// basisu_astc_helpers.h // Be sure to define ASTC_HELPERS_IMPLEMENTATION somewhere to get the implementation, otherwise you only get the header. #pragma once #ifndef BASISU_ASTC_HELPERS_HEADER #define BASISU_ASTC_HELPERS_HEADER #include #include #include #include namespace astc_helpers { const uint32_t MAX_WEIGHT_VALUE = 64; // grid texel weights must range from [0,64] const uint32_t MIN_GRID_DIM = 2; // the minimum dimension of a block's weight grid const uint32_t MIN_BLOCK_DIM = 4, MAX_BLOCK_DIM = 12; // the valid block dimensions in texels const uint32_t MAX_GRID_WEIGHTS = 64; // a block may have a maximum of 64 weight grid values static const uint32_t NUM_ASTC_BLOCK_SIZES = 14; extern const uint8_t g_astc_block_sizes[NUM_ASTC_BLOCK_SIZES][2]; // The Color Endpoint Modes (CEM's) enum cems { CEM_LDR_LUM_DIRECT = 0, CEM_LDR_LUM_BASE_PLUS_OFS = 1, CEM_HDR_LUM_LARGE_RANGE = 2, CEM_HDR_LUM_SMALL_RANGE = 3, CEM_LDR_LUM_ALPHA_DIRECT = 4, CEM_LDR_LUM_ALPHA_BASE_PLUS_OFS = 5, CEM_LDR_RGB_BASE_SCALE = 6, CEM_HDR_RGB_BASE_SCALE = 7, CEM_LDR_RGB_DIRECT = 8, CEM_LDR_RGB_BASE_PLUS_OFFSET = 9, CEM_LDR_RGB_BASE_SCALE_PLUS_TWO_A = 10, CEM_HDR_RGB = 11, CEM_LDR_RGBA_DIRECT = 12, CEM_LDR_RGBA_BASE_PLUS_OFFSET = 13, CEM_HDR_RGB_LDR_ALPHA = 14, CEM_HDR_RGB_HDR_ALPHA = 15 }; // All Bounded Integer Sequence Coding (BISE or ISE) ranges. // Weights: Ranges [0,11] are valid. // Endpoints: Ranges [4,20] are valid. enum bise_levels { BISE_2_LEVELS = 0, BISE_3_LEVELS = 1, BISE_4_LEVELS = 2, BISE_5_LEVELS = 3, BISE_6_LEVELS = 4, BISE_8_LEVELS = 5, BISE_10_LEVELS = 6, BISE_12_LEVELS = 7, BISE_16_LEVELS = 8, BISE_20_LEVELS = 9, BISE_24_LEVELS = 10, BISE_32_LEVELS = 11, BISE_40_LEVELS = 12, BISE_48_LEVELS = 13, BISE_64_LEVELS = 14, BISE_80_LEVELS = 15, BISE_96_LEVELS = 16, BISE_128_LEVELS = 17, BISE_160_LEVELS = 18, BISE_192_LEVELS = 19, BISE_256_LEVELS = 20 }; const uint32_t TOTAL_ISE_RANGES = 21; // Valid endpoint ISE ranges const uint32_t FIRST_VALID_ENDPOINT_ISE_RANGE = BISE_6_LEVELS; // 4 const uint32_t LAST_VALID_ENDPOINT_ISE_RANGE = BISE_256_LEVELS; // 20 const uint32_t TOTAL_ENDPOINT_ISE_RANGES = LAST_VALID_ENDPOINT_ISE_RANGE - FIRST_VALID_ENDPOINT_ISE_RANGE + 1; // Valid weight ISE ranges const uint32_t FIRST_VALID_WEIGHT_ISE_RANGE = BISE_2_LEVELS; // 0 const uint32_t LAST_VALID_WEIGHT_ISE_RANGE = BISE_32_LEVELS; // 11 const uint32_t TOTAL_WEIGHT_ISE_RANGES = LAST_VALID_WEIGHT_ISE_RANGE - FIRST_VALID_WEIGHT_ISE_RANGE + 1; // The ISE range table. extern const int8_t g_ise_range_table[TOTAL_ISE_RANGES][3]; // 0=bits (0 to 8), 1=trits (0 or 1), 2=quints (0 or 1) // Possible Color Component Select values, used in dual plane mode. // The CCS component will be interpolated using the 2nd weight plane. enum ccs { CCS_GBA_R = 0, CCS_RBA_G = 1, CCS_RGA_B = 2, CCS_RGB_A = 3 }; struct astc_block { uint32_t m_vals[4]; }; const uint32_t MAX_PARTITIONS = 4; // Max # of partitions or subsets for single plane mode const uint32_t MAX_DUAL_PLANE_PARTITIONS = 3; // Max # of partitions or subsets for dual plane mode const uint32_t NUM_PARTITION_PATTERNS = 1024; // Total # of partition pattern seeds (10-bits) const uint32_t MAX_ENDPOINTS = 18; // Maximum # of endpoint values in a block struct log_astc_block { bool m_error_flag; bool m_solid_color_flag_ldr, m_solid_color_flag_hdr; uint16_t m_solid_color[4]; // Rest is only valid if !m_solid_color_flag_ldr && !m_solid_color_flag_hdr uint32_t m_grid_width, m_grid_height; // weight grid dimensions, not the dimension of the block bool m_dual_plane; uint32_t m_weight_ise_range; // 0-11 uint32_t m_endpoint_ise_range; // 4-20, this is actually inferred from the size of the other config bits+weights, but this is here for checking uint32_t m_color_component_selector; // 0-3, 0=GBA R, 1=RBA G, 2=RGA B, 3=RGB A, only used in dual plane mode uint32_t m_num_partitions; // or the # of subsets, 1-4 (1-3 if dual plane mode) uint32_t m_partition_id; // 10-bits, must be 0 if m_num_partitions==1 uint32_t m_color_endpoint_modes[MAX_PARTITIONS]; // each subset's CEM's // ISE weight grid values. In dual plane mode, the order is p0,p1, p0,p1, etc. uint8_t m_weights[MAX_GRID_WEIGHTS]; // ISE endpoint values // Endpoint order examples: // 1 subset LA : LL0 LH0 AL0 AH0 // 1 subset RGB : RL0 RH0 GL0 GH0 BL0 BH0 // 1 subset RGBA : RL0 RH0 GL0 GH0 BL0 BH0 AL0 AH0 // 2 subset LA : LL0 LH0 AL0 AH0 LL1 LH1 AL1 AH1 // 2 subset RGB : RL0 RH0 GL0 GH0 BL0 BH0 RL1 RH1 GL1 GH1 BL1 BH1 // 2 subset RGBA : RL0 RH0 GL0 GH0 BL0 BH0 AL0 AH0 RL1 RH1 GL1 GH1 BL1 BH1 AL1 AH1 uint8_t m_endpoints[MAX_ENDPOINTS]; void clear() { memset(this, 0, sizeof(*this)); } }; // Open interval inline int bounds_check(int v, int l, int h) { (void)v; (void)l; (void)h; assert(v >= l && v < h); return v; } inline uint32_t bounds_check(uint32_t v, uint32_t l, uint32_t h) { (void)v; (void)l; (void)h; assert(v >= l && v < h); return v; } inline uint32_t get_bits(uint32_t val, int low, int high) { const int num_bits = (high - low) + 1; assert((num_bits >= 1) && (num_bits <= 32)); val >>= low; if (num_bits != 32) val &= ((1u << num_bits) - 1); return val; } // Returns the number of levels in the given ISE range. inline uint32_t get_ise_levels(uint32_t ise_range) { assert(ise_range < TOTAL_ISE_RANGES); return (1 + 2 * g_ise_range_table[ise_range][1] + 4 * g_ise_range_table[ise_range][2]) << g_ise_range_table[ise_range][0]; } inline int get_ise_sequence_bits(int count, int range) { // See 18.22 Data Size Determination int total_bits = g_ise_range_table[range][0] * count; total_bits += (g_ise_range_table[range][1] * 8 * count + 4) / 5; total_bits += (g_ise_range_table[range][2] * 7 * count + 2) / 3; return total_bits; } inline uint32_t weight_interpolate(uint32_t l, uint32_t h, uint32_t w) { assert(w <= MAX_WEIGHT_VALUE); return (l * (64 - w) + h * w + 32) >> 6; } void encode_bise(uint32_t* pDst, const uint8_t* pSrc_vals, uint32_t bit_pos, int num_vals, int range); // Packs a logical to physical ASTC block. Note this does not validate the block's dimensions (use is_valid_block_size()), just the grid dimensions. bool pack_astc_block(astc_block &phys_block, const log_astc_block& log_block, int* pExpected_endpoint_range = nullptr); // Pack LDR void extent (really solid color) blocks. For LDR, pass in (val | (val << 8)) for each component. void pack_void_extent_ldr(astc_block& blk, uint16_t r, uint16_t g, uint16_t b, uint16_t a); // Pack HDR void extent (16-bit values are FP16/half floats - no NaN/Inf's) void pack_void_extent_hdr(astc_block& blk, uint16_t rh, uint16_t gh, uint16_t bh, uint16_t ah); // These helpers are all quite slow, but are useful for table preparation. // Dequantizes ISE encoded endpoint val to [0,255] uint32_t dequant_bise_endpoint(uint32_t val, uint32_t ise_range); // ISE ranges 4-11 // Dequantizes ISE encoded weight val to [0,64] uint32_t dequant_bise_weight(uint32_t val, uint32_t ise_range); // ISE ranges 0-10 uint32_t find_nearest_bise_endpoint(int v, uint32_t ise_range); uint32_t find_nearest_bise_weight(int v, uint32_t ise_range); void create_quant_tables( uint8_t* pVal_to_ise, // [0-255] or [0-64] value to nearest ISE symbol, array size is [256] or [65] uint8_t* pISE_to_val, // ASTC encoded ISE symbol to [0,255] or [0,64] value, [levels] uint8_t* pISE_to_rank, // returns the level rank index given an ISE symbol, [levels] uint8_t* pRank_to_ISE, // returns the ISE symbol given a level rank, inverse of pISE_to_rank, [levels] uint32_t ise_range, // ise range, [4,20] for endpoints, [0,11] for weights bool weight_flag); // false if block endpoints, true if weights // True if the CEM is LDR. bool is_cem_ldr(uint32_t mode); inline bool is_cem_hdr(uint32_t mode) { return !is_cem_ldr(mode); } // True if the passed in dimensions are a valid ASTC block size. There are 14 supported configs, from 4x4 (8bpp) to 12x12 (.89bpp). bool is_valid_block_size(uint32_t w, uint32_t h); bool block_has_any_hdr_cems(const log_astc_block& log_blk); bool block_has_any_ldr_cems(const log_astc_block& log_blk); // Returns the # of endpoint values for the given CEM. inline uint32_t get_num_cem_values(uint32_t cem) { assert(cem <= 15); return 2 + 2 * (cem >> 2); } struct dequant_table { basisu::vector m_val_to_ise; // [0-255] or [0-64] value to nearest ISE symbol, array size is [256] or [65] basisu::vector m_ISE_to_val; // ASTC encoded ISE symbol to [0,255] or [0,64] value, [levels] basisu::vector m_ISE_to_rank; // returns the level rank index given an ISE symbol, [levels] basisu::vector m_rank_to_ISE; // returns the ISE symbol given a level rank, inverse of pISE_to_rank, [levels] void init(bool weight_flag, uint32_t num_levels, bool init_rank_tabs) { m_val_to_ise.resize(weight_flag ? (MAX_WEIGHT_VALUE + 1) : 256); m_ISE_to_val.resize(num_levels); if (init_rank_tabs) { m_ISE_to_rank.resize(num_levels); m_rank_to_ISE.resize(num_levels); } } }; struct dequant_tables { dequant_table m_weights[TOTAL_WEIGHT_ISE_RANGES]; dequant_table m_endpoints[TOTAL_ENDPOINT_ISE_RANGES]; const dequant_table& get_weight_tab(uint32_t range) const { assert((range >= FIRST_VALID_WEIGHT_ISE_RANGE) && (range <= LAST_VALID_WEIGHT_ISE_RANGE)); return m_weights[range - FIRST_VALID_WEIGHT_ISE_RANGE]; } dequant_table& get_weight_tab(uint32_t range) { assert((range >= FIRST_VALID_WEIGHT_ISE_RANGE) && (range <= LAST_VALID_WEIGHT_ISE_RANGE)); return m_weights[range - FIRST_VALID_WEIGHT_ISE_RANGE]; } const dequant_table& get_endpoint_tab(uint32_t range) const { assert((range >= FIRST_VALID_ENDPOINT_ISE_RANGE) && (range <= LAST_VALID_ENDPOINT_ISE_RANGE)); return m_endpoints[range - FIRST_VALID_ENDPOINT_ISE_RANGE]; } dequant_table& get_endpoint_tab(uint32_t range) { assert((range >= FIRST_VALID_ENDPOINT_ISE_RANGE) && (range <= LAST_VALID_ENDPOINT_ISE_RANGE)); return m_endpoints[range - FIRST_VALID_ENDPOINT_ISE_RANGE]; } void init(bool init_rank_tabs) { for (uint32_t range = FIRST_VALID_WEIGHT_ISE_RANGE; range <= LAST_VALID_WEIGHT_ISE_RANGE; range++) { const uint32_t num_levels = get_ise_levels(range); dequant_table& tab = get_weight_tab(range); tab.init(true, num_levels, init_rank_tabs); create_quant_tables(tab.m_val_to_ise.data(), tab.m_ISE_to_val.data(), init_rank_tabs ? tab.m_ISE_to_rank.data() : nullptr, init_rank_tabs ? tab.m_rank_to_ISE.data() : nullptr, range, true); } for (uint32_t range = FIRST_VALID_ENDPOINT_ISE_RANGE; range <= LAST_VALID_ENDPOINT_ISE_RANGE; range++) { const uint32_t num_levels = get_ise_levels(range); dequant_table& tab = get_endpoint_tab(range); tab.init(false, num_levels, init_rank_tabs); create_quant_tables(tab.m_val_to_ise.data(), tab.m_ISE_to_val.data(), init_rank_tabs ? tab.m_ISE_to_rank.data() : nullptr, init_rank_tabs ? tab.m_rank_to_ISE.data() : nullptr, range, false); } } }; extern dequant_tables g_dequant_tables; void init_tables(bool init_rank_tabs); // Procedurally returns the texel partition/subset index given the block coordinate and config. int compute_texel_partition(uint32_t seedIn, uint32_t xIn, uint32_t yIn, uint32_t zIn, int num_partitions, bool small_block); void blue_contract( int r, int g, int b, int a, int& dr, int& dg, int& db, int& da); void bit_transfer_signed(int& a, int& b); void decode_endpoint(uint32_t cem_index, int (*pEndpoints)[2], const uint8_t* pE); typedef uint16_t half_float; half_float float_to_half(float val, bool toward_zero); float half_to_float(half_float hval); const int MAX_RGB9E5 = 0xff80; void unpack_rgb9e5(uint32_t packed, float& r, float& g, float& b); uint32_t pack_rgb9e5(float r, float g, float b); enum decode_mode { cDecodeModeSRGB8 = 0, // returns uint8_t's, not valid on HDR blocks cDecodeModeLDR8 = 1, // returns uint8_t's, not valid on HDR blocks cDecodeModeHDR16 = 2, // returns uint16_t's (half floats), valid on all LDR/HDR blocks cDecodeModeRGB9E5 = 3 // returns uint32_t's, packed as RGB 9E5 (shared exponent), see https://registry.khronos.org/OpenGL/extensions/EXT/EXT_texture_shared_exponent.txt }; // Decodes logical block to output pixels. // pPixels must point to either 32-bit pixel values (SRGB8/LDR8/9E5) or 64-bit pixel values (HDR16) bool decode_block(const