/**************************************************************************/ /* vector2.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "vector2.h" #include "core/math/vector2i.h" #include "core/string/ustring.h" real_t Vector2::angle() const { return Math::atan2(y, x); } Vector2 Vector2::from_angle(real_t p_angle) { return Vector2(Math::cos(p_angle), Math::sin(p_angle)); } real_t Vector2::length() const { return Math::sqrt(x * x + y * y); } real_t Vector2::length_squared() const { return x * x + y * y; } void Vector2::normalize() { real_t l = x * x + y * y; if (l != 0) { l = Math::sqrt(l); x /= l; y /= l; } } Vector2 Vector2::normalized() const { Vector2 v = *this; v.normalize(); return v; } bool Vector2::is_normalized() const { // use length_squared() instead of length() to avoid sqrt(), makes it more stringent. return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON); } real_t Vector2::distance_to(const Vector2 &p_vector2) const { return Math::sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y)); } real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const { return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y); } real_t Vector2::angle_to(const Vector2 &p_vector2) const { return Math::atan2(cross(p_vector2), dot(p_vector2)); } real_t Vector2::angle_to_point(const Vector2 &p_vector2) const { return (p_vector2 - *this).angle(); } real_t Vector2::dot(const Vector2 &p_other) const { return x * p_other.x + y * p_other.y; } real_t Vector2::cross(const Vector2 &p_other) const { return x * p_other.y - y * p_other.x; } Vector2 Vector2::sign() const { return Vector2(SIGN(x), SIGN(y)); } Vector2 Vector2::floor() const { return Vector2(Math::floor(x), Math::floor(y)); } Vector2 Vector2::ceil() const { return Vector2(Math::ceil(x), Math::ceil(y)); } Vector2 Vector2::round() const { return Vector2(Math::round(x), Math::round(y)); } Vector2 Vector2::rotated(real_t p_by) const { real_t sine = Math::sin(p_by); real_t cosi = Math::cos(p_by); return Vector2( x * cosi - y * sine, x * sine + y * cosi); } Vector2 Vector2::posmod(real_t p_mod) const { return Vector2(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod)); } Vector2 Vector2::posmodv(const Vector2 &p_modv) const { return Vector2(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y)); } Vector2 Vector2::project(const Vector2 &p_to) const { return p_to * (dot(p_to) / p_to.length_squared()); } Vector2 Vector2::clamp(const Vector2 &p_min, const Vector2 &p_max) const { return Vector2( CLAMP(x, p_min.x, p_max.x), CLAMP(y, p_min.y, p_max.y)); } Vector2 Vector2::clampf(real_t p_min, real_t p_max) const { return Vector2( CLAMP(x, p_min, p_max), CLAMP(y, p_min, p_max)); } Vector2 Vector2::snapped(const Vector2 &p_step) const { return Vector2( Math::snapped(x, p_step.x), Math::snapped(y, p_step.y)); } Vector2 Vector2::snappedf(real_t p_step) const { return Vector2( Math::snapped(x, p_step), Math::snapped(y, p_step)); } Vector2 Vector2::limit_length(real_t p_len) const { const real_t l = length(); Vector2 v = *this; if (l > 0 && p_len < l) { v /= l; v *= p_len; } return v; } Vector2 Vector2::move_toward(const Vector2 &p_to, real_t p_delta) const { Vector2 v = *this; Vector2 vd = p_to - v; real_t len = vd.length(); return len <= p_delta || len < (real_t)CMP_EPSILON ? p_to : v + vd / len * p_delta; } // slide returns the component of the vector along the given plane, specified by its normal vector. Vector2 Vector2::slide(const Vector2 &p_normal) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector2(), "The normal Vector2 " + p_normal.operator String() + "must be normalized."); #endif return *this - p_normal * dot(p_normal); } Vector2 Vector2::bounce(const Vector2 &p_normal) const { return -reflect(p_normal); } Vector2 Vector2::reflect(const Vector2 &p_normal) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector2(), "The normal Vector2 " + p_normal.operator String() + "must be normalized."); #endif return 2.0f * p_normal * dot(p_normal) - *this; } bool Vector2::is_equal_approx(const Vector2 &p_v) const { return Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y); } bool Vector2::is_zero_approx() const { return Math::is_zero_approx(x) && Math::is_zero_approx(y); } bool Vector2::is_finite() const { return Math::is_finite(x) && Math::is_finite(y); } Vector2::operator String() const { return "(" + String::num_real(x, true) + ", " + String::num_real(y, true) + ")"; } Vector2::operator Vector2i() const { return Vector2i(x, y); }