/*************************************************************************/ /* rasterizer_scene_rd.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef RASTERIZER_SCENE_RD_H #define RASTERIZER_SCENE_RD_H #include "core/rid_owner.h" #include "servers/rendering/rasterizer.h" #include "servers/rendering/rasterizer_rd/rasterizer_storage_rd.h" #include "servers/rendering/rasterizer_rd/shaders/giprobe.glsl.gen.h" #include "servers/rendering/rasterizer_rd/shaders/giprobe_debug.glsl.gen.h" #include "servers/rendering/rasterizer_rd/shaders/sky.glsl.gen.h" #include "servers/rendering/rendering_device.h" class RasterizerSceneRD : public RasterizerScene { public: enum GIProbeQuality { GIPROBE_QUALITY_ULTRA_LOW, GIPROBE_QUALITY_MEDIUM, GIPROBE_QUALITY_HIGH, }; protected: double time; // Skys need less info from Directional Lights than the normal shaders struct SkyDirectionalLightData { float direction[3]; float energy; float color[3]; float size; uint32_t enabled; uint32_t pad[3]; }; struct SkySceneState { SkyDirectionalLightData *directional_lights; SkyDirectionalLightData *last_frame_directional_lights; uint32_t max_directional_lights; uint32_t directional_light_count; uint32_t last_frame_directional_light_count; RID directional_light_buffer; RID sampler_uniform_set; RID light_uniform_set; } sky_scene_state; struct RenderBufferData { virtual void configure(RID p_color_buffer, RID p_depth_buffer, int p_width, int p_height, RS::ViewportMSAA p_msaa) = 0; virtual ~RenderBufferData() {} }; virtual RenderBufferData *_create_render_buffer_data() = 0; virtual void _render_scene(RID p_render_buffer, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID *p_decal_cull_result, int p_decal_cull_count, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, const Color &p_default_color) = 0; virtual void _render_shadow(RID p_framebuffer, InstanceBase **p_cull_result, int p_cull_count, const CameraMatrix &p_projection, const Transform &p_transform, float p_zfar, float p_bias, float p_normal_bias, bool p_use_dp, bool use_dp_flip, bool p_use_pancake) = 0; virtual void _render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region) = 0; virtual void _debug_giprobe(RID p_gi_probe, RenderingDevice::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha); RenderBufferData *render_buffers_get_data(RID p_render_buffers); virtual void _base_uniforms_changed() = 0; virtual void _render_buffers_uniform_set_changed(RID p_render_buffers) = 0; virtual RID _render_buffers_get_roughness_texture(RID p_render_buffers) = 0; virtual RID _render_buffers_get_normal_texture(RID p_render_buffers) = 0; void _process_ssao(RID p_render_buffers, RID p_environment, RID p_normal_buffer, const CameraMatrix &p_projection); void _process_ssr(RID p_render_buffers, RID p_dest_framebuffer, RID p_normal_buffer, RID p_roughness_buffer, RID p_specular_buffer, RID p_metallic, const Color &p_metallic_mask, RID p_environment, const CameraMatrix &p_projection, bool p_use_additive); void _process_sss(RID p_render_buffers, const CameraMatrix &p_camera); void _setup_sky(RID p_environment, const Vector3 &p_position, const Size2i p_screen_size); void _update_sky(RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform); void _draw_sky(bool p_can_continue_color, bool p_can_continue_depth, RID p_fb, RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform); private: RS::ViewportDebugDraw debug_draw = RS::VIEWPORT_DEBUG_DRAW_DISABLED; double time_step = 0; static RasterizerSceneRD *singleton; int roughness_layers; RasterizerStorageRD *storage; struct ReflectionData { struct Layer { struct Mipmap { RID framebuffers[6]; RID views[6]; Size2i size; }; Vector mipmaps; //per-face view Vector views; // per-cubemap view }; struct DownsampleLayer { struct Mipmap { RID view; Size2i size; }; Vector mipmaps; }; RID radiance_base_cubemap; //cubemap for first layer, first cubemap RID downsampled_radiance_cubemap; DownsampleLayer downsampled_layer; RID coefficient_buffer; bool dirty = true; Vector layers; }; void _clear_reflection_data(ReflectionData &rd); void _update_reflection_data(ReflectionData &rd, int p_size, int p_mipmaps, bool p_use_array, RID p_base_cube, int p_base_layer, bool p_low_quality); void _create_reflection_fast_filter(ReflectionData &rd, bool p_use_arrays); void _create_reflection_importance_sample(ReflectionData &rd, bool p_use_arrays, int p_cube_side, int p_base_layer); void _update_reflection_mipmaps(ReflectionData &rd); /* Sky shader */ enum SkyVersion { SKY_VERSION_BACKGROUND, SKY_VERSION_HALF_RES, SKY_VERSION_QUARTER_RES, SKY_VERSION_CUBEMAP, SKY_VERSION_CUBEMAP_HALF_RES, SKY_VERSION_CUBEMAP_QUARTER_RES, SKY_VERSION_MAX }; struct SkyShader { SkyShaderRD shader; ShaderCompilerRD compiler; RID default_shader; RID default_material; RID default_shader_rd; } sky_shader; struct SkyShaderData : public RasterizerStorageRD::ShaderData { bool valid; RID version; RenderPipelineVertexFormatCacheRD pipelines[SKY_VERSION_MAX]; Map uniforms; Vector texture_uniforms; Vector ubo_offsets; uint32_t ubo_size; String path; String code; Map default_texture_params; bool uses_time; bool uses_position; bool uses_half_res; bool uses_quarter_res; bool uses_light; virtual void set_code(const String &p_Code); virtual void set_default_texture_param(const StringName &p_name, RID p_texture); virtual void get_param_list(List *p_param_list) const; virtual bool is_param_texture(const StringName &p_param) const; virtual bool is_animated() const; virtual bool casts_shadows() const; virtual Variant get_default_parameter(const StringName &p_parameter) const; SkyShaderData(); virtual ~SkyShaderData(); }; RasterizerStorageRD::ShaderData *_create_sky_shader_func(); static RasterizerStorageRD::ShaderData *_create_sky_shader_funcs() { return static_cast(singleton)->_create_sky_shader_func(); }; struct SkyMaterialData : public RasterizerStorageRD::MaterialData { uint64_t last_frame; SkyShaderData *shader_data; RID uniform_buffer; RID uniform_set; Vector texture_cache; Vector ubo_data; bool uniform_set_updated; virtual void set_render_priority(int p_priority) {} virtual void set_next_pass(RID p_pass) {} virtual void update_parameters(const Map &p_parameters, bool p_uniform_dirty, bool p_textures_dirty); virtual ~SkyMaterialData(); }; RasterizerStorageRD::MaterialData *_create_sky_material_func(SkyShaderData *p_shader); static RasterizerStorageRD::MaterialData *_create_sky_material_funcs(RasterizerStorageRD::ShaderData *p_shader) { return static_cast(singleton)->_create_sky_material_func(static_cast(p_shader)); }; enum SkyTextureSetVersion { SKY_TEXTURE_SET_BACKGROUND, SKY_TEXTURE_SET_HALF_RES, SKY_TEXTURE_SET_QUARTER_RES, SKY_TEXTURE_SET_CUBEMAP, SKY_TEXTURE_SET_CUBEMAP_HALF_RES, SKY_TEXTURE_SET_CUBEMAP_QUARTER_RES, SKY_TEXTURE_SET_MAX }; enum SkySet { SKY_SET_SAMPLERS, SKY_SET_MATERIAL, SKY_SET_TEXTURES, SKY_SET_LIGHTS, SKY_SET_MAX }; /* SKY */ struct Sky { RID radiance; RID half_res_pass; RID half_res_framebuffer; RID quarter_res_pass; RID quarter_res_framebuffer; Size2i screen_size; RID texture_uniform_sets[SKY_TEXTURE_SET_MAX]; RID uniform_set; RID material; RID uniform_buffer; int radiance_size = 256; RS::SkyMode mode = RS::SKY_MODE_QUALITY; ReflectionData reflection; bool dirty = false; Sky *dirty_list = nullptr; //State to track when radiance cubemap needs updating SkyMaterialData *prev_material; Vector3 prev_position; float prev_time; }; Sky *dirty_sky_list = nullptr; void _sky_invalidate(Sky *p_sky); void _update_dirty_skys(); RID _get_sky_textures(Sky *p_sky, SkyTextureSetVersion p_version); uint32_t sky_ggx_samples_quality; bool sky_use_cubemap_array; mutable RID_Owner sky_owner; /* REFLECTION ATLAS */ struct ReflectionAtlas { int count = 0; int size = 0; RID reflection; RID depth_buffer; RID depth_fb; struct Reflection { RID owner; ReflectionData data; RID fbs[6]; }; Vector reflections; }; RID_Owner reflection_atlas_owner; /* REFLECTION PROBE INSTANCE */ struct ReflectionProbeInstance { RID probe; int atlas_index = -1; RID atlas; bool dirty = true; bool rendering = false; int processing_layer = 1; int processing_side = 0; uint32_t render_step = 0; uint64_t last_pass = 0; uint32_t render_index = 0; Transform transform; }; mutable RID_Owner reflection_probe_instance_owner; /* REFLECTION PROBE INSTANCE */ struct DecalInstance { RID decal; Transform transform; }; mutable RID_Owner decal_instance_owner; /* GIPROBE INSTANCE */ struct GIProbeLight { uint32_t type; float energy; float radius; float attenuation; float color[3]; float spot_angle_radians; float position[3]; float spot_attenuation; float direction[3]; uint32_t has_shadow; }; struct GIProbePushConstant { int32_t limits[3]; uint32_t stack_size; float emission_scale; float propagation; float dynamic_range; uint32_t light_count; uint32_t cell_offset; uint32_t cell_count; float aniso_strength; uint32_t pad; }; struct GIProbeDynamicPushConstant { int32_t limits[3]; uint32_t light_count; int32_t x_dir[3]; float z_base; int32_t y_dir[3]; float z_sign; int32_t z_dir[3]; float pos_multiplier; uint32_t rect_pos[2]; uint32_t rect_size[2]; uint32_t prev_rect_ofs[2]; uint32_t prev_rect_size[2]; uint32_t flip_x; uint32_t flip_y; float dynamic_range; uint32_t on_mipmap; float propagation; float pad[3]; }; struct GIProbeInstance { RID probe; RID texture; RID anisotropy[2]; //only if anisotropy is used RID anisotropy_r16[2]; //only if anisotropy is used RID write_buffer; struct Mipmap { RID texture; RID anisotropy[2]; //only if anisotropy is used RID uniform_set; RID second_bounce_uniform_set; RID write_uniform_set; uint32_t level; uint32_t cell_offset; uint32_t cell_count; }; Vector mipmaps; struct DynamicMap { RID texture; //color normally, or emission on first pass RID fb_depth; //actual depth buffer for the first pass, float depth for later passes RID depth; //actual depth buffer for the first pass, float depth for later passes RID normal; //normal buffer for the first pass RID albedo; //emission buffer for the first pass RID orm; //orm buffer for the first pass RID fb; //used for rendering, only valid on first map RID uniform_set; uint32_t size; int mipmap; // mipmap to write to, -1 if no mipmap assigned }; Vector dynamic_maps; int slot = -1; uint32_t