t get_block_index(uint32_t slice_index, uint32_t block_x, uint32_t block_y) const { const basisu_backend_slice_desc &slice = m_slices[slice_index]; assert((block_x < slice.m_num_blocks_x) && (block_y < slice.m_num_blocks_y)); return slice.m_first_block_index + block_y * slice.m_num_blocks_x + block_x; } uint32_t get_total_blocks(uint32_t slice_index) const { return m_slices[slice_index].m_num_blocks_x * m_slices[slice_index].m_num_blocks_y; } uint32_t get_total_blocks() const { uint32_t total_blocks = 0; for (uint32_t i = 0; i < m_slices.size(); i++) total_blocks += get_total_blocks(i); return total_blocks; } // Returns the total number of input texels, not counting padding up to blocks/macroblocks. uint32_t get_total_input_texels(uint32_t slice_index) const { return m_slices[slice_index].m_orig_width * m_slices[slice_index].m_orig_height; } uint32_t get_total_input_texels() const { uint32_t total_texels = 0; for (uint32_t i = 0; i < m_slices.size(); i++) total_texels += get_total_input_texels(i); return total_texels; } int find_slice(uint32_t block_index, uint32_t *pBlock_x, uint32_t *pBlock_y) const { for (uint32_t i = 0; i < m_slices.size(); i++) { if ((block_index >= m_slices[i].m_first_block_index) && (block_index < (m_slices[i].m_first_block_index + m_slices[i].m_num_blocks_x * m_slices[i].m_num_blocks_y))) { const uint32_t ofs = block_index - m_slices[i].m_first_block_index; const uint32_t x = ofs % m_slices[i].m_num_blocks_x; const uint32_t y = ofs / m_slices[i].m_num_blocks_x; if (pBlock_x) *pBlock_x = x; if (pBlock_y) *pBlock_y = y; return i; } } return -1; } void create_endpoint_palette(); void create_selector_palette(); // endpoint palette // 5:5:5 and predicted 4:4:4 colors, 1 or 2 3-bit intensity table indices // selector palette // 4x4 2-bit selectors // per-macroblock: // 4 diff bits // 4 flip bits // Endpoint template index, 1-8 endpoint indices // Alternately, if no template applies, we can send 4 ETC1S bits followed by 4-8 endpoint indices // 4 selector indices void reoptimize_and_sort_endpoints_codebook(uint32_t total_block_endpoints_remapped, uint_vec &all_endpoint_indices); void sort_selector_codebook(); void create_encoder_blocks(); void compute_slice_crcs(); bool encode_image(); bool encode_endpoint_palette(); bool encode_selector_palette(); int find_video_frame(int slice_index, int delta); void check_for_valid_cr_blocks(); }; } // namespace basisu