/**************************************************************************/ /* nav_map.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "nav_map.h" #include "nav_agent.h" #include "nav_link.h" #include "nav_obstacle.h" #include "nav_region.h" #include "core/config/project_settings.h" #include "core/object/worker_thread_pool.h" #include #ifdef DEBUG_ENABLED #define NAVMAP_ITERATION_ZERO_ERROR_MSG() \ ERR_PRINT_ONCE("NavigationServer navigation map query failed because it was made before first map synchronization.\n\ NavigationServer 'map_changed' signal can be used to receive update notifications.\n\ NavigationServer 'map_get_iteration_id()' can be used to check if a map has finished its newest iteration."); #else #define NAVMAP_ITERATION_ZERO_ERROR_MSG() #endif // DEBUG_ENABLED void NavMap::set_up(Vector3 p_up) { if (up == p_up) { return; } up = p_up; map_settings_dirty = true; } void NavMap::set_cell_size(real_t p_cell_size) { if (cell_size == p_cell_size) { return; } cell_size = p_cell_size; _update_merge_rasterizer_cell_dimensions(); map_settings_dirty = true; } void NavMap::set_cell_height(real_t p_cell_height) { if (cell_height == p_cell_height) { return; } cell_height = p_cell_height; _update_merge_rasterizer_cell_dimensions(); map_settings_dirty = true; } void NavMap::set_merge_rasterizer_cell_scale(float p_value) { if (merge_rasterizer_cell_scale == p_value) { return; } merge_rasterizer_cell_scale = p_value; _update_merge_rasterizer_cell_dimensions(); map_settings_dirty = true; } void NavMap::set_use_edge_connections(bool p_enabled) { if (use_edge_connections == p_enabled) { return; } use_edge_connections = p_enabled; iteration_dirty = true; } void NavMap::set_edge_connection_margin(real_t p_edge_connection_margin) { if (edge_connection_margin == p_edge_connection_margin) { return; } edge_connection_margin = p_edge_connection_margin; iteration_dirty = true; } void NavMap::set_link_connection_radius(real_t p_link_connection_radius) { if (link_connection_radius == p_link_connection_radius) { return; } link_connection_radius = p_link_connection_radius; iteration_dirty = true; } gd::PointKey NavMap::get_point_key(const Vector3 &p_pos) const { const int x = static_cast(Math::floor(p_pos.x / merge_rasterizer_cell_size)); const int y = static_cast(Math::floor(p_pos.y / merge_rasterizer_cell_height)); const int z = static_cast(Math::floor(p_pos.z / merge_rasterizer_cell_size)); gd::PointKey p; p.key = 0; p.x = x; p.y = y; p.z = z; return p; } void NavMap::query_path(NavMeshQueries3D::NavMeshPathQueryTask3D &p_query_task) { RWLockRead read_lock(map_rwlock); if (iteration_id == 0) { return; } path_query_slots_semaphore.wait(); path_query_slots_mutex.lock(); for (NavMeshQueries3D::PathQuerySlot &p_path_query_slot : path_query_slots) { if (!p_path_query_slot.in_use) { p_path_query_slot.in_use = true; p_query_task.path_query_slot = &p_path_query_slot; break; } } path_query_slots_mutex.unlock(); if (p_query_task.path_query_slot == nullptr) { path_query_slots_semaphore.post(); ERR_FAIL_NULL_MSG(p_query_task.path_query_slot, "No unused NavMap path query slot found! This should never happen :(."); } p_query_task.map_up = get_up(); NavMeshQueries3D::query_task_polygons_get_path(p_query_task, polygons, up, link_polygons.size()); path_query_slots_mutex.lock(); uint32_t used_slot_index = p_query_task.path_query_slot->slot_index; path_query_slots[used_slot_index].in_use = false; p_query_task.path_query_slot = nullptr; path_query_slots_mutex.unlock(); path_query_slots_semaphore.post(); } Vector3 NavMap::get_closest_point_to_segment(const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) const { RWLockRead read_lock(map_rwlock); if (iteration_id == 0) { NAVMAP_ITERATION_ZERO_ERROR_MSG(); return Vector3(); } return NavMeshQueries3D::polygons_get_closest_point_to_segment(polygons, p_from, p_to, p_use_collision); } Vector3 NavMap::get_closest_point(const Vector3 &p_point) const { RWLockRead read_lock(map_rwlock); if (iteration_id == 