last_probe_version = 0; uint32_t last_probe_data_version = 0; uint64_t last_pass = 0; uint32_t render_index = 0; bool has_dynamic_object_data = false; Transform transform; }; GIProbeLight *gi_probe_lights; uint32_t gi_probe_max_lights; RID gi_probe_lights_uniform; bool gi_probe_use_anisotropy = false; GIProbeQuality gi_probe_quality = GIPROBE_QUALITY_MEDIUM; Vector gi_probe_slots; enum { GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT, GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE, GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP, GI_PROBE_SHADER_VERSION_WRITE_TEXTURE, GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING, GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE, GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT, GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT, GI_PROBE_SHADER_VERSION_MAX }; GiprobeShaderRD giprobe_shader; RID giprobe_lighting_shader_version; RID giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_MAX]; RID giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_MAX]; mutable RID_Owner gi_probe_instance_owner; enum { GI_PROBE_DEBUG_COLOR, GI_PROBE_DEBUG_LIGHT, GI_PROBE_DEBUG_EMISSION, GI_PROBE_DEBUG_LIGHT_FULL, GI_PROBE_DEBUG_MAX }; struct GIProbeDebugPushConstant { float projection[16]; uint32_t cell_offset; float dynamic_range; float alpha; uint32_t level; int32_t bounds[3]; uint32_t pad; }; GiprobeDebugShaderRD giprobe_debug_shader; RID giprobe_debug_shader_version; RID giprobe_debug_shader_version_shaders[GI_PROBE_DEBUG_MAX]; RenderPipelineVertexFormatCacheRD giprobe_debug_shader_version_pipelines[GI_PROBE_DEBUG_MAX]; RID giprobe_debug_uniform_set; /* SHADOW ATLAS */ struct ShadowAtlas { enum { QUADRANT_SHIFT = 27, SHADOW_INDEX_MASK = (1 << QUADRANT_SHIFT) - 1, SHADOW_INVALID = 0xFFFFFFFF }; struct Quadrant { uint32_t subdivision; struct Shadow { RID owner; uint64_t version; uint64_t alloc_tick; Shadow() { version = 0; alloc_tick = 0; } }; Vector shadows; Quadrant() { subdivision = 0; //not in use } } quadrants[4]; int size_order[4] = { 0, 1, 2, 3 }; uint32_t smallest_subdiv = 0; int size = 0; RID depth; RID fb; //for copying Map shadow_owners; }; RID_Owner shadow_atlas_owner; bool _shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow); RS::ShadowQuality shadows_quality = RS::SHADOW_QUALITY_MAX; //So it always updates when first set RS::ShadowQuality directional_shadow_quality = RS::SHADOW_QUALITY_MAX; float shadows_quality_radius = 1.0; float directional_shadow_quality_radius = 1.0; float *directional_penumbra_shadow_kernel; float *directional_soft_shadow_kernel; float *penumbra_shadow_kernel; float *soft_shadow_kernel; int directional_penumbra_shadow_samples = 0; int directional_soft_shadow_samples = 0; int penumbra_shadow_samples = 0; int soft_shadow_samples = 0; /* DIRECTIONAL SHADOW */ struct DirectionalShadow { RID depth; int light_count = 0; int size = 0; int current_light = 0; } directional_shadow; /* SHADOW CUBEMAPS */ struct ShadowCubemap { RID cubemap; RID side_fb[6]; }; Map shadow_cubemaps; ShadowCubemap *_get_shadow_cubemap(int p_size); struct ShadowMap { RID depth; RID fb; }; Map shadow_maps; ShadowMap *_get_shadow_map(const Size2i &p_size); void _create_shadow_cubemaps(); /* LIGHT INSTANCE */ struct LightInstance { struct ShadowTransform { CameraMatrix camera; Transform transform; float farplane; float split; float bias_scale; float