log_astc_block& log_blk, void* pPixels, uint32_t blk_width, uint32_t blk_height, decode_mode dec_mode); void decode_bise(uint32_t ise_range, uint8_t* pVals, uint32_t num_vals, const uint8_t *pBits128, uint32_t bit_ofs); // Unpack a physical ASTC encoded GPU texture block to a logical block description. bool unpack_block(const void* pASTC_block, log_astc_block& log_blk, uint32_t blk_width, uint32_t blk_height); } // namespace astc_helpers #endif // BASISU_ASTC_HELPERS_HEADER //------------------------------------------------------------------ #ifdef BASISU_ASTC_HELPERS_IMPLEMENTATION namespace astc_helpers { template inline T my_min(T a, T b) { return (a < b) ? a : b; } template inline T my_max(T a, T b) { return (a > b) ? a : b; } const uint8_t g_astc_block_sizes[NUM_ASTC_BLOCK_SIZES][2] = { { 4, 4 }, { 5, 4 }, { 5, 5 }, { 6, 5 }, { 6, 6 }, { 8, 5 }, { 8, 6 }, { 10, 5 }, { 10, 6 }, { 8, 8 }, { 10, 8 }, { 10, 10 }, { 12, 10 }, { 12, 12 } }; const int8_t g_ise_range_table[TOTAL_ISE_RANGES][3] = { //b t q //2 3 5 // rng ise_index notes { 1, 0, 0 }, // 0..1 0 { 0, 1, 0 }, // 0..2 1 { 2, 0, 0 }, // 0..3 2 { 0, 0, 1 }, // 0..4 3 { 1, 1, 0 }, // 0..5 4 min endpoint ISE index { 3, 0, 0 }, // 0..7 5 { 1, 0, 1 }, // 0..9 6 { 2, 1, 0 }, // 0..11 7 { 4, 0, 0 }, // 0..15 8 { 2, 0, 1 }, // 0..19 9 { 3, 1, 0 }, // 0..23 10 { 5, 0, 0 }, // 0..31 11 max weight ISE index { 3, 0, 1 }, // 0..39 12 { 4, 1, 0 }, // 0..47 13 { 6, 0, 0 }, // 0..63 14 { 4, 0, 1 }, // 0..79 15 { 5, 1, 0 }, // 0..95 16 { 7, 0, 0 }, // 0..127 17 { 5, 0, 1 }, // 0..159 18 { 6, 1, 0 }, // 0..191 19 { 8, 0, 0 }, // 0..255 20 }; static inline void astc_set_bits_1_to_9(uint32_t* pDst, uint32_t& bit_offset, uint32_t code, uint32_t codesize) { uint8_t* pBuf = reinterpret_cast(pDst); assert(codesize <= 9); if (codesize) { uint32_t byte_bit_offset = bit_offset & 7; uint32_t val = code << byte_bit_offset; uint32_t index = bit_offset >> 3; pBuf[index] |= (uint8_t)val; if (codesize > (8 - byte_bit_offset)) pBuf[index + 1] |= (uint8_t)(val >> 8); bit_offset += codesize; } } static inline uint32_t astc_extract_bits(uint32_t bits, int low, int high) { return (bits >> low) & ((1 << (high - low + 1)) - 1); } // Writes bits to output in an endian safe way static inline void astc_set_bits(uint32_t* pOutput, uint32_t& bit_pos, uint32_t value, uint32_t total_bits) { assert(total_bits <= 31); assert(value < (1u << total_bits)); uint8_t* pBytes = reinterpret_cast(pOutput); while (total_bits) { const uint32_t bits_to_write = my_min(total_bits, 8 - (bit_pos & 7)); pBytes[bit_pos >> 3] |= static_cast(value << (bit_pos & 7)); bit_pos += bits_to_write; total_bits -= bits_to_write; value >>= bits_to_write; } } static const uint8_t g_astc_quint_encode[125] = { 0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 24, 25, 26, 27, 28, 5, 13, 21, 29, 6, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 56, 57, 58, 59, 60, 37, 45, 53, 61, 14, 64, 65, 66, 67, 68, 72, 73, 74, 75, 76, 80, 81, 82, 83, 84, 88, 89, 90, 91, 92, 69, 77, 85, 93, 22, 96, 97, 98, 99, 100, 104, 105, 106, 107, 108, 112, 113, 114, 115, 116, 120, 121, 122, 123, 124, 101, 109, 117, 125, 30, 102, 103, 70, 71, 38, 110, 111, 78, 79, 46, 118, 119, 86, 87, 54, 126, 127, 94, 95, 62, 39, 47, 55, 63, 7 /*31 - results in the same decode as 7*/ }; // Encodes 3 values to output, usable for any range that uses quints and bits static inline void astc_encode_quints(uint32_t* pOutput, const uint8_t* pValues, uint32_t& bit_pos, int n) { // First extract the quints and the bits from the 3 input values int quints = 0, bits[3]; const uint32_t bit_mask = (1 << n) - 1; for (int i = 0; i < 3; i++) { static const int s_muls[3] = { 1, 5, 25 }; const int t = pValues[i] >> n; quints += t * s_muls[i]; bits[i] = pValues[i] & bit_mask; } // Encode the quints, by inverting the bit manipulations done by the decoder, converting 3 quints into 7-bits. // See https://www.khronos.org/registry/DataFormat/specs/1.2/dataformat.1.2.html#astc-integer-sequence-encoding assert(quints < 125); const int T = g_astc_quint_encode[quints]; // Now interleave the 7 encoded quint bits with the bits to form the encoded output. See table 95-96. astc_set_bits(pOutput, bit_pos, bits[0] | (astc_extract_bits(T, 0, 2) << n) | (bits[1] << (3 + n)) | (astc_extract_bits(T, 3, 4) << (3 + n * 2)) | (bits[2] << (5 + n * 2)) | (astc_extract_bits(T, 5, 6) << (5 + n * 3)), 7 + n * 3); } static const uint8_t g_astc_trit_encode[243] = { 0, 1, 2, 4, 5, 6, 8, 9, 10, 16, 17, 18, 20, 21, 22, 24, 25, 26, 3, 7, 11, 19, 23, 27, 12, 13, 14, 32, 33, 34, 36, 37, 38, 40, 41, 42, 48, 49, 50, 52, 53, 54, 56, 57, 58, 35, 39, 43, 51, 55, 59, 44, 45, 46, 64, 65, 66, 68, 69, 70, 72, 73, 74, 80, 81, 82, 84, 85, 86, 88, 89, 90, 67, 71, 75, 83, 87, 91, 76, 77, 78, 128, 129, 130, 132, 133, 134, 136, 137, 138, 144, 145, 146, 148, 149, 150, 152, 153, 154, 131, 135, 139, 147, 151, 155, 140, 141, 142, 160, 161, 162, 164, 165, 166, 168, 169, 170, 176, 177, 178, 180, 181, 182, 184, 185, 186, 163, 167, 171, 179, 183, 187, 172, 173, 174, 192, 193, 194, 196, 197, 198, 200, 201, 202, 208, 209, 210, 212, 213, 214, 216, 217, 218, 195, 199, 203, 211, 215, 219, 204, 205, 206, 96, 97, 98, 100, 101, 102, 104, 105, 106, 112, 113, 114, 116, 117, 118, 120, 121, 122, 99, 103, 107, 115, 119, 123, 108, 109, 110, 224, 225, 226, 228, 229, 230, 232, 233, 234, 240, 241, 242, 244, 245, 246, 248, 249, 250, 227, 231, 235, 243, 247, 251, 236, 237, 238, 28, 29, 30, 60, 61, 62, 92, 93, 94, 156, 157, 158, 188, 189, 190, 220, 221, 222, 31, 63, 95, 159, 191, 223, 124, 125, 126 }; // Encodes 5 values to output, usable for any range that uses trits and bits static void astc_encode_trits(uint32_t* pOutput, const uint8_t* pValues, uint32_t& bit_pos, int n) { // First extract the trits and the bits from the 5 input values int trits = 0, bits[5]; const uint32_t bit_mask = (1 << n) - 1; for (int i = 0; i < 5; i++) { static const int s_muls[5] = { 1, 3, 9, 27, 81 }; const int t = pValues[i] >> n; trits += t * s_muls[i]; bits[i] = pValues[i] & bit_mask; } // Encode the trits, by inverting the bit manipulations done by the decoder, converting 5 trits into 8-bits. // See https://www.khronos.org/registry/DataFormat/specs/1.2/dataformat.1.2.html#astc-integer-sequence-encoding assert(trits < 243); const int T = g_astc_trit_encode[trits]; // Now interleave the 8 encoded trit bits with the bits to form the encoded output. See table 94. astc_set_bits(pOutput, bit_pos, bits[0] | (astc_extract_bits(T, 0, 1) << n) | (bits[1] << (2 + n)), n * 2 + 2); astc_set_bits(pOutput, bit_pos, astc_extract_bits(T, 2, 3) | (bits[2] << 2) | (astc_extract_bits(T, 4, 4) << (2 + n)) | (bits[3] << (3 + n)) | (astc_extract_bits(T, 5, 6) << (3 + n * 2)) | (bits[4] << (5 + n * 2)) | (astc_extract_bits(T, 7, 7) << (5 + n * 3)), n * 3 + 6); } // Packs values using ASTC's BISE to output buffer. void encode_bise(uint32_t* pDst, const uint8_t* pSrc_vals, uint32_t bit_pos, int num_vals, int range) { uint32_t temp[5] = { 0 }; const int num_bits = g_ise_range_table[range][0]; int group_size = 0; if (g_ise_range_table[range][1]) group_size = 5; else if (g_ise_range_table[range][2]) group_size = 3; #ifndef NDEBUG const uint32_t num_levels = get_ise_levels(range); for (int i = 0; i < num_vals; i++) { assert(pSrc_vals[i] < num_levels); } #endif if (group_size) { // Range has trits or quints - pack each group of 5 or 3 values const int total_groups = (group_size == 5) ? ((num_vals + 4) / 5) : ((num_vals + 2) / 3); for (int group_index = 0; group_index < total_groups; group_index++) { uint8_t vals[5] = { 0 }; const int limit = my_min(group_size, num_vals - group_index * group_size); for (int i = 0; i < limit; i++) vals[i] = pSrc_vals[group_index * group_size + i]; if (group_size == 5) astc_encode_trits(temp, vals, bit_pos, num_bits); else astc_encode_quints(temp, vals, bit_pos, num_bits); } } else { for (int i = 0; i < num_vals; i++) astc_set_bits_1_to_9(temp, bit_pos, pSrc_vals[i], num_bits); } // TODO: Could this write too many bits on incomplete blocks? pDst[0] |= temp[0]; pDst[1] |= temp[1]; pDst[2] |= temp[2]; pDst[3] |= temp[3]; } inline uint32_t rev_dword(uint32_t bits) { uint32_t v = (bits << 16) | (bits >> 16); v = ((v & 0x00ff00ff) << 8) | ((v & 0xff00ff00) >> 8); v = ((v & 0x0f0f0f0f) << 4) | ((v & 0xf0f0f0f0) >> 4); v = ((v & 0x33333333) << 2) | ((v & 0xcccccccc) >> 2); v = ((v & 0x55555555) << 1) | ((v & 0xaaaaaaaa) >> 1); return v; } static inline bool is_packable(int value, int num_bits) { assert((num_bits >= 1) && (num_bits < 31)); return (value >= 0) && (value < (1 << num_bits)); } static bool get_config_bits(const log_astc_block &log_block, uint32_t &config_bits) { config_bits = 0; const int W = log_block.m_grid_width, H = log_block.m_grid_height; const uint32_t P = log_block.m_weight_ise_range >= 6; // high precision const uint32_t Dp_P = (log_block.m_dual_plane << 1) | P; // pack dual plane+high precision bits // See Tables 81-82 // Compute p from weight range uint32_t p = 2 + log_block.m_weight_ise_range - (P ? 6 : 0); // Rearrange p's bits to p0 p2 p1 p = (p >> 1) + ((p & 1) << 2); // Try encoding each row of table 82. // W+4 H+2 if (is_packable(W - 4, 2) && is_packable(H - 2, 2)) { config_bits = (Dp_P << 9) | ((W - 4) << 7) | ((H - 2) << 5) | ((p & 4) << 2) | (p & 3); return true; } // W+8 H+2 if (is_packable(W - 8, 2) && is_packable(H - 2, 2)) { config_bits = (Dp_P << 9) | ((W - 8) << 7) | ((H - 2) << 5) | ((p & 4) << 2) | 4 | (p & 3); return true; } // W+2 H+8 if (is_packable(W - 2, 2) && is_packable(H - 8, 2)) { config_bits = (Dp_P << 9) | ((H - 8) << 7) | ((W - 2) << 5) | ((p & 4) << 2) | 8 | (p & 3); return true; } // W+2 H+6 if (is_packable(W - 2, 2) && is_packable(H - 6, 1)) { config_bits = (Dp_P << 9) | ((H - 6) << 7) | ((W - 2) << 5) | ((p & 4) << 2) | 12 | (p & 3); return true; } // W+2 H+2 if (is_packable(W - 2, 1) && is_packable(H - 2, 2)) { config_bits = (Dp_P << 9) | ((W) << 7) | ((H - 2) << 5) | ((p & 4) << 2) | 12 | (p & 3); return true; } // 12 H+2 if ((W == 12) && is_packable(H - 2, 2)) { config_bits = (Dp_P << 9) | ((H - 2) << 5) | (p << 2); return true; } // W+2 12 if ((H == 12) && is_packable(W - 2, 2)) { config_bits = (Dp_P << 9) | (1 << 7) | ((W - 2) << 5) | (p << 2); return true; } // 6 10 if ((W == 6) && (H == 10)) { config_bits = (Dp_P << 9) | (3 << 7) | (p << 2); return true; } // 10 6 if ((W == 10) && (H == 6)) { config_bits = (Dp_P << 9) | (0b1101 << 5) | (p << 2); return true; } // W+6 H+6 (no dual plane or high prec) if ((!Dp_P) && is_packable(W - 6, 2) && is_packable(H - 6, 2)) { config_bits = ((H - 6) << 9) | 256 | ((W - 6) << 5) | (p << 2); return true; } // Failed: unsupported weight grid dimensions or config. return false; } bool pack_astc_block(astc_block& phys_block, const log_astc_block& log_block, int* pExpected_endpoint_range) { memset(&phys_block, 0, sizeof(phys_block)); if (pExpected_endpoint_range) *pExpected_endpoint_range = -1; assert(!log_block.m_error_flag); if (log_block.m_error_flag) return false; if (log_block.m_solid_color_flag_ldr) { pack_void_extent_ldr(phys_block, log_block.m_solid_color[0], log_block.m_solid_color[1], log_block.m_solid_color[2], log_block.m_solid_color[3]); return true; } else if (log_block.m_solid_color_flag_hdr) { pack_void_extent_hdr(phys_block, log_block.m_solid_color[0], log_block.m_solid_color[1], log_block.m_solid_color[2], log_block.m_solid_color[3]); return true; } if ((log_block.m_num_partitions < 1) || (log_block.m_num_partitions > MAX_PARTITIONS)) return false; // Max usable weight range is 11 if (log_block.m_weight_ise_range > LAST_VALID_WEIGHT_ISE_RANGE) return false; // See 23.24 Illegal Encodings, [0,5] is the minimum ISE encoding for endpoints if ((log_block.m_endpoint_ise_range < FIRST_VALID_ENDPOINT_ISE_RANGE) || (log_block.m_endpoint_ise_range > LAST_VALID_ENDPOINT_ISE_RANGE)) return false; if (log_block.m_color_component_selector > 3) return false; uint32_t config_bits = 0; if (!get_config_bits(log_block, config_bits)) return false; uint32_t bit_pos = 0; astc_set_bits(&phys_block.m_vals[0], bit_pos, config_bits, 11); const uint32_t total_grid_weights = (log_block.m_dual_plane ? 