0) { NAVMAP_ITERATION_ZERO_ERROR_MSG(); return Vector3(); } return NavMeshQueries3D::polygons_get_closest_point(polygons, p_point); } Vector3 NavMap::get_closest_point_normal(const Vector3 &p_point) const { RWLockRead read_lock(map_rwlock); if (iteration_id == 0) { NAVMAP_ITERATION_ZERO_ERROR_MSG(); return Vector3(); } return NavMeshQueries3D::polygons_get_closest_point_normal(polygons, p_point); } RID NavMap::get_closest_point_owner(const Vector3 &p_point) const { RWLockRead read_lock(map_rwlock); if (iteration_id == 0) { NAVMAP_ITERATION_ZERO_ERROR_MSG(); return RID(); } return NavMeshQueries3D::polygons_get_closest_point_owner(polygons, p_point); } gd::ClosestPointQueryResult NavMap::get_closest_point_info(const Vector3 &p_point) const { RWLockRead read_lock(map_rwlock); return NavMeshQueries3D::polygons_get_closest_point_info(polygons, p_point); } void NavMap::add_region(NavRegion *p_region) { regions.push_back(p_region); iteration_dirty = true; } void NavMap::remove_region(NavRegion *p_region) { int64_t region_index = regions.find(p_region); if (region_index >= 0) { regions.remove_at_unordered(region_index); iteration_dirty = true; } } void NavMap::add_link(NavLink *p_link) { links.push_back(p_link); iteration_dirty = true; } void NavMap::remove_link(NavLink *p_link) { int64_t link_index = links.find(p_link); if (link_index >= 0) { links.remove_at_unordered(link_index); iteration_dirty = true; } } bool NavMap::has_agent(NavAgent *agent) const { return agents.has(agent); } void NavMap::add_agent(NavAgent *agent) { if (!has_agent(agent)) { agents.push_back(agent); agents_dirty = true; } } void NavMap::remove_agent(NavAgent *agent) { remove_agent_as_controlled(agent); int64_t agent_index = agents.find(agent); if (agent_index >= 0) { agents.remove_at_unordered(agent_index); agents_dirty = true; } } bool NavMap::has_obstacle(NavObstacle *obstacle) const { return obstacles.has(obstacle); } void NavMap::add_obstacle(NavObstacle *obstacle) { if (obstacle->get_paused()) { // No point in adding a paused obstacle, it will add itself when unpaused again. return; } if (!has_obstacle(obstacle)) { obstacles.push_back(obstacle); obstacles_dirty = true; } } void NavMap::remove_obstacle(NavObstacle *obstacle) { int64_t obstacle_index = obstacles.find(obstacle); if (obstacle_index >= 0) { obstacles.remove_at_unordered(obstacle_index); obstacles_dirty = true; } } void NavMap::set_agent_as_controlled(NavAgent *agent) { remove_agent_as_controlled(agent); if (agent->get_paused()) { // No point in adding a paused agent, it will add itself when unpaused again. return; } if (agent->get_use_3d_avoidance()) { int64_t agent_3d_index = active_3d_avoidance_agents.find(agent); if (agent_3d_index < 0) { active_3d_avoidance_agents.push_back(agent); agents_dirty = true; } } else { int64_t agent_2d_index = active_2d_avoidance_agents.find(agent); if (agent_2d_index < 0) { active_2d_avoidance_agents.push_back(agent); agents_dirty = true; } } } void NavMap::remove_agent_as_controlled(NavAgent *agent) { int64_t agent_3d_index = active_3d_avoidance_agents.find(agent); if (agent_3d_index >= 0) { active_3d_avoidance_agents.remove_at_unordered(agent_3d_index); agents_dirty = true; } int64_t agent_2d_index = active_2d_avoidance_agents.find(agent); if (agent_2d_index >= 0) { active_2d_avoidance_agents.remove_at_unordered(agent_2d_index); agents_dirty = true; } } Vector3 NavMap::get_random_point(uint32_t p_navigation_layers, bool p_uniformly) const { RWLockRead read_lock(map_rwlock); const LocalVector map_regions = get_regions(); if (map_regions.is_empty()) { return Vector3(); } LocalVector accessible_regions; for (const NavRegion *region : map_regions) { if (!region->get_enabled() || (p_navigation_layers & region->get_navigation_layers()) == 0) { continue; } accessible_regions.push_back(region); } if (accessible_regions.is_empty()) { // All existing region polygons are disabled. return Vector3(); } if (p_uniformly) { real_t accumulated_region_surface_area = 0; RBMap