/**************************************************************************/ /* a_hash_map.h */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef A_HASH_MAP_H #define A_HASH_MAP_H #include "core/templates/hash_map.h" struct HashMapData { union { struct { uint32_t hash; uint32_t hash_to_key; }; uint64_t data; }; }; static_assert(sizeof(HashMapData) == 8); /** * An array-based implementation of a hash map. It is very efficient in terms of performance and * memory usage. Works like a dynamic array, adding elements to the end of the array, and * allows you to access array elements by their index by using `get_by_index` method. * Example: * ``` * AHashMap map; * * int get_object_id_by_number(int p_number) { * int id = map.get_index(p_number); * return id; * } * * Object *get_object_by_id(int p_id) { * map.get_by_index(p_id).value; * } * ``` * Still, don`t erase the elements because ID can break. * * When an element erase, its place is taken by the element from the end. * * <------------- * | | * 6 8 X 9 32 -1 5 -10 7 X X X * 6 8 7 9 32 -1 5 -10 X X X X * * * Use RBMap if you need to iterate over sorted elements. * * Use HashMap if: * - You need to keep an iterator or const pointer to Key and you intend to add/remove elements in the meantime. * - You need to preserve the insertion order when using erase. * * It is recommended to use `HashMap` if `KeyValue` size is very large. */ template > class AHashMap { public: // Must be a power of two. static constexpr uint32_t INITIAL_CAPACITY = 16; static constexpr uint32_t EMPTY_HASH = 0; static_assert(EMPTY_HASH == 0, "EMPTY_HASH must always be 0 for the memcpy() optimization."); private: typedef KeyValue MapKeyValue; MapKeyValue *elements = nullptr; HashMapData *map_data = nullptr; // Due to optimization, this is `capacity - 1`. Use + 1 to get normal capacity. uint32_t capacity = 0; uint32_t num_elements = 0; uint32_t _hash(const TKey &p_key) const { uint32_t hash = Hasher::hash(p_key); if (unlikely(hash == EMPTY_HASH)) { hash = EMPTY_HASH + 1; } return hash; } static _FORCE_INLINE_ uint32_t _get_resize_count(uint32_t p_capacity) { return p_capacity ^ (p_capacity + 1) >> 2; // = get_capacity() * 0.75 - 1; Works only if p_capacity = 2^n - 1. } static _FORCE_INLINE_ uint32_t _get_probe_length(uint32_t p_pos, uint32_t p_hash, uint32_t p_local_capacity) { const uint32_t original_pos = p_hash & p_local_capacity; return (p_pos - original_pos + p_local_capacity + 1) & p_local_capacity; } bool _lookup_pos(const TKey &p_key, uint32_t &r_pos, uint32_t &r_hash_pos) const { if (unlikely(elements == nullptr)) { return false; // Failed lookups, no elements. } return _lookup_pos_with_hash(p_key, r_pos, r_hash_pos, _hash(p_key)); } bool _lookup_pos_with_hash(const TKey &p_key, uint32_t &r_pos, uint32_t &r_hash_pos, uint32_t p_hash) const { if (unlikely(elements == nullptr)) { return false; // Failed lookups, no elements. } uint32_t pos = p_hash & capacity; HashMapData data = map_data[pos]; if (data.hash == p_hash && Comparator::compare(elements[data.hash_to_key].key, p_key)) { r_pos = data.hash_to_key; r_hash_pos = pos; return true; } if (data.data == EMPTY_HASH) { return false; } // A collision occurred. pos = (pos + 1) & capacity; uint32_t distance = 1; while (true) { data = map_data[pos]; if (data.hash == p_hash && Comparator::compare(elements[data.hash_to_key].key, p_key)) { r_pos = data.hash_to_key; r_hash_pos = pos; return true; } if (data.data == EMPTY_HASH) { return false; } if (distance > _get_probe_length(pos, data.hash, capacity)) { return false; } pos = (pos + 1) & capacity; distance++; } } uint32_t _insert_with_hash(uint32_t p_hash, uint32_t p_index) { uint32_t pos = p_hash & capacity; if (map_data[pos].data == EMPTY_HASH) { uint64_t data = ((uint64_t)p_index << 32) | p_hash; map_data[pos].data = data; return pos; } uint32_t distance = 1; pos = (pos + 1) & capacity; HashMapData c_data; c_data.hash = p_hash; c_data.hash_to_key = p_index; while (true) { if (map_data[pos].data == EMPTY_HASH) { #ifdef DEV_ENABLED if (unlikely(distance > 12)) { WARN_PRINT("Excessive collision count (" + itos(distance) + "), is the right hash function being used?"); } #endif map_data[pos] = c_data; return pos; } // Not an empty slot, let's check the probing length of the existing one. uint32_t existing_probe_len = _get_probe_length(pos, map_data[pos].hash, capacity); if (existing_probe_len < distance) { SWAP(c_data, map_data[pos]); distance = existing_probe_len; } pos = (pos + 1) & capacity; distance++; } } void _resize_and_rehash(uint32_t p_new_capacity) { uint32_t real_old_capacity = capacity + 1; // Capacity can't be 0 and must be 2^n - 1. capacity = MAX(4u, p_new_capacity); uint32_t real_capacity = next_power_of_2(capacity); capacity = real_capacity - 1; HashMapData *old_map_data = map_data; map_data = reinterpret_cast(Memory::alloc_static(sizeof(HashMapData) * real_capacity)); elements = reinterpret_cast(Memory::realloc_static(elements, sizeof(MapKeyValue) * (_get_resize_count(capacity) + 1))); memset(map_data, EMPTY_HASH, real_capacity * sizeof(HashMapData)); if (num_elements != 0) { for (uint32_t i = 0; i < real_old_capacity; i++) { HashMapData data = old_map_data[i]; if (data.data != EMPTY_HASH) { _insert_with_hash(data.hash, data.hash_to_key); } } } Memory::free_static(old_map_data); } int32_t _insert_element(const TKey &p_key, const TValue &p_value, uint32_t p_hash) { if (unlikely(elements == nullptr)) { // Allocate on demand to save memory. uint32_t real_capacity = capacity + 1; map_data = reinterpret_cast(Memory::alloc_static(sizeof(HashMapData) * real_capacity)); elements = reinterpret_cast(Memory::alloc_static(sizeof(MapKeyValue) * (_get_resize_count(capacity) + 1))); memset(map_data, EMPTY_HASH, real_capacity * sizeof(HashMapData)); } if (unlikely(num_elements > _get_resize_count(capacity))) { _resize_and_rehash(capacity * 2); } memnew_placement(&elements[num_elements], MapKeyValue(p_key, p_value)); _insert_with_hash(p_hash, num_elements); num_elements++; return num_elements - 1; } void _init_from(const AHashMap &p_other) { capacity = p_other.capacity; uint32_t real_capacity = capacity + 1; num_elements = p_other.num_elements; if (p_other.num_elements == 0) { return; } map_data = reinterpret_cast(Memory::alloc_static(sizeof(HashMapData) * real_capacity)); elements = reinterpret_cast(Memory::alloc_static(sizeof(MapKeyValue) * (_get_resize_count(capacity) + 1))); if constexpr (std::is_trivially_copyable_v && std::is_trivially_copyable_v) { void *destination = elements; const void *source = p_other.elements; memcpy(destination, source, sizeof(MapKeyValue) * num_elements); } else { for (uint32_t i = 0; i < num_elements; i++) { memnew_placement(&elements[i], MapKeyValue(p_other.elements[i])); } } memcpy(map_data, p_other.map_data, sizeof(HashMapData) * real_capacity); } public: /* Standard Godot Container API */ _FORCE_INLINE_ uint32_t get_capacity() const { return capacity + 1; } _FORCE_INLINE_ uint32_t size() const { return num_elements; } _FORCE_INLINE_ bool is_empty() const { return num_elements == 0; } void clear() { if (elements == nullptr || num_elements == 0) { return; } memset(map_data, EMPTY_HASH, (capacity + 1) * sizeof(HashMapData)); if constexpr (!