2 : 1) * (log_block.m_grid_width * log_block.m_grid_height); const uint32_t total_weight_bits = get_ise_sequence_bits(total_grid_weights, log_block.m_weight_ise_range); // 18.24 Illegal Encodings if ((!total_grid_weights) || (total_grid_weights > MAX_GRID_WEIGHTS) || (total_weight_bits < 24) || (total_weight_bits > 96)) return false; uint32_t total_extra_bits = 0; astc_set_bits(&phys_block.m_vals[0], bit_pos, log_block.m_num_partitions - 1, 2); if (log_block.m_num_partitions > 1) { if (log_block.m_partition_id >= NUM_PARTITION_PATTERNS) return false; astc_set_bits(&phys_block.m_vals[0], bit_pos, log_block.m_partition_id, 10); uint32_t highest_cem = 0, lowest_cem = UINT32_MAX; for (uint32_t j = 0; j < log_block.m_num_partitions; j++) { highest_cem = my_max(highest_cem, log_block.m_color_endpoint_modes[j]); lowest_cem = my_min(lowest_cem, log_block.m_color_endpoint_modes[j]); } if (highest_cem > 15) return false; // Ensure CEM range is contiguous if (((highest_cem >> 2) > (1 + (lowest_cem >> 2)))) return false; // See tables 79/80 uint32_t encoded_cem = log_block.m_color_endpoint_modes[0] << 2; if (lowest_cem != highest_cem) { encoded_cem = my_min(3, 1 + (lowest_cem >> 2)); // See tables at 23.11 Color Endpoint Mode for (uint32_t j = 0; j < log_block.m_num_partitions; j++) { const int M = log_block.m_color_endpoint_modes[j] & 3; const int C = (log_block.m_color_endpoint_modes[j] >> 2) - ((encoded_cem & 3) - 1); if ((C & 1) != C) return false; encoded_cem |= (C << (2 + j)) | (M << (2 + log_block.m_num_partitions + 2 * j)); } total_extra_bits = 3 * log_block.m_num_partitions - 4; if ((total_weight_bits + total_extra_bits) > 128) return false; uint32_t cem_bit_pos = 128 - total_weight_bits - total_extra_bits; astc_set_bits(&phys_block.m_vals[0], cem_bit_pos, encoded_cem >> 6, total_extra_bits); } astc_set_bits(&phys_block.m_vals[0], bit_pos, encoded_cem & 0x3f, 6); } else { if (log_block.m_partition_id) return false; if (log_block.m_color_endpoint_modes[0] > 15) return false; astc_set_bits(&phys_block.m_vals[0], bit_pos, log_block.m_color_endpoint_modes[0], 4); } if (log_block.m_dual_plane) { if (log_block.m_num_partitions > 3) return false; total_extra_bits += 2; uint32_t ccs_bit_pos = 128 - (int)total_weight_bits - (int)total_extra_bits; astc_set_bits(&phys_block.m_vals[0], ccs_bit_pos, log_block.m_color_component_selector, 2); } const uint32_t total_config_bits = bit_pos + total_extra_bits; const int num_remaining_bits = 128 - (int)total_config_bits - (int)total_weight_bits; if (num_remaining_bits < 0) return false; uint32_t total_cem_vals = 0; for (uint32_t j = 0; j < log_block.m_num_partitions; j++) total_cem_vals += 2 + 2 * (log_block.m_color_endpoint_modes[j] >> 2); if (total_cem_vals > MAX_ENDPOINTS) return false; int endpoint_ise_range = -1; for (int k = 20; k > 0; k--) { int bits = get_ise_sequence_bits(total_cem_vals, k); if (bits <= num_remaining_bits) { endpoint_ise_range = k; break; } } // See 23.24 Illegal Encodings, [0,5] is the minimum ISE encoding for endpoints if (endpoint_ise_range < (int)FIRST_VALID_ENDPOINT_ISE_RANGE) return false; // Ensure the caller utilized the right endpoint ISE range. if ((int)log_block.m_endpoint_ise_range != endpoint_ise_range) { if (pExpected_endpoint_range) *pExpected_endpoint_range = endpoint_ise_range; return false; } // Pack endpoints forwards encode_bise(&phys_block.m_vals[0], log_block.m_endpoints, bit_pos, total_cem_vals, endpoint_ise_range); // Pack weights backwards uint32_t weight_data[4] = { 0 }; encode_bise(weight_data, log_block.m_weights, 0, total_grid_weights, log_block.m_weight_ise_range); for (uint32_t i = 0; i < 4; i++) phys_block.m_vals[i] |= rev_dword(weight_data[3 - i]); return true; } static inline uint32_t bit_replication_scale(uint32_t src, int num_src_bits, int num_dst_bits) { assert(num_src_bits <= num_dst_bits); assert((src & ((1 << num_src_bits) - 1)) == src); uint32_t dst = 0; for (int shift = num_dst_bits - num_src_bits; shift > -num_src_bits; shift -= num_src_bits) dst |= (shift >= 0) ? (src << shift) : (src >> -shift); return dst; } uint32_t dequant_bise_endpoint(uint32_t val, uint32_t ise_range) { assert((ise_range >= FIRST_VALID_ENDPOINT_ISE_RANGE) && (ise_range <= LAST_VALID_ENDPOINT_ISE_RANGE)); assert(val < get_ise_levels(ise_range)); uint32_t u = 0; switch (ise_range) { case 5: { u = bit_replication_scale(val, 3, 8); break; } case 8: { u = bit_replication_scale(val, 4, 8); break; } case 11: { u = bit_replication_scale(val, 5, 8); break; } case 14: { u = bit_replication_scale(val, 6, 8); break; } case 17: { u = bit_replication_scale(val, 7, 8); break; } case 20: { u = val; break; } case 4: case 6: case 7: case 9: case 10: case 12: case 13: case 15: case 16: case 18: case 19: { const uint32_t num_bits = g_ise_range_table[ise_range][0]; const uint32_t num_trits = g_ise_range_table[ise_range][1]; BASISU_NOTE_UNUSED(num_trits); const uint32_t num_quints = g_ise_range_table[ise_range][2]; BASISU_NOTE_UNUSED(num_quints); // compute Table 103 row index const int range_index = (num_bits * 2 + (num_quints ? 1 : 0)) - 2; assert(range_index >= 0 && range_index <= 10); uint32_t bits = val & ((1 << num_bits) - 1); uint32_t tval = val >> num_bits; assert(tval < (num_trits ? 3U : 5U)); uint32_t a = bits & 1; uint32_t b = (bits >> 1) & 1; uint32_t c = (bits >> 2) & 1; uint32_t d = (bits >> 3) & 1; uint32_t e = (bits >> 4) & 1; uint32_t f = (bits >> 5) & 1; uint32_t A = a ? 511 : 0; uint32_t B = 0; switch (range_index) { case 2: { // 876543210 // b000b0bb0 B = (b << 1) | (b << 2) | (b << 4) | (b << 8); break; } case 3: { // 876543210 // b0000bb00 B = (b << 2) | (b << 3) | (b << 8); break; } case 4: { // 876543210 // cb000cbcb B = b | (c << 1) | (b << 2) | (c << 3) | (b << 7) | (c << 8); break; } case 5: { // 876543210 // cb0000cbc B = c | (b << 1) | (c << 2) | (b << 7) | (c << 8); break; } case 6: { // 876543210 // dcb000dcb B = b | (c << 1) | (d << 2) | (b << 6) | (c << 7) | (d << 8); break; } case 7: { // 876543210 // dcb0000dc B = c | (d << 1) | (b << 6) | (c << 7) | (d << 8); break; } case 8: { // 876543210 // edcb000ed B = d | (e << 1) | (b << 5) | (c << 6) | (d << 7) | (e << 8); break; } case 9: { // 876543210 // edcb0000e B = e | (b << 5) | (c << 6) | (d << 7) | (e << 8); break; } case 10: { // 876543210 // fedcb000f B = f | (b << 4) | (c << 5) | (d << 6) | (e << 7) | (f << 8); break; } default: break; } static uint8_t C_vals[11] = { 204, 113, 93, 54, 44, 26, 22, 13, 11, 6, 5 }; uint32_t C = C_vals[range_index]; uint32_t D = tval; u = D * C + B; u = u ^ A; u = (A & 0x80) | (u >> 2); break; } default: { assert(0); break; } } return u; } uint32_t dequant_bise_weight(uint32_t val, uint32_t ise_range) { assert(val < get_ise_levels(ise_range)); uint32_t u = 0; switch (ise_range) { case 0: { u = val ? 63 : 0; break; } case 1: // 0-2 { const uint8_t s_tab_0_2[3] = { 0, 32, 63 }; u = s_tab_0_2[val]; break; } case 2: // 0-3 { u = bit_replication_scale(val, 2, 6); break; } case 3: // 0-4 { const uint8_t s_tab_0_4[5] = { 0, 16, 32, 47, 63 }; u = s_tab_0_4[val]; break; } case 5: // 0-7 { u = bit_replication_scale(val, 3, 6); break; } case 8: // 0-15 { u = bit_replication_scale(val, 4, 6); break; } case 11: // 0-31 { u = bit_replication_scale(val, 5, 6); break; } case 4: // 0-5 case 6: // 0-9 case 7: // 0-11 case 9: // 0-19 case 10: // 0-23 { const uint32_t num_bits = g_ise_range_table[ise_range][0]; const uint32_t num_trits = g_ise_range_table[ise_range][1]; BASISU_NOTE_UNUSED(num_trits); const uint32_t num_quints = g_ise_range_table[ise_range][2]; BASISU_NOTE_UNUSED(num_quints); // compute Table 103 row index const int range_index = num_bits * 2 + (num_quints ? 1 : 0); // Extract bits and tris/quints from value const uint32_t bits = val & ((1u << num_bits) - 1); const uint32_t D = val >> num_bits; assert(D < (num_trits ? 3U : 5U)); // Now dequantize // See Table 103. ASTC weight unquantization parameters static const uint32_t C_table[5] = { 50, 28, 23, 13, 11 }; const uint32_t a = bits & 1, b = (bits >> 1) & 1, c = (bits >> 2) & 1; const uint32_t A = (a == 0) ? 0 : 0x7F; uint32_t B = 0; if (range_index == 4) B = ((b << 6) | (b << 2) | (b << 0)); else if (range_index == 5) B = ((b << 6) | (b << 1)); else if (range_index == 6) B = ((c << 6) | (b << 5) | (c << 1) | (b << 0)); const uint32_t C = C_table[range_index - 2]; u = D * C + B; u = u ^ A; u = (A & 0x20) | (u >> 2); break; } default: assert(0); break; } if (u > 32) u++; return u; } // Returns the nearest ISE symbol given a [0,255] endpoint value. uint32_t find_nearest_bise_endpoint(int v, uint32_t ise_range) { assert(ise_range >= FIRST_VALID_ENDPOINT_ISE_RANGE && ise_range <= LAST_VALID_ENDPOINT_ISE_RANGE); const uint32_t total_levels = get_ise_levels(ise_range); int best_e = INT_MAX, best_index = 0; for (uint32_t i = 0; i < total_levels; i++) { const int qv = dequant_bise_endpoint(i, ise_range); int e = labs(v - qv); if (e < best_e) { best_e = e; best_index = i; if (!best_e) break; } } return best_index; } // Returns the nearest ISE weight given a [0,64] endpoint value. uint32_t find_nearest_bise_weight(int v, uint32_t ise_range) { assert(ise_range >= FIRST_VALID_WEIGHT_ISE_RANGE && ise_range <= LAST_VALID_WEIGHT_ISE_RANGE); assert(v <= (int)MAX_WEIGHT_VALUE); const uint32_t total_levels = get_ise_levels(ise_range); int best_e = INT_MAX, best_index = 0; for (uint32_t i = 0; i < total_levels; i++) { const int qv = dequant_bise_weight(i, ise_range); int e = labs(v - qv); if (e < best_e) { best_e = e; best_index = i; if (!best_e) break; } } return best_index; } void create_quant_tables( uint8_t* pVal_to_ise, // [0-255] or [0-64] value to nearest ISE symbol, array size is [256] or [65] uint8_t* pISE_to_val, // ASTC encoded ISE symbol to [0,255] or [0,64] value, [levels] uint8_t* pISE_to_rank, // returns the level rank index given an ISE symbol, [levels] uint8_t* pRank_to_ISE, // returns the ISE symbol given a level rank, inverse of pISE_to_rank, [levels] uint32_t ise_range, // ise range, [4,20] for endpoints, [0,11] for weights bool weight_flag) // false if block endpoints, true if weights { const uint32_t num_dequant_vals = weight_flag ? (MAX_WEIGHT_VALUE + 1) : 256; for (uint32_t i = 0; i < num_dequant_vals; i++) { uint32_t bise_index = weight_flag ? astc_helpers::find_nearest_bise_weight(i, ise_range) : astc_helpers::find_nearest_bise_endpoint(i, ise_range); if (pVal_to_ise) pVal_to_ise[i] = (uint8_t)bise_index; if (pISE_to_val) pISE_to_val[bise_index] = weight_flag ? (uint8_t)astc_helpers::dequant_bise_weight(bise_index, ise_range) : (uint8_t)astc_helpers::dequant_bise_endpoint(bise_index, ise_range); } if (pISE_to_rank || pRank_to_ISE) { const uint32_t num_levels = get_ise_levels(ise_range); if (!g_ise_range_table[ise_range][1] && !g_ise_range_table[ise_range][2]) { // Only bits for (uint32_t i = 0; i < num_levels; i++) { if (pISE_to_rank) pISE_to_rank[i] = (uint8_t)i; if (pRank_to_ISE) pRank_to_ISE[i] = (uint8_t)i; } } else { // Range has trits or quints uint32_t vals[256]; for (uint32_t i = 0; i < num_levels; i++) { uint32_t v = weight_flag ? astc_helpers::dequant_bise_weight(i, ise_range) : astc_helpers::dequant_bise_endpoint(i, ise_range); // Low=ISE value // High=dequantized value vals[i] = (v << 16) | i; } // Sorts by dequantized value std::sort(vals, vals + num_levels); for (uint32_t rank = 0; rank < num_levels; rank++) { uint32_t ise_val = (uint8_t)vals[rank]; if (pISE_to_rank) pISE_to_rank[ise_val] = (uint8_t)rank; if (pRank_to_ISE) pRank_to_ISE[rank] = (uint8_t)ise_val; } } } } void pack_void_extent_ldr(astc_block &blk, uint16_t rh, uint16_t gh, uint16_t bh, uint16_t ah) { uint8_t* pDst = (uint8_t*)&blk.m_vals[0]; memset(pDst, 0xFF, 16); pDst[0] = 0b11111100; pDst[1] = 0b11111101; pDst[8] = (uint8_t)rh; pDst[9] = (uint8_t)(rh >> 8); pDst[10] = (uint8_t)gh; pDst[11] = (uint8_t)(gh >> 8); pDst[12] = (uint8_t)bh; pDst[13] = (uint8_t)(bh >> 8); pDst[14] = (uint8_t)ah; pDst[15] = (uint8_t)(ah >> 8); } // rh-ah are half-floats void