accessible_regions_area_map; for (uint32_t accessible_region_index = 0; accessible_region_index < accessible_regions.size(); accessible_region_index++) { const NavRegion *region = accessible_regions[accessible_region_index]; real_t region_surface_area = region->get_surface_area(); if (region_surface_area == 0.0f) { continue; } accessible_regions_area_map[accumulated_region_surface_area] = accessible_region_index; accumulated_region_surface_area += region_surface_area; } if (accessible_regions_area_map.is_empty() || accumulated_region_surface_area == 0) { // All faces have no real surface / no area. return Vector3(); } real_t random_accessible_regions_area_map = Math::random(real_t(0), accumulated_region_surface_area); RBMap::Iterator E = accessible_regions_area_map.find_closest(random_accessible_regions_area_map); ERR_FAIL_COND_V(!E, Vector3()); uint32_t random_region_index = E->value; ERR_FAIL_UNSIGNED_INDEX_V(random_region_index, accessible_regions.size(), Vector3()); const NavRegion *random_region = accessible_regions[random_region_index]; ERR_FAIL_NULL_V(random_region, Vector3()); return random_region->get_random_point(p_navigation_layers, p_uniformly); } else { uint32_t random_region_index = Math::random(int(0), accessible_regions.size() - 1); const NavRegion *random_region = accessible_regions[random_region_index]; ERR_FAIL_NULL_V(random_region, Vector3()); return random_region->get_random_point(p_navigation_layers, p_uniformly); } } void NavMap::sync() { RWLockWrite write_lock(map_rwlock); performance_data.pm_region_count = regions.size(); performance_data.pm_agent_count = agents.size(); performance_data.pm_link_count = links.size(); performance_data.pm_obstacle_count = obstacles.size(); _sync_dirty_map_update_requests(); if (iteration_dirty) { performance_data.pm_polygon_count = 0; performance_data.pm_edge_count = 0; performance_data.pm_edge_merge_count = 0; performance_data.pm_edge_connection_count = 0; performance_data.pm_edge_free_count = 0; // Remove regions connections. region_external_connections.clear(); for (NavRegion *region : regions) { region_external_connections[region] = LocalVector(); } // Resize the polygon count. int polygon_count = 0; for (const NavRegion *region : regions) { if (!region->get_enabled()) { continue; } polygon_count += region->get_polygons().size(); } polygons.resize(polygon_count); // Copy all region polygons in the map. polygon_count = 0; for (const NavRegion *region : regions) { if (!region->get_enabled()) { continue; } const LocalVector &polygons_source = region->get_polygons(); for (uint32_t n = 0; n < polygons_source.size(); n++) { polygons[polygon_count] = polygons_source[n]; polygons[polygon_count].id = polygon_count; polygon_count++; } } performance_data.pm_polygon_count = polygon_count; // Group all edges per key. connection_pairs_map.clear(); connection_pairs_map.reserve(polygons.size()); int free_edges_count = 0; // How many ConnectionPairs have only one Connection. for (gd::Polygon &poly : polygons) { for (uint32_t p = 0; p < poly.points.size(); p++) { const int next_point = (p + 1) % poly.points.size(); const gd::EdgeKey ek(poly.points[p].key, poly.points[next_point].key); HashMap::Iterator pair_it = connection_pairs_map.find(ek); if (!pair_it) { pair_it = connection_pairs_map.insert(ek, ConnectionPair()); performance_data.pm_edge_count += 1; ++free_edges_count; } ConnectionPair &pair = pair_it->value; if (pair.size < 2) { // Add the polygon/edge tuple to this key. gd::Edge::Connection new_connection; new_connection.polygon = &poly; new_connection.edge = p; new_connection.pathway_start = poly.points[p].pos; new_connection.pathway_end = poly.points[next_point].pos; pair.connections[pair.size] = new_connection; ++pair.size; if (pair.size == 2) { --free_edges_count; } } else { // The edge is already connected with another edge, skip. ERR_PRINT_ONCE("Navigation map synchronization error. Attempted to merge a navigation mesh polygon edge with another already-merged edge. This is usually