(std::is_trivially_destructible_v && std::is_trivially_destructible_v)) { for (uint32_t i = 0; i < num_elements; i++) { elements[i].key.~TKey(); elements[i].value.~TValue(); } } num_elements = 0; } TValue &get(const TKey &p_key) { uint32_t pos = 0; uint32_t hash_pos = 0; bool exists = _lookup_pos(p_key, pos, hash_pos); CRASH_COND_MSG(!exists, "AHashMap key not found."); return elements[pos].value; } const TValue &get(const TKey &p_key) const { uint32_t pos = 0; uint32_t hash_pos = 0; bool exists = _lookup_pos(p_key, pos, hash_pos); CRASH_COND_MSG(!exists, "AHashMap key not found."); return elements[pos].value; } const TValue *getptr(const TKey &p_key) const { uint32_t pos = 0; uint32_t hash_pos = 0; bool exists = _lookup_pos(p_key, pos, hash_pos); if (exists) { return &elements[pos].value; } return nullptr; } TValue *getptr(const TKey &p_key) { uint32_t pos = 0; uint32_t hash_pos = 0; bool exists = _lookup_pos(p_key, pos, hash_pos); if (exists) { return &elements[pos].value; } return nullptr; } bool has(const TKey &p_key) const { uint32_t _pos = 0; uint32_t h_pos = 0; return _lookup_pos(p_key, _pos, h_pos); } bool erase(const TKey &p_key) { uint32_t pos = 0; uint32_t element_pos = 0; bool exists = _lookup_pos(p_key, element_pos, pos); if (!exists) { return false; } uint32_t next_pos = (pos + 1) & capacity; while (map_data[next_pos].hash != EMPTY_HASH && _get_probe_length(next_pos, map_data[next_pos].hash, capacity) != 0) { SWAP(map_data[next_pos], map_data[pos]); pos = next_pos; next_pos = (next_pos + 1) & capacity; } map_data[pos].data = EMPTY_HASH; elements[element_pos].key.~TKey(); elements[element_pos].value.~TValue(); num_elements--; if (element_pos < num_elements) { void *destination = &elements[element_pos]; const void *source = &elements[num_elements]; memcpy(destination, source, sizeof(MapKeyValue)); uint32_t h_pos = 0; _lookup_pos(elements[num_elements].key, pos, h_pos); map_data[h_pos].hash_to_key = element_pos; } return true; } // Replace the key of an entry in-place, without invalidating iterators or changing the entries position during iteration. // p_old_key must exist in the map and p_new_key must not, unless it is equal to p_old_key. bool replace_key(const TKey &p_old_key, const TKey &p_new_key) { if (p_old_key == p_new_key) { return true; } uint32_t pos = 0; uint32_t element_pos = 0; ERR_FAIL_COND_V(_lookup_pos(p_new_key, element_pos, pos), false); ERR_FAIL_COND_V(!_lookup_pos(p_old_key, element_pos, pos), false); MapKeyValue &element = elements[element_pos]; const_cast(element.key) = p_new_key; uint32_t next_pos = (pos + 1) & capacity; while (map_data[next_pos].hash != EMPTY_HASH && _get_probe_length(next_pos, map_data[next_pos].hash, capacity) != 0) { SWAP(map_data[next_pos], map_data[pos]); pos = next_pos; next_pos = (next_pos + 1) & capacity; } map_data[pos].data = EMPTY_HASH; uint32_t hash = _hash(p_new_key); _insert_with_hash(hash, element_pos); return true; } // Reserves space for a number of elements, useful to avoid many resizes and rehashes. // If adding a known (possibly large) number of elements at once, must be larger than old capacity. void reserve(uint32_t p_new_capacity) { ERR_FAIL_COND_MSG(p_new_capacity < get_capacity(), "It is impossible to reserve less capacity than is currently