pack_void_extent_hdr(astc_block& blk, uint16_t rh, uint16_t gh, uint16_t bh, uint16_t ah) { uint8_t* pDst = (uint8_t*)&blk.m_vals[0]; memset(pDst, 0xFF, 16); pDst[0] = 0b11111100; pDst[8] = (uint8_t)rh; pDst[9] = (uint8_t)(rh >> 8); pDst[10] = (uint8_t)gh; pDst[11] = (uint8_t)(gh >> 8); pDst[12] = (uint8_t)bh; pDst[13] = (uint8_t)(bh >> 8); pDst[14] = (uint8_t)ah; pDst[15] = (uint8_t)(ah >> 8); } bool is_cem_ldr(uint32_t mode) { switch (mode) { case CEM_LDR_LUM_DIRECT: case CEM_LDR_LUM_BASE_PLUS_OFS: case CEM_LDR_LUM_ALPHA_DIRECT: case CEM_LDR_LUM_ALPHA_BASE_PLUS_OFS: case CEM_LDR_RGB_BASE_SCALE: case CEM_LDR_RGB_DIRECT: case CEM_LDR_RGB_BASE_PLUS_OFFSET: case CEM_LDR_RGB_BASE_SCALE_PLUS_TWO_A: case CEM_LDR_RGBA_DIRECT: case CEM_LDR_RGBA_BASE_PLUS_OFFSET: return true; default: break; } return false; } bool is_valid_block_size(uint32_t w, uint32_t h) { assert((w >= MIN_BLOCK_DIM) && (w <= MAX_BLOCK_DIM)); assert((h >= MIN_BLOCK_DIM) && (h <= MAX_BLOCK_DIM)); #define SIZECHK(x, y) if ((w == (x)) && (h == (y))) return true; SIZECHK(4, 4); SIZECHK(5, 4); SIZECHK(5, 5); SIZECHK(6, 5); SIZECHK(6, 6); SIZECHK(8, 5); SIZECHK(8, 6); SIZECHK(10, 5); SIZECHK(10, 6); SIZECHK(8, 8); SIZECHK(10, 8); SIZECHK(10, 10); SIZECHK(12, 10); SIZECHK(12, 12); #undef SIZECHK return false; } bool block_has_any_hdr_cems(const log_astc_block& log_blk) { assert((log_blk.m_num_partitions >= 1) && (log_blk.m_num_partitions <= MAX_PARTITIONS)); for (uint32_t i = 0; i < log_blk.m_num_partitions; i++) if (is_cem_hdr(log_blk.m_color_endpoint_modes[i])) return true; return false; } bool block_has_any_ldr_cems(const log_astc_block& log_blk) { assert((log_blk.m_num_partitions >= 1) && (log_blk.m_num_partitions <= MAX_PARTITIONS)); for (uint32_t i = 0; i < log_blk.m_num_partitions; i++) if (!is_cem_hdr(log_blk.m_color_endpoint_modes[i])) return true; return false; } dequant_tables g_dequant_tables; void precompute_texel_partitions_4x4(); void init_tables(bool init_rank_tabs) { g_dequant_tables.init(init_rank_tabs); precompute_texel_partitions_4x4(); } struct weighted_sample { uint8_t m_src_x; uint8_t m_src_y; uint8_t m_weights[2][2]; // [y][x], scaled by 16, round by adding 8 }; static void compute_upsample_weights( int block_width, int block_height, int weight_grid_width, int weight_grid_height, weighted_sample* pWeights) // there will be block_width * block_height bilinear samples { const uint32_t scaleX = (1024 + block_width / 2) / (block_width - 1); const uint32_t scaleY = (1024 + block_height / 2) / (block_height - 1); for (int texelY = 0; texelY < block_height; texelY++) { for (int texelX = 0; texelX < block_width; texelX++) { const uint32_t gX = (scaleX * texelX * (weight_grid_width - 1) + 32) >> 6; const uint32_t gY = (scaleY * texelY * (weight_grid_height - 1) + 32) >> 6; const uint32_t jX = gX >> 4; const uint32_t jY = gY >> 4; const uint32_t fX = gX & 0xf; const uint32_t fY = gY & 0xf; const uint32_t w11 = (fX * fY + 8) >> 4; const uint32_t w10 = fY - w11; const uint32_t w01 = fX - w11; const uint32_t w00 = 16 - fX - fY + w11; weighted_sample& s = pWeights[texelX + texelY * block_width]; s.m_src_x = (uint8_t)jX; s.m_src_y = (uint8_t)jY; s.m_weights[0][0] = (uint8_t)w00; s.m_weights[0][1] = (uint8_t)w01; s.m_weights[1][0] = (uint8_t)w10; s.m_weights[1][1] = (uint8_t)w11; } } } // Should be dequantized [0,64] weights static void upsample_weight_grid( uint32_t bx, uint32_t by, // destination/to dimension uint32_t wx, uint32_t wy, // source/from dimension const uint8_t* pSrc_weights, // these are dequantized [0,64] weights, NOT ISE symbols, [wy][wx] uint8_t* pDst_weights) // [by][bx] { assert((bx >= 2) && (by >= 2) && (bx <= 12) && (by <= 12)); assert((wx >= 2) && (wy >= 2) && (wx <= bx) && (wy <= by)); const uint32_t total_src_weights = wx * wy; const uint32_t total_dst_weights = bx * by; if (total_src_weights == total_dst_weights) { memcpy(pDst_weights, pSrc_weights, total_src_weights); return; } weighted_sample weights[12 * 12]; compute_upsample_weights(bx, by, wx, wy, weights); const weighted_sample* pS = weights; for (uint32_t y = 0; y < by; y++) { for (uint32_t x = 0; x < bx; x++, ++pS) { const uint32_t w00 = pS->m_weights[0][0]; const uint32_t w01 = pS->m_weights[0][1]; const uint32_t w10 = pS->m_weights[1][0]; const uint32_t w11 = pS->m_weights[1][1]; assert(w00 || w01 || w10 || w11); const uint32_t sx = pS->m_src_x, sy = pS->m_src_y; uint32_t total = 8; if (w00) total += pSrc_weights[bounds_check(sx + sy * wx, 0U, total_src_weights)] * w00; if (w01) total += pSrc_weights[bounds_check(sx + 1 + sy * wx, 0U, total_src_weights)] * w01; if (w10) total += pSrc_weights[bounds_check(sx + (sy + 1) * wx, 0U, total_src_weights)] * w10; if (w11) total += pSrc_weights[bounds_check(sx + 1 + (sy + 1) * wx, 0U, total_src_weights)] * w11; pDst_weights[x + y * bx] = (uint8_t)(total >> 4); } } } inline uint32_t hash52(uint32_t v) { uint32_t p = v; p ^= p >> 15; p -= p << 17; p += p << 7; p += p << 4; p ^= p >> 5; p += p << 16; p ^= p >> 7; p ^= p >> 3; p ^= p << 6; p ^= p >> 17; return p; } int compute_texel_partition(uint32_t seedIn, uint32_t xIn, uint32_t yIn, uint32_t zIn, int num_partitions, bool small_block) { assert(zIn == 0); const uint32_t x = small_block ? xIn << 1 : xIn; const uint32_t y = small_block ? yIn << 1 : yIn; const uint32_t z = small_block ? zIn << 1 : zIn; const uint32_t seed = seedIn + 1024 * (num_partitions - 1); const uint32_t rnum = hash52(seed); uint8_t seed1 = (uint8_t)(rnum & 0xf); uint8_t seed2 = (uint8_t)((rnum >> 4) & 0xf); uint8_t seed3 = (uint8_t)((rnum >> 8) & 0xf); uint8_t seed4 = (uint8_t)((rnum >> 12) & 0xf); uint8_t seed5 = (uint8_t)((rnum >> 16) & 0xf); uint8_t seed6 = (uint8_t)((rnum >> 20) & 0xf); uint8_t seed7 = (uint8_t)((rnum >> 24) & 0xf); uint8_t seed8 = (uint8_t)((rnum >> 28) & 0xf); uint8_t seed9 = (uint8_t)((rnum >> 18) & 0xf); uint8_t seed10 = (uint8_t)((rnum >> 22) & 0xf); uint8_t seed11 = (uint8_t)((rnum >> 26) & 0xf); uint8_t seed12 = (uint8_t)(((rnum >> 30) | (rnum << 2)) & 0xf); seed1 = (uint8_t)(seed1 * seed1); seed2 = (uint8_t)(seed2 * seed2); seed3 = (uint8_t)(seed3 * seed3); seed4 = (uint8_t)(seed4 * seed4); seed5 = (uint8_t)(seed5 * seed5); seed6 = (uint8_t)(seed6 * seed6); seed7 = (uint8_t)(seed7 * seed7); seed8 = (uint8_t)(seed8 * seed8); seed9 = (uint8_t)(seed9 * seed9); seed10 = (uint8_t)(seed10 * seed10); seed11 = (uint8_t)(seed11 * seed11); seed12 = (uint8_t)(seed12 * seed12); const int shA = (seed & 2) != 0 ? 4 : 5; const int shB = (num_partitions == 3) ? 6 : 5; const int sh1 = (seed & 1) != 0 ? shA : shB; const int sh2 = (seed & 1) != 0 ? shB : shA; const int sh3 = (seed & 0x10) != 0 ? sh1 : sh2; seed1 = (uint8_t)(seed1 >> sh1); seed2 = (uint8_t)(seed2 >> sh2); seed3 = (uint8_t)(seed3 >> sh1); seed4 = (uint8_t)(seed4 >> sh2); seed5 = (uint8_t)(seed5 >> sh1); seed6 = (uint8_t)(seed6 >> sh2); seed7 = (uint8_t)(seed7 >> sh1); seed8 = (uint8_t)(seed8 >> sh2); seed9 = (uint8_t)(seed9 >> sh3); seed10 = (uint8_t)(seed10 >> sh3); seed11 = (uint8_t)(seed11 >> sh3); seed12 = (uint8_t)(seed12 >> sh3); const int a = 0x3f & (seed1 * x + seed2 * y + seed11 * z + (rnum >> 14)); const int b = 0x3f & (seed3 * x + seed4 * y + seed12 * z + (rnum >> 10)); const int c = (num_partitions >= 3) ? 0x3f & (seed5 * x + seed6 * y + seed9 * z + (rnum >> 6)) : 0; const int d = (num_partitions >= 4) ? 0x3f & (seed7 * x + seed8 * y + seed10 * z + (rnum >> 2)) : 0; return (a >= b && a >= c && a >= d) ? 0 : (b >= c && b >= d) ? 1 : (c >= d) ? 2 : 3; } static uint32_t g_texel_partitions_4x4[1024][2]; void precompute_texel_partitions_4x4() { for (uint32_t p = 0; p < 1024; p++) { uint32_t v2 = 0, v3 = 0; for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { const uint32_t shift = x * 2 + y * 8; v2 |= (compute_texel_partition(p, x, y, 0, 2, true) << shift); v3 |= (compute_texel_partition(p, x, y, 0, 3, true) << shift); } } g_texel_partitions_4x4[p][0] = v2; g_texel_partitions_4x4[p][1] = v3; } } static inline int get_precompute_texel_partitions_4x4(uint32_t seed, uint32_t x, uint32_t y, uint32_t num_partitions) { assert(g_texel_partitions_4x4[1][0]); assert(seed < 1024); assert((x <= 3) && (y <= 3)); assert((num_partitions >= 2) && (num_partitions <= 3)); const uint32_t shift = x * 2 + y * 8; return (g_texel_partitions_4x4[seed][num_partitions - 2] >> shift) & 3; } void blue_contract( int r, int g, int b, int a, int &dr, int &dg, int &db, int &da) { dr = (r + b) >> 1; dg = (g + b) >> 1; db = b; da = a; } inline void bit_transfer_signed(int& a, int& b) { b >>= 1; b |= (a & 0x80); a >>= 1; a &= 0x3F; if ((a & 0x20) != 0) a -= 0x40; } static inline int clamp(int a, int l, int h) { if (a < l) a = l; else if (a > h) a = h; return a; } static inline float clampf(float a, float l, float h) { if (a < l) a = l; else if (a > h) a = h; return a; } inline int sign_extend(int src, int num_src_bits) { assert((num_src_bits >= 2) && (num_src_bits <= 31)); const bool negative = (src & (1 << (num_src_bits - 1))) != 0; if (negative) return src | ~((1 << num_src_bits) - 1); else return src & ((1 << num_src_bits) - 1); } // endpoints is [4][2] void decode_endpoint(uint32_t cem_index, int (*pEndpoints)[2], const uint8_t *pE) { assert(cem_index <= CEM_HDR_RGB_HDR_ALPHA); int v0 = pE[0], v1 = pE[1]; int& e0_r = pEndpoints[0][0], &e0_g = pEndpoints[1][0], &e0_b = pEndpoints[2][0], &e0_a = pEndpoints[3][0]; int& e1_r = pEndpoints[0][1], &e1_g = pEndpoints[1][1], &e1_b = pEndpoints[2][1], &e1_a = pEndpoints[3][1]; switch (cem_index) { case CEM_LDR_LUM_DIRECT: { e0_r = v0; e1_r = v1; e0_g = v0; e1_g = v1; e0_b = v0; e1_b = v1; e0_a = 0xFF; e1_a = 0xFF; break; } case CEM_LDR_LUM_BASE_PLUS_OFS: { int l0 = (v0 >> 2) | (v1 & 0xc0); int l1 = l0 + (v1 & 0x3f); if (l1 > 0xFF) l1 = 0xFF; e0_r = l0; e1_r = l1; e0_g = l0; e1_g = l1; e0_b = l0; e1_b = l1; e0_a = 0xFF; e1_a = 0xFF; break; } case CEM_LDR_LUM_ALPHA_DIRECT: { int v2 = pE[2], v3 = pE[3]; e0_r = v0; e1_r = v1; e0_g = v0; e1_g = v1; e0_b = v0; e1_b = v1; e0_a = v2; e1_a = v3; break; } case CEM_LDR_LUM_ALPHA_BASE_PLUS_OFS: { int v2 = pE[2], v3 = pE[3]; bit_transfer_signed(v1, v0); bit_transfer_signed(v3, v2); e0_r = v0; e1_r = v0 + v1; e0_g = v0; e1_g = v0 + v1; e0_b = v0; e1_b = v0 + v1; e0_a = v2; e1_a = v2 + v3; for (uint32_t c = 0; c < 4; c++) { pEndpoints[c][0] = clamp(pEndpoints[c][0], 0, 255); pEndpoints[c][1] = clamp(pEndpoints[c][1], 0, 255); } break; } case CEM_LDR_RGB_BASE_SCALE: { int v2 = pE[2], v3 = pE[3]; e0_r = (v0 * v3) >> 8; e1_r = v0; e0_g = (v1 * v3) >> 8; e1_g = v1; e0_b = (v2 * v3) >> 8; e1_b = v2; e0_a = 0xFF; e1_a = 0xFF; break; } case CEM_LDR_RGB_DIRECT: { int v2 = pE[2], v3 = pE[3], v4 = pE[4], v5 = pE[5]; if ((v1 + v3 + v5) >= (v0 + v2 + v4)) { e0_r = v0; e1_r = v1; e0_g = v2; e1_g = v3; e0_b = v4; e1_b = v5; e0_a = 0xFF; e1_a = 0xFF; } else { blue_contract(v1, v3, v5, 0xFF, e0_r, e0_g, e0_b, e0_a); blue_contract(v0, v2, v4, 0xFF, e1_r, e1_g, e1_b, e1_a); } break; } case CEM_LDR_RGB_BASE_PLUS_OFFSET: { int v2 = pE[2], v3 = pE[3], v4 = pE[4], v5 = pE[5]; bit_transfer_signed(v1, v0); bit_transfer_signed(v3, v2); bit_transfer_signed(v5, v4); if ((v1 + v3 + v5) >= 0) { e0_r = v0; e1_r = v0 + v1; e0_g = v2; e1_g = v2 + v3; e0_b = v4; e1_b = v4 + v5; e0_a = 0xFF; e1_a = 0xFF; } else { blue_contract(v0 + v1, v2 + v3, v4 + v5, 0xFF, e0_r, e0_g, e0_b, e0_a); blue_contract(v0, v2, v4, 0xFF, e1_r, e1_g, e1_b, e1_a); } for (uint32_t c = 0; c < 4; c++) { pEndpoints[c][0] = clamp(pEndpoints[c][0], 0, 255); pEndpoints[c][1] = clamp(pEndpoints[c][1], 0, 255); } break; } case CEM_LDR_RGB_BASE_SCALE_PLUS_TWO_A: { int v2 = pE[2], v3 = pE[3], v4 = pE[4], v5 = pE[5]; e0_r = (v0 * v3) >> 8; e1_r = v0; e0_g = (v1 * v3) >> 8; e1_g = v1; e0_b = (v2 * v3) >> 8; e1_b = v2; e0_a = v4; e1_a = v5; break; } case CEM_LDR_RGBA_DIRECT: { int v2 = pE[2], v3 = pE[3], v4 = pE[4], v5 = pE[5], v6 = pE[6], v7 = pE[7]; if ((v1 + v3 + v5) >= (v0 + v2 + v4)) { e0_r = v0; e1_r = v1; e0_g = v2; e1_g = v3; e0_b = v4; e1_b = v5; e0_a = v6; e1_a = v7; } else { blue_contract(v1, v3, v5, v7, e0_r, e0_g, e0_b, e0_a); blue_contract(v0, v2, v4, v6, e1_r, e1_g, e1_b, e1_a); } break; } case