caused by crossing edges, overlapping polygons, or a mismatch of the NavigationMesh / NavigationPolygon baked 'cell_size' and navigation map 'cell_size'. If you're certain none of above is the case, change 'navigation/3d/merge_rasterizer_cell_scale' to 0.001."); } } } free_edges.clear(); free_edges.reserve(free_edges_count); for (const KeyValue &pair_it : connection_pairs_map) { const ConnectionPair &pair = pair_it.value; if (pair.size == 2) { // Connect edge that are shared in different polygons. const gd::Edge::Connection &c1 = pair.connections[0]; const gd::Edge::Connection &c2 = pair.connections[1]; c1.polygon->edges[c1.edge].connections.push_back(c2); c2.polygon->edges[c2.edge].connections.push_back(c1); // Note: The pathway_start/end are full for those connection and do not need to be modified. performance_data.pm_edge_merge_count += 1; } else { CRASH_COND_MSG(pair.size != 1, vformat("Number of connection != 1. Found: %d", pair.size)); if (use_edge_connections && pair.connections[0].polygon->owner->get_use_edge_connections()) { free_edges.push_back(pair.connections[0]); } } } // Find the compatible near edges. // // Note: // Considering that the edges must be compatible (for obvious reasons) // to be connected, create new polygons to remove that small gap is // not really useful and would result in wasteful computation during // connection, integration and path finding. performance_data.pm_edge_free_count = free_edges.size(); const real_t edge_connection_margin_squared = edge_connection_margin * edge_connection_margin; for (uint32_t i = 0; i < free_edges.size(); i++) { const gd::Edge::Connection &free_edge = free_edges[i]; Vector3 edge_p1 = free_edge.polygon->points[free_edge.edge].pos; Vector3 edge_p2 = free_edge.polygon->points[(free_edge.edge + 1) % free_edge.polygon->points.size()].pos; for (uint32_t j = 0; j < free_edges.size(); j++) { const gd::Edge::Connection &other_edge = free_edges[j]; if (i == j || free_edge.polygon->owner == other_edge.polygon->owner) { continue; } Vector3 other_edge_p1 = other_edge.polygon->points[other_edge.edge].pos; Vector3 other_edge_p2 = other_edge.polygon->points[(other_edge.edge + 1) % other_edge.polygon->points.size()].pos; // Compute the projection of the opposite edge on the current one Vector3 edge_vector = edge_p2 - edge_p1; real_t projected_p1_ratio = edge_vector.dot(other_edge_p1 - edge_p1) / (edge_vector.length_squared()); real_t projected_p2_ratio = edge_vector.dot(other_edge_p2 - edge_p1) / (edge_vector.length_squared()); if ((projected_p1_ratio < 0.0 && projected_p2_ratio < 0.0) || (projected_p1_ratio > 1.0 && projected_p2_ratio > 1.0)) { continue; } // Check if the two edges are close to each other enough and compute a pathway between the two regions. Vector3 self1 = edge_vector * CLAMP(projected_p1_ratio, 0.0, 1.0) + edge_p1; Vector3 other1; if (projected_p1_ratio >= 0.0 && projected_p1_ratio <= 1.0) { other1 = other_edge_p1; } else { other1 = other_edge_p1.lerp(other_edge_p2, (1.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio)); } if (other1.distance_squared_to(self1) > edge_connection_margin_squared) { continue; } Vector3 self2 = edge_vector * CLAMP(projected_p2_ratio, 0.0, 1.0) + edge_p1; Vector3 other2; if (projected_p2_ratio >= 0.0 && projected_p2_ratio <= 1.0) { other2 = other_edge_p2; } else { other2 = other_edge_p1.lerp(other_edge_p2, (0.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio)); } if (other2.distance_squared_to(self2) > edge_connection_margin_squared) { continue; } // The edges can now be connected. gd::Edge::Connection new_connection = other_edge; new_connection.pathway_start = (self1 + other1) / 2.0; new_connection.pathway_end = (self2 + other2) / 2.0; free_edge.polygon->edges[free_edge.edge].connections.push_back(new_connection); // Add the connection to the region_connection map. region_external_connections[(NavRegion *)free_edge.polygon->owner].push_back(new_connection); performance_data.pm_edge_connection_count += 1; } } uint32_t