available."); if (elements == nullptr) { capacity = MAX(4u, p_new_capacity); capacity = next_power_of_2(capacity) - 1; return; // Unallocated yet. } _resize_and_rehash(p_new_capacity); } /** Iterator API **/ struct ConstIterator { _FORCE_INLINE_ const MapKeyValue &operator*() const { return *pair; } _FORCE_INLINE_ const MapKeyValue *operator->() const { return pair; } _FORCE_INLINE_ ConstIterator &operator++() { pair++; return *this; } _FORCE_INLINE_ ConstIterator &operator--() { pair--; if (pair < begin) { pair = end; } return *this; } _FORCE_INLINE_ bool operator==(const ConstIterator &b) const { return pair == b.pair; } _FORCE_INLINE_ bool operator!=(const ConstIterator &b) const { return pair != b.pair; } _FORCE_INLINE_ explicit operator bool() const { return pair != end; } _FORCE_INLINE_ ConstIterator(MapKeyValue *p_key, MapKeyValue *p_begin, MapKeyValue *p_end) { pair = p_key; begin = p_begin; end = p_end; } _FORCE_INLINE_ ConstIterator() {} _FORCE_INLINE_ ConstIterator(const ConstIterator &p_it) { pair = p_it.pair; begin = p_it.begin; end = p_it.end; } _FORCE_INLINE_ void operator=(const ConstIterator &p_it) { pair = p_it.pair; begin = p_it.begin; end = p_it.end; } private: MapKeyValue *pair = nullptr; MapKeyValue *begin = nullptr; MapKeyValue *end = nullptr; }; struct Iterator { _FORCE_INLINE_ MapKeyValue &operator*() const { return *pair; } _FORCE_INLINE_ MapKeyValue *operator->() const { return pair; } _FORCE_INLINE_ Iterator &operator++() { pair++; return *this; } _FORCE_INLINE_ Iterator &operator--() { pair--; if (pair < begin) { pair = end; } return *this; } _FORCE_INLINE_ bool operator==(const Iterator &b) const { return pair == b.pair; } _FORCE_INLINE_ bool operator!=(const Iterator &b) const { return pair != b.pair; } _FORCE_INLINE_ explicit operator bool() const { return pair != end; } _FORCE_INLINE_ Iterator(MapKeyValue *p_key, MapKeyValue *p_begin, MapKeyValue *p_end) { pair = p_key; begin = p_begin; end = p_end; } _FORCE_INLINE_ Iterator() {} _FORCE_INLINE_ Iterator(const Iterator &p_it) { pair = p_it.pair; begin = p_it.begin; end = p_it.end; } _FORCE_INLINE_ void operator=(const Iterator &p_it) { pair = p_it.pair; begin = p_it.begin; end = p_it.end; } operator ConstIterator() const { return ConstIterator(pair, begin, end); } private: MapKeyValue *pair = nullptr; MapKeyValue *begin = nullptr; MapKeyValue *end = nullptr; }; _FORCE_INLINE_ Iterator begin() { return Iterator(elements, elements, elements + num_elements); } _FORCE_INLINE_ Iterator end() { return Iterator(elements + num_elements, elements, elements + num_elements); } _FORCE_INLINE_ Iterator last() { if (unlikely(num_elements == 0)) { return Iterator(nullptr, nullptr, nullptr); } return Iterator(elements + num_elements - 1, elements, elements + num_elements); } Iterator find(const TKey &p_key) { uint32_t pos = 0; uint32_t h_pos = 0; bool exists = _lookup_pos(p_key, pos, h_pos); if (!exists) { return end(); } return Iterator(elements + pos, elements, elements + num_elements); } void remove(const Iterator &p_iter) { if (p_iter) { erase(p_iter->key); } } _FORCE_INLINE_ ConstIterator begin() const { return ConstIterator(elements, elements, elements + num_elements); } _FORCE_INLINE_ ConstIterator end() const { return ConstIterator(elements + num_elements, elements, elements + num_elements); } _FORCE_INLINE_ ConstIterator last() const { if (unlikely(num_elements == 0)) { return ConstIterator(nullptr, nullptr, nullptr); } return ConstIterator(elements + num_elements - 1, elements, elements + num_elements); } ConstIterator find(const TKey &p_key) const { uint32_t pos = 0; uint32_t h_pos = 0; bool exists = _lookup_pos(p_key, pos, h_pos); if (!exists) { return end(); } return ConstIterator(elements + pos, elements, elements + num_elements); } /* Indexing */ const TValue &operator[](const TKey &p_key) const { uint32_t pos = 0; uint32_t h_pos = 0; bool exists = _lookup_pos(p_key, pos, h_pos); CRASH_COND(!exists); return elements[pos].value; } TValue &operator[](const TKey &p_key) { uint32_t pos = 0; uint32_t h_pos = 0; uint32_t hash = _hash(p_key); bool exists = _lookup_pos_with_hash(p_key, pos, h_pos, hash); if (exists) { return elements[pos].value; } else { pos = _insert_element(p_key, TValue(), hash); return elements[pos].value; } } /* Insert */ Iterator insert(const TKey &p_key, const TValue &p_value) { uint32_t pos = 0; uint32_t h_pos = 0; uint32_t hash = _hash(p_key); bool exists = _lookup_pos_with_hash(p_key, pos, h_pos, hash); if (!exists) { pos = _insert_element(p_key, p_value, hash); } else { elements[pos].value = p_value; } return Iterator(elements + pos, elements, elements + num_elements); } // Inserts an element without checking if it already exists. Iterator insert_new(const TKey &p_key, const TValue &p_value) { DEV_ASSERT(!has(p_key)); uint32_t hash = _hash(p_key); uint32_t pos = _insert_element(p_key, p_value, hash); return Iterator(elements + pos, elements, elements + num_elements); } /* Array methods. */ // Unsafe. Changing keys and going outside the bounds of an array can lead to undefined behavior. KeyValue *get_elements_ptr() { return elements; } // Returns the element index. If not found, returns -1. int get_index(const TKey &p_key) { uint32_t pos = 0; uint32_t h_pos = 0; bool exists = _lookup_pos(p_key, pos, h_pos); if (!exists) { return -1; } return pos; } KeyValue &get_by_index(uint32_t p_index) { CRASH_BAD_UNSIGNED_INDEX(p_index, num_elements); return elements[p_index]; } bool erase_by_index(uint32_t p_index) { if (p_index >= size()) { return false; } return erase(elements[p_index].key); } /* Constructors */ AHashMap(const AHashMap &p_other) { _init_from(p_other); } AHashMap(const HashMap &p_other) { reserve(p_other.size()); for (const KeyValue &E : p_other) { uint32_t hash = _hash(E.key); _insert_element(E.key, E.value, hash); } } void operator=(const AHashMap &p_other) { if (this == &p_other) { return; // Ignore self assignment. } reset(); _init_from(p_other); } void operator=(const HashMap &p_other) { reset(); if (p_other.size() > get_capacity()) { reserve(p_other.size()); } for (const KeyValue &E : p_other) { uint32_t hash = _hash(E.key); _insert_element(E.key, E.value, hash); } } AHashMap(uint32_t p_initial_capacity) { // Capacity can't be 0 and must be 2^n - 1. capacity = MAX(4u, p_initial_capacity); capacity = next_power_of_2(capacity) - 1; } AHashMap() : capacity(INITIAL_CAPACITY - 1) { } void reset() { if (elements != nullptr) { if constexpr (!(std::is_trivially_destructible_v && std::is_trivially_destructible_v)) { for (uint32_t i = 0; i < num_elements; i++) { elements[i].key.~TKey(); elements[i].value.~TValue(); } } Memory::free_static(elements); Memory::free_static(map_data); elements = nullptr; } capacity = INITIAL_CAPACITY - 1; num_elements = 0; } ~AHashMap() { reset(); } }; extern template class AHashMap; extern template class AHashMap; extern template class AHashMap; extern template class AHashMap; extern template class AHashMap; #endif // A_HASH_MAP_H