CEM_LDR_RGBA_BASE_PLUS_OFFSET: { int v2 = pE[2], v3 = pE[3], v4 = pE[4], v5 = pE[5], v6 = pE[6], v7 = pE[7]; bit_transfer_signed(v1, v0); bit_transfer_signed(v3, v2); bit_transfer_signed(v5, v4); bit_transfer_signed(v7, v6); if ((v1 + v3 + v5) >= 0) { e0_r = v0; e1_r = v0 + v1; e0_g = v2; e1_g = v2 + v3; e0_b = v4; e1_b = v4 + v5; e0_a = v6; e1_a = v6 + v7; } else { blue_contract(v0 + v1, v2 + v3, v4 + v5, v6 + v7, e0_r, e0_g, e0_b, e0_a); blue_contract(v0, v2, v4, v6, e1_r, e1_g, e1_b, e1_a); } for (uint32_t c = 0; c < 4; c++) { pEndpoints[c][0] = clamp(pEndpoints[c][0], 0, 255); pEndpoints[c][1] = clamp(pEndpoints[c][1], 0, 255); } break; } case CEM_HDR_LUM_LARGE_RANGE: { int y0, y1; if (v1 >= v0) { y0 = (v0 << 4); y1 = (v1 << 4); } else { y0 = (v1 << 4) + 8; y1 = (v0 << 4) - 8; } e0_r = y0; e1_r = y1; e0_g = y0; e1_g = y1; e0_b = y0; e1_b = y1; e0_a = 0x780; e1_a = 0x780; break; } case CEM_HDR_LUM_SMALL_RANGE: { int y0, y1, d; if ((v0 & 0x80) != 0) { y0 = ((v1 & 0xE0) << 4) | ((v0 & 0x7F) << 2); d = (v1 & 0x1F) << 2; } else { y0 = ((v1 & 0xF0) << 4) | ((v0 & 0x7F) << 1); d = (v1 & 0x0F) << 1; } y1 = y0 + d; if (y1 > 0xFFF) y1 = 0xFFF; e0_r = y0; e1_r = y1; e0_g = y0; e1_g = y1; e0_b = y0; e1_b = y1; e0_a = 0x780; e1_a = 0x780; break; } case CEM_HDR_RGB_BASE_SCALE: { int v2 = pE[2], v3 = pE[3]; int modeval = ((v0 & 0xC0) >> 6) | ((v1 & 0x80) >> 5) | ((v2 & 0x80) >> 4); int majcomp, mode; if ((modeval & 0xC) != 0xC) { majcomp = modeval >> 2; mode = modeval & 3; } else if (modeval != 0xF) { majcomp = modeval & 3; mode = 4; } else { majcomp = 0; mode = 5; } int red = v0 & 0x3f; int green = v1 & 0x1f; int blue = v2 & 0x1f; int scale = v3 & 0x1f; int x0 = (v1 >> 6) & 1; int x1 = (v1 >> 5) & 1; int x2 = (v2 >> 6) & 1; int x3 = (v2 >> 5) & 1; int x4 = (v3 >> 7) & 1; int x5 = (v3 >> 6) & 1; int x6 = (v3 >> 5) & 1; int ohm = 1 << mode; if (ohm & 0x30) green |= x0 << 6; if (ohm & 0x3A) green |= x1 << 5; if (ohm & 0x30) blue |= x2 << 6; if (ohm & 0x3A) blue |= x3 << 5; if (ohm & 0x3D) scale |= x6 << 5; if (ohm & 0x2D) scale |= x5 << 6; if (ohm & 0x04) scale |= x4 << 7; if (ohm & 0x3B) red |= x4 << 6; if (ohm & 0x04) red |= x3 << 6; if (ohm & 0x10) red |= x5 << 7; if (ohm & 0x0F) red |= x2 << 7; if (ohm & 0x05) red |= x1 << 8; if (ohm & 0x0A) red |= x0 << 8; if (ohm & 0x05) red |= x0 << 9; if (ohm & 0x02) red |= x6 << 9; if (ohm & 0x01) red |= x3 << 10; if (ohm & 0x02) red |= x5 << 10; static const int s_shamts[6] = { 1,1,2,3,4,5 }; const int shamt = s_shamts[mode]; red <<= shamt; green <<= shamt; blue <<= shamt; scale <<= shamt; if (mode != 5) { green = red - green; blue = red - blue; } if (majcomp == 1) std::swap(red, green); if (majcomp == 2) std::swap(red, blue); e1_r = clamp(red, 0, 0xFFF); e1_g = clamp(green, 0, 0xFFF); e1_b = clamp(blue, 0, 0xFFF); e1_a = 0x780; e0_r = clamp(red - scale, 0, 0xFFF); e0_g = clamp(green - scale, 0, 0xFFF); e0_b = clamp(blue - scale, 0, 0xFFF); e0_a = 0x780; break; } case CEM_HDR_RGB_HDR_ALPHA: case CEM_HDR_RGB_LDR_ALPHA: case CEM_HDR_RGB: { int v2 = pE[2], v3 = pE[3], v4 = pE[4], v5 = pE[5]; int majcomp = ((v4 & 0x80) >> 7) | ((v5 & 0x80) >> 6); e0_a = 0x780; e1_a = 0x780; if (majcomp == 3) { e0_r = v0 << 4; e0_g = v2 << 4; e0_b = (v4 & 0x7f) << 5; e1_r = v1 << 4; e1_g = v3 << 4; e1_b = (v5 & 0x7f) << 5; } else { int mode = ((v1 & 0x80) >> 7) | ((v2 & 0x80) >> 6) | ((v3 & 0x80) >> 5); int va = v0 | ((v1 & 0x40) << 2); int vb0 = v2 & 0x3f; int vb1 = v3 & 0x3f; int vc = v1 & 0x3f; int vd0 = v4 & 0x7f; int vd1 = v5 & 0x7f; static const int s_dbitstab[8] = { 7,6,7,6,5,6,5,6 }; vd0 = sign_extend(vd0, s_dbitstab[mode]); vd1 = sign_extend(vd1, s_dbitstab[mode]); int x0 = (v2 >> 6) & 1; int x1 = (v3 >> 6) & 1; int x2 = (v4 >> 6) & 1; int x3 = (v5 >> 6) & 1; int x4 = (v4 >> 5) & 1; int x5 = (v5 >> 5) & 1; int ohm = 1 << mode; if (ohm & 0xA4) va |= x0 << 9; if (ohm & 0x08) va |= x2 << 9; if (ohm & 0x50) va |= x4 << 9; if (ohm & 0x50) va |= x5 << 10; if (ohm & 0xA0) va |= x1 << 10; if (ohm & 0xC0) va |= x2 << 11; if (ohm & 0x04) vc |= x1 << 6; if (ohm & 0xE8) vc |= x3 << 6; if (ohm & 0x20) vc |= x2 << 7; if (ohm & 0x5B) vb0 |= x0 << 6; if (ohm & 0x5B) vb1 |= x1 << 6; if (ohm & 0x12) vb0 |= x2 << 7; if (ohm & 0x12) vb1 |= x3 << 7; int shamt = (mode >> 1) ^ 3; va = (uint32_t)va << shamt; vb0 = (uint32_t)vb0 << shamt; vb1 = (uint32_t)vb1 << shamt; vc = (uint32_t)vc << shamt; vd0 = (uint32_t)vd0 << shamt; vd1 = (uint32_t)vd1 << shamt; e1_r = clamp(va, 0, 0xFFF); e1_g = clamp(va - vb0, 0, 0xFFF); e1_b = clamp(va - vb1, 0, 0xFFF); e0_r = clamp(va - vc, 0, 0xFFF); e0_g = clamp(va - vb0 - vc - vd0, 0, 0xFFF); e0_b = clamp(va - vb1 - vc - vd1, 0, 0xFFF); if (majcomp == 1) { std::swap(e0_r, e0_g); std::swap(e1_r, e1_g); } else if (majcomp == 2) { std::swap(e0_r, e0_b); std::swap(e1_r, e1_b); } } if (cem_index == CEM_HDR_RGB_LDR_ALPHA) { int v6 = pE[6], v7 = pE[7]; e0_a = v6; e1_a = v7; } else if (cem_index == CEM_HDR_RGB_HDR_ALPHA) { int v6 = pE[6], v7 = pE[7]; // Extract mode bits int mode = ((v6 >> 7) & 1) | ((v7 >> 6) & 2); v6 &= 0x7F; v7 &= 0x7F; if (mode == 3) { e0_a = v6 << 5; e1_a = v7 << 5; } else { v6 |= (v7 << (mode + 1)) & 0x780; v7 &= (0x3F >> mode); v7 ^= (0x20 >> mode); v7 -= (0x20 >> mode); v6 <<= (4 - mode); v7 <<= (4 - mode); v7 += v6; v7 = clamp(v7, 0, 0xFFF); e0_a = v6; e1_a = v7; } } break; } default: { assert(0); for (uint32_t c = 0; c < 4; c++) { pEndpoints[c][0] = 0; pEndpoints[c][1] = 0; } break; } } } static inline bool is_half_inf_or_nan(half_float v) { return get_bits(v, 10, 14) == 31; } // This float->half conversion matches how "F32TO16" works on Intel GPU's. half_float float_to_half(float val, bool toward_zero) { union { float f; int32_t i; uint32_t u; } fi = { val }; const int flt_m = fi.i & 0x7FFFFF, flt_e = (fi.i >> 23) & 0xFF, flt_s = (fi.i >> 31) & 0x1; int s = flt_s, e = 0, m = 0; // inf/NaN if (flt_e == 0xff) { e = 31; if (flt_m != 0) // NaN m = 1; } // not zero or denormal else if (flt_e != 0) { int new_exp = flt_e - 127; if (new_exp > 15) e = 31; else if (new_exp < -14) { if (toward_zero) m = (int)truncf((1 << 24) * fabsf(fi.f)); else m = lrintf((1 << 24) * fabsf(fi.f)); } else { e = new_exp + 15; if (toward_zero) m = (int)truncf((float)flt_m * (1.0f / (float)(1 << 13))); else m = lrintf((float)flt_m * (1.0f / (float)(1 << 13))); } } assert((0 <= m) && (m <= 1024)); if (m == 1024) { e++; m = 0; } assert((s >= 0) && (s <= 1)); assert((e >= 0) && (e <= 31)); assert((m >= 0) && (m <= 1023)); half_float result = (half_float)((s << 15) | (e << 10) | m); return result; } float half_to_float(half_float hval) { union { float f; uint32_t u; } x = { 0 }; uint32_t s = ((uint32_t)hval >> 15) & 1; uint32_t e = ((uint32_t)hval >> 10) & 0x1F; uint32_t m = (uint32_t)hval & 0x3FF; if (!e) { if (!m) { // +- 0 x.u = s << 31; return x.f; } else { // denormalized while (!(m & 0x00000400)) { m <<= 1; --e; } ++e; m &= ~0x00000400; } } else if (e == 31) { if (m == 0) { // +/- INF x.u = (s << 31) | 0x7f800000; return x.f; } else { // +/- NaN x.u = (s << 31) | 0x7f800000 | (m << 13); return x.f; } } e = e + (127 - 15); m = m << 13; assert(s <= 1); assert(m <= 0x7FFFFF); assert(e <= 255); x.u = m | (e << 23) | (s << 31); return x.f; } static inline half_float qlog16_to_half(int k) { assert((k >= 0) && (k <= 0xFFFF)); int E = (k & 0xF800) >> 11; int M = k & 0x7FF; int Mt; if (M < 512) Mt = 3 * M; else if (M >= 1536) Mt = 5 * M - 2048; else Mt = 4 * M - 512; return (half_float)((E << 10) + (Mt >> 3)); } // See https://registry.khronos.org/OpenGL/extensions/EXT/EXT_texture_shared_exponent.txt const int RGB9E5_EXPONENT_BITS = 5, RGB9E5_MANTISSA_BITS = 9, RGB9E5_EXP_BIAS = 15, RGB9E5_MAX_VALID_BIASED_EXP = 31; const int MAX_RGB9E5_EXP = (RGB9E5_MAX_VALID_BIASED_EXP - RGB9E5_EXP_BIAS); const int RGB9E5_MANTISSA_VALUES = (1 << RGB9E5_MANTISSA_BITS); const int MAX_RGB9E5_MANTISSA = (RGB9E5_MANTISSA_VALUES - 1); //const int MAX_RGB9E5 = (int)(((float)MAX_RGB9E5_MANTISSA) / RGB9E5_MANTISSA_VALUES * (1 << MAX_RGB9E5_EXP)); const int EPSILON_RGB9E5 = (int)((1.0f / (float)RGB9E5_MANTISSA_VALUES) / (float)(1 << RGB9E5_EXP_BIAS)); void unpack_rgb9e5(uint32_t packed, float& r, float& g, float& b) { int x = packed & 511; int y = (packed >> 9) & 511; int z = (packed >> 18) & 511; int w = (packed >> 27) & 31; const float scale = powf(2.0f, static_cast(w - RGB9E5_EXP_BIAS - RGB9E5_MANTISSA_BITS)); r = x * scale; g = y * scale; b = z * scale; } // floor_log2 is not correct for the denorm and zero values, but we are going to do a max of this value with the minimum rgb9e5 exponent that will hide these problem cases. static inline int floor_log2(float x) { union float754 { unsigned int raw; float value; }; float754 f; f.value = x; // Extract float exponent return ((f.raw >> 23) & 0xFF) - 127; } static inline int maximumi(int a, int b) { return (a > b) ? a : b; } static inline float maximumf(float a, float b) { return (a > b) ? a : b; } uint32_t pack_rgb9e5(float r, float g, float b) { r = clampf(r, 0.0f, MAX_RGB9E5); g = clampf(g, 0.0f, MAX_RGB9E5); b = clampf(b, 0.0f, MAX_RGB9E5); float maxrgb = maximumf(maximumf(r, g), b); int exp_shared = maximumi(-RGB9E5_EXP_BIAS - 1, floor_log2(maxrgb)) + 1 + RGB9E5_EXP_BIAS; assert((exp_shared >= 0) && (exp_shared <= RGB9E5_MAX_VALID_BIASED_EXP)); float denom = powf(2.0f, (float)(exp_shared - RGB9E5_EXP_BIAS - RGB9E5_MANTISSA_BITS)); int maxm = (int)floorf((maxrgb / denom) + 0.5f); if (maxm == (MAX_RGB9E5_MANTISSA + 1)) { denom *= 2; exp_shared += 1; assert(exp_shared <= RGB9E5_MAX_VALID_BIASED_EXP); } else { assert(maxm <= MAX_RGB9E5_MANTISSA); } int rm = (int)floorf((r / denom) + 0.5f); int gm = (int)floorf((g / denom) + 0.5f); int bm = (int)floorf((b / denom) + 0.5f); assert((rm >= 0) && (rm <= MAX_RGB9E5_MANTISSA)); assert((gm >= 0) && (gm <= MAX_RGB9E5_MANTISSA)); assert((bm >= 0) && (bm <= MAX_RGB9E5_MANTISSA)); return rm | (gm << 9) | (bm << 18) | (exp_shared << 27); } static inline int clz17(uint32_t x) { assert(x <= 0x1FFFF); x &= 0x1FFFF; if (!x) return 17; uint32_t n = 0; while ((x & 0x10000) == 0) { x <<= 1u; n++; } return n; } static inline uint32_t pack_rgb9e5_ldr_astc(int Cr, int Cg, int Cb) { int lz = clz17(Cr | Cg | Cb | 1); if (Cr == 65535) { Cr = 65536; lz = 0; } if (Cg == 65535) { Cg = 65536; lz = 0; } if (Cb == 65535) { Cb = 65536; lz = 0; } Cr <<= lz; Cg <<= lz; Cb <<= lz; Cr = (Cr >> 8) & 0x1FF; Cg = (Cg >> 8) & 0x1FF; Cb = (Cb >> 8) & 0x1FF; uint32_t exponent = 16 - lz; uint32_t texel = (exponent << 27) | (Cb << 18) | (Cg << 9) | Cr; return texel; } static inline uint32_t pack_rgb9e5_hdr_astc(int Cr, int Cg, int Cb) { if (Cr > 0x7c00) Cr = 0; else if (Cr == 0x7c00) Cr = 0x7bff; if (Cg > 0x7c00) Cg = 0; else if (Cg == 0x7c00) Cg = 0x7bff; if (Cb > 0x7c00) Cb = 0; else if (Cb == 0x7c00) Cb = 0x7bff; int Re = (Cr >> 10) & 0x1F; int Ge = (Cg >> 10) & 0x1F; int Be = (Cb >> 10) & 0x1F; int Rex = (Re == 0) ? 1 : Re; int Gex = (Ge == 0) ? 1 : Ge; int Bex = (Be == 0) ? 1 : Be; int Xm = ((Cr | Cg | Cb) & 0x200) >> 9; int Xe = Re | Ge | Be; uint32_t rshift, gshift, bshift, expo; if (Xe == 0) { expo = rshift = gshift = bshift = Xm; } else if (Re >= Ge && Re >= Be) { expo = Rex + 1; rshift = 2; gshift = Rex - Gex + 2; bshift = Rex - Bex + 2; } else if (Ge >= Be) { expo = Gex + 1; rshift = Gex - Rex + 2; gshift = 2; bshift = Gex - Bex + 2; } else { expo = Bex + 1; rshift = Bex - Rex + 2; gshift = Bex - Gex + 2; bshift = 2; } int Rm = (Cr & 0x3FF) | (Re == 0 ? 0 : 0x400); int Gm = (Cg & 0x3FF) | (Ge == 0 ? 0 : 0x400); int Bm = (Cb & 0x3FF) | (Be == 0 ? 