link_poly_idx = 0; link_polygons.resize(links.size()); // Search for polygons within range of a nav link. for (const NavLink *link : links) { if (!link->get_enabled()) { continue; } const Vector3 start = link->get_start_position(); const Vector3 end = link->get_end_position(); gd::Polygon *closest_start_polygon = nullptr; real_t closest_start_sqr_dist = link_connection_radius * link_connection_radius; Vector3 closest_start_point; gd::Polygon *closest_end_polygon = nullptr; real_t closest_end_sqr_dist = link_connection_radius * link_connection_radius; Vector3 closest_end_point; // Create link to any polygons within the search radius of the start point. for (uint32_t start_index = 0; start_index < polygons.size(); start_index++) { gd::Polygon &start_poly = polygons[start_index]; // For each face check the distance to the start for (uint32_t start_point_id = 2; start_point_id < start_poly.points.size(); start_point_id += 1) { const Face3 start_face(start_poly.points[0].pos, start_poly.points[start_point_id - 1].pos, start_poly.points[start_point_id].pos); const Vector3 start_point = start_face.get_closest_point_to(start); const real_t sqr_dist = start_point.distance_squared_to(start); // Pick the polygon that is within our radius and is closer than anything we've seen yet. if (sqr_dist < closest_start_sqr_dist) { closest_start_sqr_dist = sqr_dist; closest_start_point = start_point; closest_start_polygon = &start_poly; } } } // Find any polygons within the search radius of the end point. for (gd::Polygon &end_poly : polygons) { // For each face check the distance to the end for (uint32_t end_point_id = 2; end_point_id < end_poly.points.size(); end_point_id += 1) { const Face3 end_face(end_poly.points[0].pos, end_poly.points[end_point_id - 1].pos, end_poly.points[end_point_id].pos); const Vector3 end_point = end_face.get_closest_point_to(end); const real_t sqr_dist = end_point.distance_squared_to(end); // Pick the polygon that is within our radius and is closer than anything we've seen yet. if (sqr_dist < closest_end_sqr_dist) { closest_end_sqr_dist = sqr_dist; closest_end_point = end_point; closest_end_polygon = &end_poly; } } } // If we have both a start and end point, then create a synthetic polygon to route through. if (closest_start_polygon && closest_end_polygon) { gd::Polygon &new_polygon = link_polygons[link_poly_idx++]; new_polygon.id = polygon_count++; new_polygon.owner = link; new_polygon.edges.clear(); new_polygon.edges.resize(4); new_polygon.points.clear(); new_polygon.points.reserve(4); // Build a set of vertices that create a thin polygon going from the start to the end point. new_polygon.points.push_back({ closest_start_point, get_point_key(closest_start_point) }); new_polygon.points.push_back({ closest_start_point, get_point_key(closest_start_point) }); new_polygon.points.push_back({ closest_end_point, get_point_key(closest_end_point) }); new_polygon.points.push_back({ closest_end_point, get_point_key(closest_end_point) }); // Setup connections to go forward in the link. { gd::Edge::Connection entry_connection; entry_connection.polygon = &new_polygon; entry_connection.edge = -1; entry_connection.pathway_start = new_polygon.points[0].pos; entry_connection.pathway_end = new_polygon.points[1].pos; closest_start_polygon->edges[0].connections.push_back(entry_connection); gd::Edge::Connection exit_connection; exit_connection.polygon = closest_end_polygon; exit_connection.edge = -1; exit_connection.pathway_start = new_polygon.points[2].pos; exit_connection.pathway_end = new_polygon.points[3].pos; new_polygon.edges[2].connections.push_back(exit_connection); } // If the link is bi-directional, create connections from the end to the start. if (link->is_bidirectional()) { gd::Edge::Connection entry_connection; entry_connection.polygon = &new_polygon; entry_connection.edge = -1; entry_connection.pathway_start = new_polygon.points[2].pos; entry_connection.pathway_end = new_polygon.points[3].pos; closest_end_polygon->edges[0].connections.push_back(entry_connection); gd::Edge::Connection