0 : 0x400); Rm = (Rm >> rshift) & 0x1FF; Gm = (Gm >> gshift) & 0x1FF; Bm = (Bm >> bshift) & 0x1FF; uint32_t texel = (expo << 27) | (Bm << 18) | (Gm << 9) | (Rm << 0); return texel; } // Important: pPixels is either 32-bit/texel or 64-bit/texel. bool decode_block(const log_astc_block& log_blk, void* pPixels, uint32_t blk_width, uint32_t blk_height, decode_mode dec_mode) { assert(is_valid_block_size(blk_width, blk_height)); assert(g_dequant_tables.m_endpoints[0].m_ISE_to_val.size()); if (!g_dequant_tables.m_endpoints[0].m_ISE_to_val.size()) return false; const uint32_t num_blk_pixels = blk_width * blk_height; // Write block error color if (dec_mode == cDecodeModeHDR16) { // NaN's memset(pPixels, 0xFF, num_blk_pixels * sizeof(half_float) * 4); } else if (dec_mode == cDecodeModeRGB9E5) { const uint32_t purple_9e5 = pack_rgb9e5(1.0f, 0.0f, 1.0f); for (uint32_t i = 0; i < num_blk_pixels; i++) ((uint32_t*)pPixels)[i] = purple_9e5; } else { for (uint32_t i = 0; i < num_blk_pixels; i++) ((uint32_t*)pPixels)[i] = 0xFFFF00FF; } if (log_blk.m_error_flag) { // Should this return false? It's not an invalid logical block config, though. return false; } // Handle solid color blocks if (log_blk.m_solid_color_flag_ldr) { // LDR solid block if (dec_mode == cDecodeModeHDR16) { // Convert LDR pixels to half-float half_float h[4]; for (uint32_t c = 0; c < 4; c++) h[c] = (log_blk.m_solid_color[c] == 0xFFFF) ? 0x3C00 : float_to_half((float)log_blk.m_solid_color[c] * (1.0f / 65536.0f), true); for (uint32_t i = 0; i < num_blk_pixels; i++) memcpy((uint16_t*)pPixels + i * 4, h, sizeof(half_float) * 4); } else if (dec_mode == cDecodeModeRGB9E5) { float r = (log_blk.m_solid_color[0] == 0xFFFF) ? 1.0f : ((float)log_blk.m_solid_color[0] * (1.0f / 65536.0f)); float g = (log_blk.m_solid_color[1] == 0xFFFF) ? 1.0f : ((float)log_blk.m_solid_color[1] * (1.0f / 65536.0f)); float b = (log_blk.m_solid_color[2] == 0xFFFF) ? 1.0f : ((float)log_blk.m_solid_color[2] * (1.0f / 65536.0f)); const uint32_t packed = pack_rgb9e5(r, g, b); for (uint32_t i = 0; i < num_blk_pixels; i++) ((uint32_t*)pPixels)[i] = packed; } else { // Convert LDR pixels to 8-bits for (uint32_t i = 0; i < num_blk_pixels; i++) for (uint32_t c = 0; c < 4; c++) ((uint8_t*)pPixels)[i * 4 + c] = (log_blk.m_solid_color[c] >> 8); } return true; } else if (log_blk.m_solid_color_flag_hdr) { // HDR solid block, decode mode must be half-float or RGB9E5 if (dec_mode == cDecodeModeHDR16) { for (uint32_t i = 0; i < num_blk_pixels; i++) memcpy((uint16_t*)pPixels + i * 4, log_blk.m_solid_color, sizeof(half_float) * 4); } else if (dec_mode == cDecodeModeRGB9E5) { float r = half_to_float(log_blk.m_solid_color[0]); float g = half_to_float(log_blk.m_solid_color[1]); float b = half_to_float(log_blk.m_solid_color[2]); const uint32_t packed = pack_rgb9e5(r, g, b); for (uint32_t i = 0; i < num_blk_pixels; i++) ((uint32_t*)pPixels)[i] = packed; } else { return false; } return true; } // Sanity check block's config if ((log_blk.m_grid_width < 2) || (log_blk.m_grid_height < 2)) return false; if ((log_blk.m_grid_width > blk_width) || (log_blk.m_grid_height > blk_height)) return false; if ((log_blk.m_endpoint_ise_range < FIRST_VALID_ENDPOINT_ISE_RANGE) || (log_blk.m_endpoint_ise_range > LAST_VALID_ENDPOINT_ISE_RANGE)) return false; if ((log_blk.m_weight_ise_range < FIRST_VALID_WEIGHT_ISE_RANGE) || (log_blk.m_weight_ise_range > LAST_VALID_WEIGHT_ISE_RANGE)) return false; if ((log_blk.m_num_partitions < 1) || (log_blk.m_num_partitions > MAX_PARTITIONS)) return false; if ((log_blk.m_dual_plane) && (log_blk.m_num_partitions > MAX_DUAL_PLANE_PARTITIONS)) return false; if (log_blk.m_partition_id >= NUM_PARTITION_PATTERNS) return false; if ((log_blk.m_num_partitions == 1) && (log_blk.m_partition_id > 0)) return false; if (log_blk.m_color_component_selector > 3) return false; const uint32_t total_endpoint_levels = get_ise_levels(log_blk.m_endpoint_ise_range); const uint32_t total_weight_levels = get_ise_levels(log_blk.m_weight_ise_range); bool is_ldr_endpoints[MAX_PARTITIONS]; // Check CEM's uint32_t total_cem_vals = 0; for (uint32_t i = 0; i < log_blk.m_num_partitions; i++) { if (log_blk.m_color_endpoint_modes[i] > 15) return false; total_cem_vals += get_num_cem_values(log_blk.m_color_endpoint_modes[i]); is_ldr_endpoints[i] = is_cem_ldr(log_blk.m_color_endpoint_modes[i]); } if (total_cem_vals > MAX_ENDPOINTS) return false; const dequant_table& endpoint_dequant_tab = g_dequant_tables.get_endpoint_tab(log_blk.m_endpoint_ise_range); const uint8_t* pEndpoint_dequant = endpoint_dequant_tab.m_ISE_to_val.data(); // Dequantized endpoints to [0,255] uint8_t dequantized_endpoints[MAX_ENDPOINTS]; for (uint32_t i = 0; i < total_cem_vals; i++) { if (log_blk.m_endpoints[i] >= total_endpoint_levels) return false; dequantized_endpoints[i] = pEndpoint_dequant[log_blk.m_endpoints[i]]; } // Dequantize weights to [0,64] uint8_t dequantized_weights[2][12 * 12]; const dequant_table& weight_dequant_tab = g_dequant_tables.get_weight_tab(log_blk.m_weight_ise_range); const uint8_t* pWeight_dequant = weight_dequant_tab.m_ISE_to_val.data(); const uint32_t total_weight_vals = (log_blk.m_dual_plane ? 2 : 1) * log_blk.m_grid_width * log_blk.m_grid_height; for (uint32_t i = 0; i < total_weight_vals; i++) { if (log_blk.m_weights[i] >= total_weight_levels) return false; const uint32_t plane_index = log_blk.m_dual_plane ? (i & 1) : 0; const uint32_t grid_index = log_blk.m_dual_plane ? (i >> 1) : i; dequantized_weights[plane_index][grid_index] = pWeight_dequant[log_blk.m_weights[i]]; } // Upsample weight grid. [0,64] weights uint8_t upsampled_weights[2][12 * 12]; upsample_weight_grid(blk_width, blk_height, log_blk.m_grid_width, log_blk.m_grid_height, &dequantized_weights[0][0], &upsampled_weights[0][0]); if (log_blk.m_dual_plane) upsample_weight_grid(blk_width, blk_height, log_blk.m_grid_width, log_blk.m_grid_height, &dequantized_weights[1][0], &upsampled_weights[1][0]); // Decode CEM's int endpoints[4][4][2]; // [subset][comp][l/h] uint32_t endpoint_val_index = 0; for (uint32_t subset = 0; subset < log_blk.m_num_partitions; subset++) { const uint32_t cem_index = log_blk.m_color_endpoint_modes[subset]; decode_endpoint(cem_index, &endpoints[subset][0], &dequantized_endpoints[endpoint_val_index]); endpoint_val_index += get_num_cem_values(cem_index); } // Decode texels const bool small_block = num_blk_pixels < 31; const bool use_precomputed_texel_partitions = (blk_width == 4) && (blk_height == 4) && (log_blk.m_num_partitions >= 2) && (log_blk.m_num_partitions <= 3); const uint32_t ccs = log_blk.m_dual_plane ? log_blk.m_color_component_selector : UINT32_MAX; bool success = true; if (dec_mode == cDecodeModeRGB9E5) { // returns uint32_t's for (uint32_t y = 0; y < blk_height; y++) { for (uint32_t x = 0; x < blk_width; x++) { const uint32_t pixel_index = x + y * blk_width; const uint32_t subset = (log_blk.m_num_partitions > 1) ? (use_precomputed_texel_partitions ? get_precompute_texel_partitions_4x4(log_blk.m_partition_id, x, y, log_blk.m_num_partitions) : compute_texel_partition(log_blk.m_partition_id, x, y, 0, log_blk.m_num_partitions, small_block)) : 0; int comp[3]; for (uint32_t c = 0; c < 3; c++) { const uint32_t w = upsampled_weights[(c == ccs) ? 1 : 0][pixel_index]; if (is_ldr_endpoints[subset]) { assert((endpoints[subset][c][0] >= 0) && (endpoints[subset][c][0] <= 0xFF)); assert((endpoints[subset][c][1] >= 0) && (endpoints[subset][c][1] <= 0xFF)); int le = endpoints[subset][c][0]; int he = endpoints[subset][c][1]; le = (le << 8) | le; he = (he << 8) | he; int k = weight_interpolate(le, he, w); assert((k >= 0) && (k <= 0xFFFF)); comp[c] = k; // 1.0 } else { assert((endpoints[subset][c][0] >= 0) && (endpoints[subset][c][0] <= 0xFFF)); assert((endpoints[subset][c][1] >= 0) && (endpoints[subset][c][1] <= 0xFFF)); int le = endpoints[subset][c][0] << 4; int he = endpoints[subset][c][1] << 4; int qlog16 = weight_interpolate(le, he, w); comp[c] = qlog16_to_half(qlog16); if (is_half_inf_or_nan((half_float)comp[c])) comp[c] = 0x7BFF; } } // c uint32_t packed; if (is_ldr_endpoints[subset]) packed = pack_rgb9e5_ldr_astc(comp[0], comp[1], comp[2]); else packed = pack_rgb9e5_hdr_astc(comp[0], comp[1], comp[2]); ((uint32_t*)pPixels)[pixel_index] = packed; } // x } // y } else if (dec_mode == cDecodeModeHDR16) { // Note: must round towards zero when converting float to half for ASTC (18.19 Weight Application) // returns half floats for (uint32_t y = 0; y < blk_height; y++) { for (uint32_t x = 0; x < blk_width; x++) { const uint32_t pixel_index = x + y * blk_width; const uint32_t subset = (log_blk.m_num_partitions > 1) ? (use_precomputed_texel_partitions ? get_precompute_texel_partitions_4x4(log_blk.m_partition_id, x, y, log_blk.m_num_partitions) : compute_texel_partition(log_blk.m_partition_id, x, y, 0, log_blk.m_num_partitions, small_block)) : 0; for (uint32_t c = 0; c < 4; c++) { const uint32_t w = upsampled_weights[(c == ccs) ? 1 : 0][pixel_index]; half_float o; if ( (is_ldr_endpoints[subset]) || ((log_blk.m_color_endpoint_modes[subset] == CEM_HDR_RGB_LDR_ALPHA) && (c == 3)) ) { assert((endpoints[subset][c][0] >= 0) && (endpoints[subset][c][0] <= 0xFF)); assert((endpoints[subset][c][1] >= 0) && (endpoints[subset][c][1] <= 0xFF)); int le = endpoints[subset][c][0]; int he = endpoints[subset][c][1]; le = (le << 8) | le; he = (he << 8) | he; int k = weight_interpolate(le, he, w); assert((k >= 0) && (k <= 0xFFFF)); if (k == 0xFFFF) o = 0x3C00; // 1.0 else o = float_to_half((float)k * (1.0f / 65536.0f), true); } else { assert((endpoints[subset][c][0] >= 0) && (endpoints[subset][c][0] <= 0xFFF)); assert((endpoints[subset][c][1] >= 0) && (endpoints[subset][c][1] <= 0xFFF)); int le = endpoints[subset][c][0] << 4; int he = endpoints[subset][c][1] << 4; int qlog16 = weight_interpolate(le, he, w); o = qlog16_to_half(qlog16); if (is_half_inf_or_nan(o)) o = 0x7BFF; } ((half_float*)pPixels)[pixel_index * 4 + c] = o; } } // x } // y } else { // returns uint8_t's for (uint32_t y = 0; y < blk_height; y++) { for (uint32_t x = 0; x < blk_width; x++) { const uint32_t pixel_index = x + y * blk_width; const uint32_t subset = (log_blk.m_num_partitions > 1) ? (use_precomputed_texel_partitions ? get_precompute_texel_partitions_4x4(log_blk.m_partition_id, x, y, log_blk.m_num_partitions) : compute_texel_partition(log_blk.m_partition_id, x, y, 0, log_blk.m_num_partitions, small_block)) : 0; if (!is_ldr_endpoints[subset]) { ((uint32_t*)pPixels)[pixel_index * 4] = 0xFFFF00FF; success = false; } else { for (uint32_t c = 0; c < 4; c++) { const uint32_t w = upsampled_weights[(c == ccs) ? 1 : 0][pixel_index]; int le = endpoints[subset][c][0]; int he = endpoints[subset][c][1]; // FIXME: the spec is apparently wrong? this matches ARM's and Google's decoder //if ((dec_mode == cDecodeModeSRGB8) && (c <= 2)) // See https://github.com/ARM-software/astc-encoder/issues/447 if (dec_mode == cDecodeModeSRGB8) { le = (le << 8) | 0x80; he = (he << 8) | 0x80; } else { le = (le << 8) | le; he = (he << 8) | he; } uint32_t k = weight_interpolate(le, he, w); // FIXME: This is what the spec says to do in LDR mode, but this is not what ARM's decoder does // See decompress_symbolic_block(), decode_texel() and unorm16_to_sf16. // It seems to effectively divide by 65535.0 and convert to FP16, then back to float, mul by 255.0, add .5 and then convert to 8-bit. ((uint8_t*)pPixels)[pixel_index * 4 + c] = (uint8_t)(k >> 8); } } } // x } // y } return success; } //------------------------------------------------ // Physical to logical block decoding // unsigned 128-bit int, with some signed helpers class uint128 { uint64_t m_lo, m_hi; public: uint128() = default; inline uint128(uint64_t lo) : m_lo(lo), m_hi(0) { } inline uint128(uint64_t lo, uint64_t hi) : m_lo(lo), m_hi(hi) { } inline uint128(const uint128& other) : m_lo(other.m_lo), m_hi(other.m_hi) { } inline uint128& set_signed(int64_t lo) { m_lo = lo; m_hi = (lo < 0) ? UINT64_MAX : 0; return *this; } inline uint128& set(uint64_t lo) { m_lo = lo; m_hi = 0; return *this; } inline explicit operator uint8_t () const { return (uint8_t)m_lo; } inline explicit operator uint16_t () const { return (uint16_t)m_lo; } inline explicit operator uint32_t () const { return (uint32_t)m_lo; } inline explicit operator uint64_t () const { return m_lo; } inline uint128& operator= (const uint128& rhs) { m_lo = rhs.m_lo; m_hi = rhs.m_hi; return *this; } inline uint128& operator= (const uint64_t val) { m_lo = val; m_hi = 0; return *this; } inline uint64_t get_low() const { return m_lo; } inline uint64_t& get_low() { return m_lo; } inline uint64_t get_high() const { return m_hi; } inline uint64_t& get_high() { return m_hi; } inline bool operator== (const uint128& rhs) const { return (m_lo == rhs.m_lo) && (m_hi == rhs.m_hi); } inline bool operator!= (const uint128& rhs) const { return (m_lo != rhs.m_lo) || (m_hi != rhs.m_hi); } inline bool operator< (const uint128& rhs) const { if (m_hi < rhs.m_hi) return true; if (m_hi == rhs.m_hi) { if (m_lo < rhs.m_lo) return true; } return false; } inline bool operator> (const uint128& rhs) const { return (rhs < *this); } inline bool operator<= (const uint128& rhs) const { return (*this == rhs) || (*this < rhs); } inline bool operator>= (const uint128& rhs) const { return (*this == rhs) || (*this > rhs); } inline bool is_zero() const { return (m_lo == 0) && (m_hi == 0); } inline bool is_all_ones() const { return (m_lo == UINT64_MAX) && (m_hi == UINT64_MAX); } inline bool is_non_zero() const { return (m_lo != 0) || (m_hi != 0); } inline explicit operator bool() const { return is_non_zero(); } inline bool is_signed() const { return ((int64_t)m_hi) < 0; } inline bool signed_less(const uint128& rhs) const { const bool l_signed = is_signed(), r_signed = rhs.is_signed(); if (l_signed == r_signed) return *this < rhs; if (l_signed && !r_signed) return true; assert(!l_signed && r_signed); return false; } inline bool signed_greater(const uint128& rhs) const { return rhs.signed_less(*this); } inline bool signed_less_equal(const uint128& rhs) const { return !rhs.signed_less(*this); } inline bool signed_greater_equal(const uint128& rhs) const { return !signed_less(rhs); } double get_double() const { double res = 0; if (m_hi) res = (double)m_hi * pow(2.0f, 64.0f); res += (double)m_lo; return res; } double get_signed_double() const { if (is_signed()) return -(uint128(*this).abs().get_double()); else return get_double(); } inline uint128 abs() const { uint128 res(*this); if (res.is_signed()) res = -res; return res; } inline uint128& operator<<= (int shift) { assert(shift >= 0); if (shift < 0) return *this; m_hi = (shift >= 64) ? ((shift >= 128) ? 0 : (m_lo << (shift - 64))) : (m_hi << shift); if ((shift) && (shift < 64)) m_hi |= (m_lo >> (64 - shift)); m_lo = (shift >= 64) ? 0 : (m_lo << shift); return *this; } inline uint128 operator<< (int shift) const { uint128 res(*this); res <<= shift; return res; } inline uint128& operator>>= (int shift) { assert(shift >= 0); if (shift < 0) return *this; m_lo = (shift >= 64) ? ((shift >= 128) ? 0 : (m_hi >> (shift - 64))) : (m_lo >> shift); if ((shift) && (shift < 64)) m_lo |= (m_hi << (64 - shift)); m_hi = (shift >= 64) ? 0 : (m_hi >> shift); return *this; } inline uint128 operator>> (int shift) const { uint128 res(*this); res >>= shift; return res; } inline uint128 signed_shift_right(int shift) const { uint128 res(*this); res >>= shift; if (is_signed()) { uint128 x(0U); x = ~x; x >>= shift; res |= (~x); } return res; } inline uint128& operator |= (const uint128& rhs) { m_lo |= rhs.m_lo; m_hi |= rhs.m_hi; return *this; } inline uint128 operator | (const uint128& rhs) const { uint128 res(*this); res |= rhs; return res; } inline uint128& operator &= (const uint128& rhs) { m_lo &= rhs.m_lo; m_hi &= rhs.m_hi; return *this; } inline uint128 operator & (const uint128& rhs) const { uint128 res(*this); res &= rhs; return res; } inline uint128& operator ^= (const uint128& rhs) { m_lo ^= rhs.m_lo; m_hi ^= rhs.m_hi; return *this; } inline uint128 operator ^ (const uint128& rhs) const { uint128 res(*this); res ^= rhs; return res; } inline uint128 operator ~() const { return uint128(~m_lo, ~m_hi); } inline uint128 operator -() const { uint128 res(~*this); if (++res.m_lo == 0) ++res.m_hi; return res; } // prefix inline uint128 operator ++() { if (++m_lo == 0) ++m_hi; return *this; } // postfix inline uint128 operator ++(int) { uint128 res(*this); if (++m_lo == 0) ++m_hi; return res; } // prefix inline uint128 operator --() { const uint64_t t = m_lo; if (--m_lo > t) --m_hi; return *this; } // postfix inline uint128 operator --(int) { const uint64_t t = m_lo; uint128 res(*this); if (--m_lo > t) --m_hi; return res; } inline uint128& operator+= (const uint128& rhs) { const uint64_t t = m_lo + rhs.m_lo; m_hi = m_hi + rhs.m_hi + (t < m_lo); m_lo = t; return *this; } inline uint128 operator+ (const uint128& rhs) const { uint128 res(*this); res += rhs; return res; } inline uint128& operator-= (const uint128& rhs) { const uint64_t t = m_lo - rhs.m_lo; m_hi = m_hi - rhs.m_hi - (t > m_lo); m_lo = t; return *this; } inline uint128 operator- (const uint128& rhs) const { uint128 res(*this); res -= rhs; return res; } // computes bit by bit, very slow uint128& operator*=(const uint128& rhs) { uint128 temp(*this), result(0U); for (uint128 bitmask(rhs); bitmask; bitmask >>= 1, temp <<= 1) if (bitmask.get_low() & 1) result += temp; *this = result; return *this; } uint128 operator*(const uint128& rhs) const { uint128 res(*this); res *= rhs; return res; } // computes bit by bit, very slow friend uint128 divide(const uint128& dividend, const uint128& divisor, uint128& remainder) { remainder = 0; if (!divisor) { assert(0); return ~uint128(0U); } uint128 quotient(0), one(1); for (int i = 127; i >= 0; i--) { remainder = (remainder << 1) | ((dividend >> i) & one); if (remainder >= divisor) { remainder -= divisor; quotient |= (one << i); } } return quotient; } uint128 operator/(const uint128& rhs) const { uint128 remainder, res; res = divide(*this, rhs, remainder); return res; } uint128 operator/=(const uint128& rhs) { uint128 remainder; *this = divide(*this, rhs, remainder); return *this; } uint128 operator%(const uint128& rhs) const { uint128 remainder; divide(*this, rhs, remainder); return remainder; } uint128 operator%=(const uint128& rhs) { uint128 remainder; divide(*this, rhs, remainder); *this = remainder; return *this; } void print_hex(FILE* pFile) const { fprintf(pFile, "0x%016llx%016llx", (unsigned long long int)m_hi, (unsigned long long int)m_lo); } void format_unsigned(std::string& res) const { basisu::vector digits; digits.reserve(39 + 1); uint128 k(*this), ten(10); do { uint128 r; k = divide(k, ten, r); digits.push_back((uint8_t)r); } while (k); for (int i = (int)digits.size() - 1; i >= 0; i--) res += ('0' + digits[i]); } void format_signed(std::string& res) const { uint128 val(*this); if (val.is_signed()) { res.push_back('-'); val = -val; } val.format_unsigned(res); } void print_unsigned(FILE* pFile) { std::string str; format_unsigned(str); fprintf(pFile, "%s", str.c_str()); } void print_signed(FILE* pFile) { std::string str; format_signed(str); fprintf(pFile, "%s", str.c_str()); } uint128 get_reversed_bits() const { uint128 res; const uint32_t* pSrc = (const uint32_t*)this; uint32_t* pDst = (uint32_t*)&res; pDst[0] = rev_dword(pSrc[3]); pDst[1] = rev_dword(pSrc[2]); pDst[2] = rev_dword(pSrc[1]); pDst[3] = rev_dword(pSrc[0]); return res; } uint128 get_byteswapped() const { uint128 res; const uint8_t* pSrc = (const uint8_t*)this; uint8_t* pDst = (uint8_t*)&res; for (uint32_t i = 0; i < 16; i++) pDst[i] = pSrc[15 - i]; return res; } inline uint64_t get_bits64(uint32_t bit_ofs, uint32_t bit_len) const { assert(bit_ofs < 128); assert(bit_len && (bit_len <= 64) && ((bit_ofs + bit_len) <= 128)); uint128 res(*this); res >>= bit_ofs; const uint64_t bitmask = (bit_len == 64) ? UINT64_MAX : ((1ull << bit_len) - 1); return res.get_low() & bitmask; } inline uint32_t get_bits(uint32_t bit_ofs, uint32_t bit_len) const { assert(bit_len <= 32); return (uint32_t)get_bits64(bit_ofs, bit_len); } inline uint32_t next_bits(uint32_t& bit_ofs, uint32_t len) const { assert(len && (len <= 32)); uint32_t x = get_bits(bit_ofs, len); bit_ofs += len; return x; } inline uint128& set_bits(uint64_t val, uint32_t bit_ofs, uint32_t num_bits) { assert(bit_ofs < 128); assert(num_bits && (num_bits <= 64) && ((bit_ofs + num_bits) <= 128)); uint128 bitmask(1); bitmask = (bitmask << num_bits) - 1; assert(uint128(val) <= bitmask); bitmask <<= bit_ofs; *this &= ~bitmask; *this = *this | (uint128(val) << bit_ofs); return *this; } }; static bool decode_void_extent(const uint128& bits, log_astc_block& log_blk) { if (bits.get_bits(10, 2) != 0b11) return false; uint32_t bit_ofs = 12; const uint32_t min_s = bits.next_bits(bit_ofs, 13); const uint32_t max_s = bits.next_bits(bit_ofs, 13); const uint32_t min_t = bits.next_bits(bit_ofs, 13); const uint32_t max_t = bits.next_bits(bit_ofs, 13); assert(bit_ofs == 64); const bool all_extents_all_ones = (min_s == 0x1FFF) && (max_s == 0x1FFF) && (min_t == 0x1FFF) && (max_t == 0x1FFF); if (!all_extents_all_ones && ((min_s >= max_s) || (min_t >= max_t))) return false; const bool hdr_flag = bits.get_bits(9, 1) != 0; if (hdr_flag) log_blk.m_solid_color_flag_hdr = true; else log_blk.m_solid_color_flag_ldr = true; log_blk.m_solid_color[0] = (uint16_t)bits.get_bits(64, 16); log_blk.m_solid_color[1] = (uint16_t)bits.get_bits(80, 16); log_blk.m_solid_color[2] = (uint16_t)bits.get_bits(96, 16); log_blk.m_solid_color[3] = (uint16_t)bits.get_bits(112, 16); if (log_blk.m_solid_color_flag_hdr) { for (uint32_t c = 0; c < 4; c++) if (is_half_inf_or_nan(log_blk.m_solid_color[c])) return false; } return true; } struct astc_dec_row { int8_t Dp_ofs, P_ofs, W_ofs, W_size, H_ofs, H_size, W_bias, H_bias, p0_ofs, p1_ofs, p2_ofs; }; static const astc_dec_row s_dec_rows[10] = { // Dp_ofs, P_ofs, W_ofs, W_size, H_ofs, H_size, W_bias, H_bias, p0_ofs, p1_ofs, p2_ofs; { 10, 9, 7, 2, 5, 2, 4, 2, 4, 0, 1 }, // 4 2 { 10, 9, 7, 2, 5, 2, 8, 2, 4, 0, 1 }, // 8 2 { 10, 9, 5, 2, 7, 2, 2, 8, 4, 0, 1 }, // 2 8 { 10, 9, 5, 2, 7, 1, 2, 6, 4, 0, 1 }, // 2 6 { 10, 9, 7, 1, 5, 2, 2, 2, 4, 0, 1 }, // 2 2 { 10, 9, 0, 0, 5, 2, 12, 2, 4, 2, 3 }, // 12 2 { 10, 9, 5, 2, 0, 0, 2, 12, 4, 2, 3 }, // 2 12 { 10, 9, 0, 0, 0, 0, 6, 10, 4, 2, 3 }, // 6 10 { 10, 9, 0, 0, 0, 0, 10, 6, 4, 2, 3 }, // 10 6 { -1, -1, 5, 2, 9, 2, 6, 6, 4, 2, 3 }, // 6 6 }; static bool decode_config(const uint128& bits, log_astc_block& log_blk) { // Reserved if (bits.get_bits(0, 4) == 0) return false; // Reserved if ((bits.get_bits(0, 2) == 0) && (bits.get_bits(6, 3) == 0b111)) { if (bits.get_bits(2, 4) != 0b1111) return false; } // Void extent if (bits.get_bits(0, 9) == 0b111111100) return decode_void_extent(bits, log_blk); // Check rows const uint32_t x0_2 = bits.get_bits(0, 2), x2_2 = bits.get_bits(2, 2); const uint32_t x5_4 = bits.get_bits(5, 4), x8_1 = bits.get_bits(8, 1); const uint32_t x7_2 = bits.get_bits(7, 2); int row_index = -1; if (x0_2 == 0) { if (x7_2 == 0b00) row_index = 5; else if (x7_2 == 0b01) row_index = 6; else if (x5_4 == 0b1100) row_index = 7; else if (x5_4 == 0b1101) row_index = 8; else if (x7_2 == 0b10) row_index = 9; } else { if (x2_2 == 0b00) row_index = 0; else if (x2_2 == 0b01) row_index = 1; else if (x2_2 == 0b10) row_index = 2; else if ((x2_2 == 0b11) && (x8_1 == 0)) row_index = 3; else if ((x2_2 == 0b11) && (x8_1 == 1)) row_index = 4; } if (row_index < 0) return false; const astc_dec_row& r = s_dec_rows[row_index]; bool P = false, Dp = false; uint32_t W = r.W_bias, H = r.H_bias; if (r.P_ofs >= 0) P = bits.get_bits(r.P_ofs, 1) != 0; if (r.Dp_ofs >= 0) Dp = bits.get_bits(r.Dp_ofs, 1) != 0; if (r.W_size) W += bits.get_bits(r.W_ofs, r.W_size); if (r.H_size) H += bits.get_bits(r.H_ofs, r.H_size); assert((W >= MIN_GRID_DIM) && (W <= MAX_BLOCK_DIM)); assert((H >= MIN_GRID_DIM) && (H <= MAX_BLOCK_DIM)); int p0 = bits.get_bits(r.p0_ofs, 1); int p1 = bits.get_bits(r.p1_ofs, 1); int p2 = bits.get_bits(r.p2_ofs, 1); uint32_t p = p0 | (p1 << 1) | (p2 << 2); if (p < 2) return false; log_blk.m_grid_width = W; log_blk.m_grid_height = H; log_blk.m_weight_ise_range = (p - 2) + (P * BISE_10_LEVELS); assert(log_blk.m_weight_ise_range <= LAST_VALID_WEIGHT_ISE_RANGE); log_blk.m_dual_plane = Dp; return true; } static inline uint32_t read_le_dword(const uint8_t* pBytes) { return (pBytes[0]) | (pBytes[1] << 8U) | (pBytes[2] << 16U) | (pBytes[3] << 24U); } // See 18.12.Integer Sequence Encoding - tables computed by executing the decoder functions with all possible 8/7-bit inputs. static const uint8_t