exit_connection; exit_connection.polygon = closest_start_polygon; exit_connection.edge = -1; exit_connection.pathway_start = new_polygon.points[0].pos; exit_connection.pathway_end = new_polygon.points[1].pos; new_polygon.edges[0].connections.push_back(exit_connection); } } } // Some code treats 0 as a failure case, so we avoid returning 0 and modulo wrap UINT32_MAX manually. iteration_id = iteration_id % UINT32_MAX + 1; path_query_slots_mutex.lock(); for (NavMeshQueries3D::PathQuerySlot &p_path_query_slot : path_query_slots) { p_path_query_slot.path_corridor.clear(); p_path_query_slot.path_corridor.resize(polygons.size() + link_polygons.size()); p_path_query_slot.traversable_polys.clear(); p_path_query_slot.traversable_polys.reserve(polygons.size() * 0.25); } path_query_slots_mutex.unlock(); } map_settings_dirty = false; iteration_dirty = false; _sync_avoidance(); } void NavMap::_sync_avoidance() { _sync_dirty_avoidance_update_requests(); if (obstacles_dirty || agents_dirty) { _update_rvo_simulation(); } obstacles_dirty = false; agents_dirty = false; } void NavMap::_update_rvo_obstacles_tree_2d() { int obstacle_vertex_count = 0; for (NavObstacle *obstacle : obstacles) { obstacle_vertex_count += obstacle->get_vertices().size(); } // Cleaning old obstacles. for (size_t i = 0; i < rvo_simulation_2d.obstacles_.size(); ++i) { delete rvo_simulation_2d.obstacles_[i]; } rvo_simulation_2d.obstacles_.clear(); // Cannot use LocalVector here as RVO library expects std::vector to build KdTree std::vector &raw_obstacles = rvo_simulation_2d.obstacles_; raw_obstacles.reserve(obstacle_vertex_count); // The following block is modified copy from RVO2D::AddObstacle() // Obstacles are linked and depend on all other obstacles. for (NavObstacle *obstacle : obstacles) { const Vector3 &_obstacle_position = obstacle->get_position(); const Vector &_obstacle_vertices = obstacle->get_vertices(); if (_obstacle_vertices.size() < 2) { continue; } std::vector rvo_2d_vertices; rvo_2d_vertices.reserve(_obstacle_vertices.size()); uint32_t _obstacle_avoidance_layers = obstacle->get_avoidance_layers(); real_t _obstacle_height = obstacle->get_height(); for (const Vector3 &_obstacle_vertex : _obstacle_vertices) { #ifdef TOOLS_ENABLED if (_obstacle_vertex.y != 0) { WARN_PRINT_ONCE("Y coordinates of static obstacle vertices are ignored. Please use obstacle position Y to change elevation of obstacle."); } #endif rvo_2d_vertices.push_back(RVO2D::Vector2(_obstacle_vertex.x + _obstacle_position.x, _obstacle_vertex.z + _obstacle_position.z)); } const size_t obstacleNo = raw_obstacles.size(); for (size_t i = 0; i < rvo_2d_vertices.size(); i++) { RVO2D::Obstacle2D *rvo_2d_obstacle = new RVO2D::Obstacle2D(); rvo_2d_obstacle->point_ = rvo_2d_vertices[i]; rvo_2d_obstacle->height_ = _obstacle_height; rvo_2d_obstacle->elevation_ = _obstacle_position.y; rvo_2d_obstacle->avoidance_layers_ = _obstacle_avoidance_layers; if (i != 0) { rvo_2d_obstacle->prevObstacle_ = raw_obstacles.back(); rvo_2d_obstacle->prevObstacle_->nextObstacle_ = rvo_2d_obstacle; } if (i == rvo_2d_vertices.size() - 1) { rvo_2d_obstacle->nextObstacle_ = raw_obstacles[obstacleNo]; rvo_2d_obstacle->nextObstacle_->prevObstacle_ = rvo_2d_obstacle; } rvo_2d_obstacle->unitDir_ = normalize(rvo_2d_vertices[(i == rvo_2d_vertices.size() - 1 ? 0 : i + 1)] - rvo_2d_vertices[i]); if (rvo_2d_vertices.size() == 2) { rvo_2d_obstacle->isConvex_ = true; } else { rvo_2d_obstacle->isConvex_ = (leftOf(rvo_2d_vertices[(i == 0 ? rvo_2d_vertices.size() - 1 : i - 1)], rvo_2d_vertices[i], rvo_2d_vertices[(i == rvo_2d_vertices.size() - 1 ? 