s_trit_decode[256][5] = { {0,0,0,0,0},{1,0,0,0,0},{2,0,0,0,0},{0,0,2,0,0},{0,1,0,0,0},{1,1,0,0,0},{2,1,0,0,0},{1,0,2,0,0}, {0,2,0,0,0},{1,2,0,0,0},{2,2,0,0,0},{2,0,2,0,0},{0,2,2,0,0},{1,2,2,0,0},{2,2,2,0,0},{2,0,2,0,0}, {0,0,1,0,0},{1,0,1,0,0},{2,0,1,0,0},{0,1,2,0,0},{0,1,1,0,0},{1,1,1,0,0},{2,1,1,0,0},{1,1,2,0,0}, {0,2,1,0,0},{1,2,1,0,0},{2,2,1,0,0},{2,1,2,0,0},{0,0,0,2,2},{1,0,0,2,2},{2,0,0,2,2},{0,0,2,2,2}, {0,0,0,1,0},{1,0,0,1,0},{2,0,0,1,0},{0,0,2,1,0},{0,1,0,1,0},{1,1,0,1,0},{2,1,0,1,0},{1,0,2,1,0}, {0,2,0,1,0},{1,2,0,1,0},{2,2,0,1,0},{2,0,2,1,0},{0,2,2,1,0},{1,2,2,1,0},{2,2,2,1,0},{2,0,2,1,0}, {0,0,1,1,0},{1,0,1,1,0},{2,0,1,1,0},{0,1,2,1,0},{0,1,1,1,0},{1,1,1,1,0},{2,1,1,1,0},{1,1,2,1,0}, {0,2,1,1,0},{1,2,1,1,0},{2,2,1,1,0},{2,1,2,1,0},{0,1,0,2,2},{1,1,0,2,2},{2,1,0,2,2},{1,0,2,2,2}, {0,0,0,2,0},{1,0,0,2,0},{2,0,0,2,0},{0,0,2,2,0},{0,1,0,2,0},{1,1,0,2,0},{2,1,0,2,0},{1,0,2,2,0}, {0,2,0,2,0},{1,2,0,2,0},{2,2,0,2,0},{2,0,2,2,0},{0,2,2,2,0},{1,2,2,2,0},{2,2,2,2,0},{2,0,2,2,0}, {0,0,1,2,0},{1,0,1,2,0},{2,0,1,2,0},{0,1,2,2,0},{0,1,1,2,0},{1,1,1,2,0},{2,1,1,2,0},{1,1,2,2,0}, {0,2,1,2,0},{1,2,1,2,0},{2,2,1,2,0},{2,1,2,2,0},{0,2,0,2,2},{1,2,0,2,2},{2,2,0,2,2},{2,0,2,2,2}, {0,0,0,0,2},{1,0,0,0,2},{2,0,0,0,2},{0,0,2,0,2},{0,1,0,0,2},{1,1,0,0,2},{2,1,0,0,2},{1,0,2,0,2}, {0,2,0,0,2},{1,2,0,0,2},{2,2,0,0,2},{2,0,2,0,2},{0,2,2,0,2},{1,2,2,0,2},{2,2,2,0,2},{2,0,2,0,2}, {0,0,1,0,2},{1,0,1,0,2},{2,0,1,0,2},{0,1,2,0,2},{0,1,1,0,2},{1,1,1,0,2},{2,1,1,0,2},{1,1,2,0,2}, {0,2,1,0,2},{1,2,1,0,2},{2,2,1,0,2},{2,1,2,0,2},{0,2,2,2,2},{1,2,2,2,2},{2,2,2,2,2},{2,0,2,2,2}, {0,0,0,0,1},{1,0,0,0,1},{2,0,0,0,1},{0,0,2,0,1},{0,1,0,0,1},{1,1,0,0,1},{2,1,0,0,1},{1,0,2,0,1}, {0,2,0,0,1},{1,2,0,0,1},{2,2,0,0,1},{2,0,2,0,1},{0,2,2,0,1},{1,2,2,0,1},{2,2,2,0,1},{2,0,2,0,1}, {0,0,1,0,1},{1,0,1,0,1},{2,0,1,0,1},{0,1,2,0,1},{0,1,1,0,1},{1,1,1,0,1},{2,1,1,0,1},{1,1,2,0,1}, {0,2,1,0,1},{1,2,1,0,1},{2,2,1,0,1},{2,1,2,0,1},{0,0,1,2,2},{1,0,1,2,2},{2,0,1,2,2},{0,1,2,2,2}, {0,0,0,1,1},{1,0,0,1,1},{2,0,0,1,1},{0,0,2,1,1},{0,1,0,1,1},{1,1,0,1,1},{2,1,0,1,1},{1,0,2,1,1}, {0,2,0,1,1},{1,2,0,1,1},{2,2,0,1,1},{2,0,2,1,1},{0,2,2,1,1},{1,2,2,1,1},{2,2,2,1,1},{2,0,2,1,1}, {0,0,1,1,1},{1,0,1,1,1},{2,0,1,1,1},{0,1,2,1,1},{0,1,1,1,1},{1,1,1,1,1},{2,1,1,1,1},{1,1,2,1,1}, {0,2,1,1,1},{1,2,1,1,1},{2,2,1,1,1},{2,1,2,1,1},{0,1,1,2,2},{1,1,1,2,2},{2,1,1,2,2},{1,1,2,2,2}, {0,0,0,2,1},{1,0,0,2,1},{2,0,0,2,1},{0,0,2,2,1},{0,1,0,2,1},{1,1,0,2,1},{2,1,0,2,1},{1,0,2,2,1}, {0,2,0,2,1},{1,2,0,2,1},{2,2,0,2,1},{2,0,2,2,1},{0,2,2,2,1},{1,2,2,2,1},{2,2,2,2,1},{2,0,2,2,1}, {0,0,1,2,1},{1,0,1,2,1},{2,0,1,2,1},{0,1,2,2,1},{0,1,1,2,1},{1,1,1,2,1},{2,1,1,2,1},{1,1,2,2,1}, {0,2,1,2,1},{1,2,1,2,1},{2,2,1,2,1},{2,1,2,2,1},{0,2,1,2,2},{1,2,1,2,2},{2,2,1,2,2},{2,1,2,2,2}, {0,0,0,1,2},{1,0,0,1,2},{2,0,0,1,2},{0,0,2,1,2},{0,1,0,1,2},{1,1,0,1,2},{2,1,0,1,2},{1,0,2,1,2}, {0,2,0,1,2},{1,2,0,1,2},{2,2,0,1,2},{2,0,2,1,2},{0,2,2,1,2},{1,2,2,1,2},{2,2,2,1,2},{2,0,2,1,2}, {0,0,1,1,2},{1,0,1,1,2},{2,0,1,1,2},{0,1,2,1,2},{0,1,1,1,2},{1,1,1,1,2},{2,1,1,1,2},{1,1,2,1,2}, {0,2,1,1,2},{1,2,1,1,2},{2,2,1,1,2},{2,1,2,1,2},{0,2,2,2,2},{1,2,2,2,2},{2,2,2,2,2},{2,1,2,2,2} }; static const uint8_t s_quint_decode[128][3] = { {0,0,0},{1,0,0},{2,0,0},{3,0,0},{4,0,0},{0,4,0},{4,4,0},{4,4,4}, {0,1,0},{1,1,0},{2,1,0},{3,1,0},{4,1,0},{1,4,0},{4,4,1},{4,4,4}, {0,2,0},{1,2,0},{2,2,0},{3,2,0},{4,2,0},{2,4,0},{4,4,2},{4,4,4}, {0,3,0},{1,3,0},{2,3,0},{3,3,0},{4,3,0},{3,4,0},{4,4,3},{4,4,4}, {0,0,1},{1,0,1},{2,0,1},{3,0,1},{4,0,1},{0,4,1},{4,0,4},{0,4,4}, {0,1,1},{1,1,1},{2,1,1},{3,1,1},{4,1,1},{1,4,1},{4,1,4},{1,4,4}, {0,2,1},{1,2,1},{2,2,1},{3,2,1},{4,2,1},{2,4,1},{4,2,4},{2,4,4}, {0,3,1},{1,3,1},{2,3,1},{3,3,1},{4,3,1},{3,4,1},{4,3,4},{3,4,4}, {0,0,2},{1,0,2},{2,0,2},{3,0,2},{4,0,2},{0,4,2},{2,0,4},{3,0,4}, {0,1,2},{1,1,2},{2,1,2},{3,1,2},{4,1,2},{1,4,2},{2,1,4},{3,1,4}, {0,2,2},{1,2,2},{2,2,2},{3,2,2},{4,2,2},{2,4,2},{2,2,4},{3,2,4}, {0,3,2},{1,3,2},{2,3,2},{3,3,2},{4,3,2},{3,4,2},{2,3,4},{3,3,4}, {0,0,3},{1,0,3},{2,0,3},{3,0,3},{4,0,3},{0,4,3},{0,0,4},{1,0,4}, {0,1,3},{1,1,3},{2,1,3},{3,1,3},{4,1,3},{1,4,3},{0,1,4},{1,1,4}, {0,2,3},{1,2,3},{2,2,3},{3,2,3},{4,2,3},{2,4,3},{0,2,4},{1,2,4}, {0,3,3},{1,3,3},{2,3,3},{3,3,3},{4,3,3},{3,4,3},{0,3,4},{1,3,4} }; static void decode_trit_block(uint8_t* pVals, uint32_t num_vals, const uint128& bits, uint32_t& bit_ofs, uint32_t bits_per_val) { assert((num_vals >= 1) && (num_vals <= 5)); uint32_t m[5] = { 0 }, T = 0; static const uint8_t s_t_bits[5] = { 2, 2, 1, 2, 1 }; for (uint32_t T_ofs = 0, c = 0; c < num_vals; c++) { if (bits_per_val) m[c] = bits.next_bits(bit_ofs, bits_per_val); T |= (bits.next_bits(bit_ofs, s_t_bits[c]) << T_ofs); T_ofs += s_t_bits[c]; } const uint8_t (&p_trits)[5] = s_trit_decode[T]; for (uint32_t i = 0; i < num_vals; i++) pVals[i] = (uint8_t)((p_trits[i] << bits_per_val) | m[i]); } static void decode_quint_block(uint8_t* pVals, uint32_t num_vals, const uint128& bits, uint32_t& bit_ofs, uint32_t bits_per_val) { assert((num_vals >= 1) && (num_vals <= 3)); uint32_t m[3] = { 0 }, T = 0; static const uint8_t s_t_bits[3] = { 3, 2, 2 }; for (uint32_t T_ofs = 0, c = 0; c < num_vals; c++) { if (bits_per_val) m[c] = bits.next_bits(bit_ofs, bits_per_val); T |= (bits.next_bits(bit_ofs, s_t_bits[c]) << T_ofs); T_ofs += s_t_bits[c]; } const uint8_t (&p_quints)[3] = s_quint_decode[T]; for (uint32_t i = 0; i < num_vals; i++) pVals[i] = (uint8_t)((p_quints[i] << bits_per_val) | m[i]); } static void decode_bise(uint32_t ise_range, uint8_t* pVals, uint32_t num_vals, const uint128& bits, uint32_t bit_ofs) { assert(num_vals && (ise_range < TOTAL_ISE_RANGES)); const uint32_t bits_per_val = g_ise_range_table[ise_range][0]; if (g_ise_range_table[ise_range][1]) { // Trits+bits, 5 vals per block, 7 bits extra per block const uint32_t total_blocks = (num_vals + 4) / 5; for (uint32_t b = 0; b < total_blocks; b++) { const uint32_t num_vals_in_block = std::min(num_vals - 5 * b, 5); decode_trit_block(pVals + 5 * b, num_vals_in_block, bits, bit_ofs, bits_per_val); } } else if (g_ise_range_table[ise_range][2]) { // Quints+bits, 3 vals per block, 8 bits extra per block const uint32_t total_blocks = (num_vals + 2) / 3; for (uint32_t b = 0; b < total_blocks; b++) { const uint32_t num_vals_in_block = std::min(num_vals - 3 * b, 3); decode_quint_block(pVals + 3 * b, num_vals_in_block, bits, bit_ofs, bits_per_val); } } else { assert(bits_per_val); // Only bits for (uint32_t i = 0; i < num_vals; i++) pVals[i] = (uint8_t)bits.next_bits(bit_ofs, bits_per_val); } } void decode_bise(uint32_t ise_range, uint8_t* pVals, uint32_t num_vals, const uint8_t* pBits128, uint32_t bit_ofs) { const uint128 bits( (uint64_t)read_le_dword(pBits128) | (((uint64_t)read_le_dword(pBits128 + sizeof(uint32_t))) << 32), (uint64_t)read_le_dword(pBits128 + sizeof(uint32_t) * 2) | (((uint64_t)read_le_dword(pBits128 + sizeof(uint32_t) * 3)) << 32)); return decode_bise(ise_range, pVals, num_vals, bits, bit_ofs); } // Decodes a physical ASTC block to a logical ASTC block. // blk_width/blk_height are only used to validate the weight grid's dimensions. bool unpack_block(const void* pASTC_block, log_astc_block& log_blk, uint32_t blk_width, uint32_t blk_height) { assert(is_valid_block_size(blk_width, blk_height)); const uint8_t* pS = (uint8_t*)pASTC_block; log_blk.clear(); log_blk.m_error_flag = true; const uint128 bits( (uint64_t)read_le_dword(pS) | (((uint64_t)read_le_dword(pS + sizeof(uint32_t))) << 32), (uint64_t)read_le_dword(pS + sizeof(uint32_t) * 2) | (((uint64_t)read_le_dword(pS + sizeof(uint32_t) * 3)) << 32)); const uint128 rev_bits(bits.get_reversed_bits()); if (!decode_config(bits, log_blk)) return false; if (log_blk.m_solid_color_flag_hdr || log_blk.m_solid_color_flag_ldr) { // Void extent log_blk.m_error_flag = false; return true; } // Check grid dimensions if ((log_blk.m_grid_width > blk_width) || (log_blk.m_grid_height > blk_height)) return false; // Now we have the grid width/height, dual plane, weight ISE range const uint32_t total_grid_weights = (log_blk.m_dual_plane ? 2 : 1) * (log_blk.m_grid_width * log_blk.m_grid_height); const uint32_t total_weight_bits = get_ise_sequence_bits(total_grid_weights, log_blk.m_weight_ise_range); // 18.24 Illegal Encodings if ((!total_grid_weights) || (total_grid_weights > MAX_GRID_WEIGHTS) || (total_weight_bits < 24) || (total_weight_bits > 96)) return false; const uint32_t end_of_weight_bit_ofs = 128 - total_weight_bits; uint32_t total_extra_bits = 0; // Right before the weight bits, there may be extra CEM bits, then the 2 CCS bits if dual plane. log_blk.m_num_partitions = bits.get_bits(11, 2) + 1; if (log_blk.m_num_partitions == 1) log_blk.m_color_endpoint_modes[0] = bits.get_bits(13, 4); // read CEM bits else { // 2 or more partitions if (log_blk.m_dual_plane && (log_blk.m_num_partitions == 4)) return false; log_blk.m_partition_id = bits.get_bits(13, 10); uint32_t cem_bits = bits.get_bits(23, 6); if ((cem_bits & 3) == 0) { // All CEM's the same for (uint32_t i = 0; i < log_blk.m_num_partitions; i++) log_blk.m_color_endpoint_modes[i] = cem_bits >> 2; } else { // CEM's different, but within up to 2 adjacent classes const uint32_t first_cem_index = ((cem_bits & 3) - 1) * 4; total_extra_bits = 3 * log_blk.m_num_partitions - 4; if ((total_weight_bits + total_extra_bits) > 128) return false; uint32_t cem_bit_pos = end_of_weight_bit_ofs - total_extra_bits; uint32_t c[4] = { 0 }, m[4] = { 0 }; cem_bits >>= 2; for (uint32_t i = 0; i < log_blk.m_num_partitions; i++, cem_bits >>= 1) c[i] = cem_bits & 1; switch (log_blk.m_num_partitions) { case 2: { m[0] = cem_bits & 3; m[1] = bits.next_bits(cem_bit_pos, 2); break; } case 3: { m[0] = cem_bits & 1; m[0] |= (bits.next_bits(cem_bit_pos, 1) << 1); m[1] = bits.next_bits(cem_bit_pos, 2); m[2] = bits.next_bits(cem_bit_pos, 2); break; } case 4: { for (uint32_t i = 0; i < 4; i++) m[i] = bits.next_bits(cem_bit_pos, 2); break; } default: { assert(0); break; } } assert(cem_bit_pos == end_of_weight_bit_ofs); for (uint32_t i = 0; i < log_blk.m_num_partitions; i++) { log_blk.m_color_endpoint_modes[i] = first_cem_index + (c[i] * 4) + m[i]; assert(log_blk.m_color_endpoint_modes[i] <= 15); } } } // Now we have all the CEM indices. if (log_blk.m_dual_plane) { // Read CCS bits, beneath any CEM bits total_extra_bits += 2; if (total_extra_bits > end_of_weight_bit_ofs) return false; uint32_t ccs_bit_pos = end_of_weight_bit_ofs - total_extra_bits; log_blk.m_color_component_selector = bits.get_bits(ccs_bit_pos, 2); } uint32_t config_bit_pos = 11 + 2; // config+num_parts if (log_blk.m_num_partitions == 1) config_bit_pos += 4; // CEM bits else config_bit_pos += 10 + 6; // part_id+CEM bits // config+num_parts+total_extra_bits (CEM extra+CCS) uint32_t total_config_bits = config_bit_pos + total_extra_bits; // Compute number of remaining bits in block const int num_remaining_bits = 128 - (int)total_config_bits - (int)total_weight_bits; if (num_remaining_bits < 0) return false; // Compute total number of ISE encoded color endpoint mode values uint32_t total_cem_vals = 0; for (uint32_t j = 0; j < log_blk.m_num_partitions; j++) total_cem_vals += get_num_cem_values(log_blk.m_color_endpoint_modes[j]); if (total_cem_vals > MAX_ENDPOINTS) return false; // Infer endpoint ISE range based off the # of values we need to encode, and the # of remaining bits in the block int endpoint_ise_range = -1; for (int k = 20; k > 0; k--) { int b = get_ise_sequence_bits(total_cem_vals, k); if (b <= num_remaining_bits) { endpoint_ise_range = k; break; } } // See 23.24 Illegal Encodings, [0,5] is the minimum ISE encoding for endpoints if (endpoint_ise_range < (int)FIRST_VALID_ENDPOINT_ISE_RANGE) return false; log_blk.m_endpoint_ise_range = endpoint_ise_range; // Decode endpoints forwards in block decode_bise(log_blk.m_endpoint_ise_range, log_blk.m_endpoints, total_cem_vals, bits, config_bit_pos); // Decode grid weights backwards in block decode_bise(log_blk.m_weight_ise_range, log_blk.m_weights, total_grid_weights, rev_bits, 0); log_blk.m_error_flag = false; return true; } } // namespace astc_helpers #endif //BASISU_ASTC_HELPERS_IMPLEMENTATION