0 : i + 1)]) >= 0.0f); } rvo_2d_obstacle->id_ = raw_obstacles.size(); raw_obstacles.push_back(rvo_2d_obstacle); } } rvo_simulation_2d.kdTree_->buildObstacleTree(raw_obstacles); } void NavMap::_update_rvo_agents_tree_2d() { // Cannot use LocalVector here as RVO library expects std::vector to build KdTree. std::vector raw_agents; raw_agents.reserve(active_2d_avoidance_agents.size()); for (NavAgent *agent : active_2d_avoidance_agents) { raw_agents.push_back(agent->get_rvo_agent_2d()); } rvo_simulation_2d.kdTree_->buildAgentTree(raw_agents); } void NavMap::_update_rvo_agents_tree_3d() { // Cannot use LocalVector here as RVO library expects std::vector to build KdTree. std::vector raw_agents; raw_agents.reserve(active_3d_avoidance_agents.size()); for (NavAgent *agent : active_3d_avoidance_agents) { raw_agents.push_back(agent->get_rvo_agent_3d()); } rvo_simulation_3d.kdTree_->buildAgentTree(raw_agents); } void NavMap::_update_rvo_simulation() { if (obstacles_dirty) { _update_rvo_obstacles_tree_2d(); } if (agents_dirty) { _update_rvo_agents_tree_2d(); _update_rvo_agents_tree_3d(); } } void NavMap::compute_single_avoidance_step_2d(uint32_t index, NavAgent **agent) { (*(agent + index))->get_rvo_agent_2d()->computeNeighbors(&rvo_simulation_2d); (*(agent + index))->get_rvo_agent_2d()->computeNewVelocity(&rvo_simulation_2d); (*(agent + index))->get_rvo_agent_2d()->update(&rvo_simulation_2d); (*(agent + index))->update(); } void NavMap::compute_single_avoidance_step_3d(uint32_t index, NavAgent **agent) { (*(agent + index))->get_rvo_agent_3d()->computeNeighbors(&rvo_simulation_3d); (*(agent + index))->get_rvo_agent_3d()->computeNewVelocity(&rvo_simulation_3d); (*(agent + index))->get_rvo_agent_3d()->update(&rvo_simulation_3d); (*(agent + index))->update(); } void NavMap::step(real_t p_deltatime) { deltatime = p_deltatime; rvo_simulation_2d.setTimeStep(float(deltatime)); rvo_simulation_3d.setTimeStep(float(deltatime)); if (active_2d_avoidance_agents.size() > 0) { if (use_threads && avoidance_use_multiple_threads) { WorkerThreadPool::GroupID group_task = WorkerThreadPool::get_singleton()->add_template_group_task(this, &NavMap::compute_single_avoidance_step_2d, active_2d_avoidance_agents.ptr(), active_2d_avoidance_agents.size(), -1, true, SNAME("RVOAvoidanceAgents2D")); WorkerThreadPool::get_singleton()->wait_for_group_task_completion(group_task); } else { for (NavAgent *agent : active_2d_avoidance_agents) { agent->get_rvo_agent_2d()->computeNeighbors(&rvo_simulation_2d); agent->get_rvo_agent_2d()->computeNewVelocity(&rvo_simulation_2d); agent->get_rvo_agent_2d()->update(&rvo_simulation_2d); agent->update(); } } } if (active_3d_avoidance_agents.size() > 0) { if (use_threads && avoidance_use_multiple_threads) { WorkerThreadPool::GroupID group_task = WorkerThreadPool::get_singleton()->add_template_group_task(this, &NavMap::compute_single_avoidance_step_3d, active_3d_avoidance_agents.ptr(), active_3d_avoidance_agents.size(), -1, true, SNAME("RVOAvoidanceAgents3D")); WorkerThreadPool::get_singleton()->wait_for_group_task_completion(group_task); } else { for (NavAgent *agent : active_3d_avoidance_agents) { agent->get_rvo_agent_3d()->computeNeighbors(&rvo_simulation_3d); agent->get_rvo_agent_3d()->computeNewVelocity(&rvo_simulation_3d); agent->get_rvo_agent_3d()->update(&rvo_simulation_3d); agent->update(); } } } } void NavMap::dispatch_callbacks() { for (NavAgent *agent : active_2d_avoidance_agents) { agent->dispatch_avoidance_callback(); } for (NavAgent *agent : active_3d_avoidance_agents) { agent->dispatch_avoidance_callback(); } } void NavMap::_update_merge_rasterizer_cell_dimensions() { merge_rasterizer_cell_size = cell_size * merge_rasterizer_cell_scale; merge_rasterizer_cell_height = cell_height * merge_rasterizer_cell_scale; } int NavMap::get_region_connections_count(NavRegion *p_region) const { ERR_FAIL_NULL_V(p_region, 0); HashMap>::ConstIterator found_connections = region_external_connections.find(p_region); if (found_connections) { return found_connections->value.size(); } return 0; } Vector3 NavMap::get_region_connection_pathway_start(NavRegion *p_region, int p_connection_id) const { ERR_FAIL_NULL_V(p_region, Vector3()); HashMap>::ConstIterator found_connections = region_external_connections.find(p_region); if (found_connections) { ERR_FAIL_INDEX_V(p_connection_id, int(found_connections->value.size()), Vector3()); return found_connections->value[p_connection_id].pathway_start; } return Vector3(); } Vector3 NavMap::get_region_connection_pathway_end(NavRegion *p_region, int p_connection_id) const { ERR_FAIL_NULL_V(p_region, Vector3()); HashMap>::ConstIterator found_connections = region_external_connections.find(p_region); if (found_connections) { ERR_FAIL_INDEX_V(p_connection_id, int(found_connections->value.size()), Vector3()); return found_connections->value[p_connection_id].pathway_end; } return Vector3(); } void NavMap::add_region_sync_dirty_request(SelfList *p_sync_request) { if (p_sync_request->in_list()) { return; } sync_dirty_requests.regions.add(p_sync_request); } void NavMap::add_link_sync_dirty_request(SelfList *p_sync_request) { if (p_sync_request->in_list()) { return; } sync_dirty_requests.links.add(p_sync_request); } void NavMap::add_agent_sync_dirty_request(SelfList *p_sync_request) { if (p_sync_request->in_list()) { return; } sync_dirty_requests.agents.add(p_sync_request); } void NavMap::add_obstacle_sync_dirty_request(SelfList *p_sync_request) { if (p_sync_request->in_list()) { return; } sync_dirty_requests.obstacles.add(p_sync_request); } void NavMap::remove_region_sync_dirty_request(SelfList *p_sync_request) { if (!p_sync_request->in_list()) { return; } sync_dirty_requests.regions.remove(p_sync_request); } void NavMap::remove_link_sync_dirty_request(SelfList *p_sync_request) { if (!p_sync_request->in_list()) { return; } sync_dirty_requests.links.remove(p_sync_request); } void NavMap::remove_agent_sync_dirty_request(SelfList *p_sync_request) { if (!p_sync_request->in_list()) { return; } sync_dirty_requests.agents.remove(p_sync_request); } void NavMap::remove_obstacle_sync_dirty_request(SelfList *p_sync_request) { if (!p_sync_request->in_list()) { return; } sync_dirty_requests.obstacles.remove(p_sync_request); } void NavMap::_sync_dirty_map_update_requests() { // If entire map settings changed make all regions dirty. if (map_settings_dirty) { for (NavRegion *region : regions) { region->scratch_polygons(); } iteration_dirty = true; } if (!iteration_dirty) { iteration_dirty = sync_dirty_requests.regions.first() || sync_dirty_requests.links.first(); } // Sync NavRegions. for (SelfList *element = sync_dirty_requests.regions.first(); element; element = element->next()) { element->self()->sync(); } sync_dirty_requests.regions.clear(); // Sync NavLinks. for (SelfList *element = sync_dirty_requests.links.first(); element; element = element->next()) { element->self()->sync(); } sync_dirty_requests.links.clear(); } void NavMap::_sync_dirty_avoidance_update_requests() { // Sync NavAgents. if (!agents_dirty) { agents_dirty = sync_dirty_requests.agents.first(); } for (SelfList *element = sync_dirty_requests.agents.first(); element; element = element->next()) { element->self()->sync(); } sync_dirty_requests.agents.clear(); // Sync NavObstacles. if (!obstacles_dirty) { obstacles_dirty = sync_dirty_requests.obstacles.first(); } for (SelfList *element = sync_dirty_requests.obstacles.first(); element; element = element->next()) { element->self()->sync(); } sync_dirty_requests.obstacles.clear(); } NavMap::NavMap() { avoidance_use_multiple_threads = GLOBAL_GET("navigation/avoidance/thread_model/avoidance_use_multiple_threads"); avoidance_use_high_priority_threads = GLOBAL_GET("navigation/avoidance/thread_model/avoidance_use_high_priority_threads"); path_query_slots_max = GLOBAL_GET("navigation/pathfinding/max_threads"); int processor_count = OS::get_singleton()->get_processor_count(); if (path_query_slots_max < 0) { path_query_slots_max = processor_count; } if (processor_count < path_query_slots_max) { path_query_slots_max = processor_count; } if (path_query_slots_max < 1) { path_query_slots_max = 1; } path_query_slots.resize(path_query_slots_max); for (uint32_t i = 0; i < path_query_slots.size(); i++) { path_query_slots[i].slot_index = i; } path_query_slots_semaphore.post(path_query_slots_max); } NavMap::~NavMap() { }