shadow_texel_size; float range_begin; Rect2 atlas_rect; Vector2 uv_scale; }; RS::LightType light_type = RS::LIGHT_DIRECTIONAL; ShadowTransform shadow_transform[4]; RID self; RID light; Transform transform; Vector3 light_vector; Vector3 spot_vector; float linear_att = 0.0; uint64_t shadow_pass = 0; uint64_t last_scene_pass = 0; uint64_t last_scene_shadow_pass = 0; uint64_t last_pass = 0; uint32_t light_index = 0; uint32_t light_directional_index = 0; uint32_t current_shadow_atlas_key = 0; Vector2 dp; Rect2 directional_rect; Set shadow_atlases; //shadow atlases where this light is registered LightInstance() {} }; mutable RID_Owner light_instance_owner; /* ENVIRONMENT */ struct Environent { // BG RS::EnvironmentBG background = RS::ENV_BG_CLEAR_COLOR; RID sky; float sky_custom_fov = 0.0; Basis sky_orientation; Color bg_color; float bg_energy = 1.0; int canvas_max_layer = 0; RS::EnvironmentAmbientSource ambient_source = RS::ENV_AMBIENT_SOURCE_BG; Color ambient_light; float ambient_light_energy = 1.0; float ambient_sky_contribution = 1.0; RS::EnvironmentReflectionSource reflection_source = RS::ENV_REFLECTION_SOURCE_BG; Color ao_color; /// Tonemap RS::EnvironmentToneMapper tone_mapper; float exposure = 1.0; float white = 1.0; bool auto_exposure = false; float min_luminance = 0.2; float max_luminance = 8.0; float auto_exp_speed = 0.2; float auto_exp_scale = 0.5; uint64_t auto_exposure_version = 0; /// Glow bool glow_enabled = false; int glow_levels = (1 << 2) | (1 << 4); float glow_intensity = 0.8; float glow_strength = 1.0; float glow_bloom = 0.0; float glow_mix = 0.01; RS::EnvironmentGlowBlendMode glow_blend_mode = RS::ENV_GLOW_BLEND_MODE_SOFTLIGHT; float glow_hdr_bleed_threshold = 1.0; float glow_hdr_luminance_cap = 12.0; float glow_hdr_bleed_scale = 2.0; /// SSAO bool ssao_enabled = false; float ssao_radius = 1; float ssao_intensity = 1; float ssao_bias = 0.01; float ssao_direct_light_affect = 0.0; float ssao_ao_channel_affect = 0.0; float ssao_blur_edge_sharpness = 4.0; RS::EnvironmentSSAOBlur ssao_blur = RS::ENV_SSAO_BLUR_3x3; /// SSR /// bool ssr_enabled = false; int ssr_max_steps = 64; float ssr_fade_in = 0.15; float ssr_fade_out = 2.0; float ssr_depth_tolerance = 0.2; }; RS::EnvironmentSSAOQuality ssao_quality = RS::ENV_SSAO_QUALITY_MEDIUM; bool ssao_half_size = false; bool glow_bicubic_upscale = false; RS::EnvironmentSSRRoughnessQuality ssr_roughness_quality = RS::ENV_SSR_ROUGNESS_QUALITY_LOW; static uint64_t auto_exposure_counter; mutable RID_Owner environment_owner; /* CAMERA EFFECTS */ struct CameraEffects { bool dof_blur_far_enabled = false; float dof_blur_far_distance = 10; float dof_blur_far_transition = 5; bool dof_blur_near_enabled = false; float dof_blur_near_distance = 2; float dof_blur_near_transition = 1; float dof_blur_amount = 0.1; bool override_exposure_enabled = false; float override_exposure = 1; }; RS::DOFBlurQuality dof_blur_quality = RS::DOF_BLUR_QUALITY_MEDIUM; RS::DOFBokehShape dof_blur_bokeh_shape = RS::DOF_BOKEH_HEXAGON; bool dof_blur_use_jitter = false; RS::SubSurfaceScatteringQuality sss_quality = RS::SUB_SURFACE_SCATTERING_QUALITY_MEDIUM; float sss_scale = 0.05; float sss_depth_scale = 0.01; mutable RID_Owner camera_effects_owner; /* RENDER BUFFERS */ struct RenderBuffers { RenderBufferData *data = nullptr; int width = 0, height = 0; RS::ViewportMSAA msaa = RS::VIEWPORT_MSAA_DISABLED; RS::ViewportScreenSpaceAA screen_space_aa = RS::VIEWPORT_SCREEN_SPACE_AA_DISABLED; RID render_target; uint64_t auto_exposure_version = 1; RID texture; //main texture for rendering to, must be filled after done rendering RID depth_texture; //main depth texture //built-in textures used for ping pong image processing and blurring struct Blur { RID texture; struct Mipmap { RID texture; int width; int height; }; Vector mipmaps; }; Blur blur[2]; //the second one starts from the first mipmap struct Luminance { Vector reduce; RID current; } luminance; struct SSAO { RID depth; Vector depth_slices; RID ao[2]; RID ao_full; //when using half-size } ssao; struct SSR { RID normal_scaled; RID depth_scaled; RID blur_radius[2]; } ssr; }; bool screen_space_roughness_limiter = false; float screen_space_roughness_limiter_curve = 1.0; mutable RID_Owner render_buffers_owner; void _free_render_buffer_data(RenderBuffers *rb); void _allocate_blur_textures(RenderBuffers *rb); void _allocate_luminance_textures(RenderBuffers *rb); void _render_buffers_debug_draw(RID p_render_buffers, RID p_shadow_atlas); void _render_buffers_post_process_and_tonemap(RID p_render_buffers, RID p_environment, RID p_camera_effects, const CameraMatrix &p_projection); uint64_t scene_pass = 0; uint64_t shadow_atlas_realloc_tolerance_msec = 500; public: /* SHADOW ATLAS API */ RID shadow_atlas_create(); void shadow_atlas_set_size(RID p_atlas, int p_size); void shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision); bool shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version); _FORCE_INLINE_ bool shadow_atlas_owns_light_instance(RID p_atlas, RID p_light_intance) { ShadowAtlas *atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND_V(!atlas, false); return atlas->shadow_owners.has(p_light_intance); } _FORCE_INLINE_ RID shadow_atlas_get_texture(RID p_atlas) { ShadowAtlas *atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND_V(!atlas, RID()); return atlas->depth; } _FORCE_INLINE_ Size2i shadow_atlas_get_size(RID p_atlas) { ShadowAtlas *atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND_V(!atlas, Size2i()); return Size2(atlas->size, atlas->size); } void directional_shadow_atlas_set_size(int p_size); int get_directional_light_shadow_size(RID p_light_intance); void set_directional_shadow_count(int p_count); _FORCE_INLINE_ RID directional_shadow_get_texture() { return directional_shadow.depth; } _FORCE_INLINE_ Size2i directional_shadow_get_size() { return Size2i(directional_shadow.size, directional_shadow.size); } /* SKY API */ RID sky_create(); void sky_set_radiance_size(RID p_sky, int p_radiance_size); void sky_set_mode(RID p_sky, RS::SkyMode p_mode); void sky_set_material(RID p_sky, RID p_material); RID sky_get_radiance_texture_rd(RID p_sky) const; RID sky_get_radiance_uniform_set_rd(RID p_sky, RID p_shader, int p_set) const; RID sky_get_material(RID p_sky) const; /* ENVIRONMENT API */ RID environment_create(); void environment_set_background(RID p_env, RS::EnvironmentBG p_bg); void environment_set_sky(RID p_env, RID p_sky); void environment_set_sky_custom_fov(RID p_env, float p_scale); void environment_set_sky_orientation(RID p_env, const Basis &p_orientation); void environment_set_bg_color(RID p_env, const Color &p_color); void environment_set_bg_energy(RID p_env, float p_energy); void environment_set_canvas_max_layer(RID p_env, int p_max_layer); void environment_set_ambient_light(RID p_env, const Color &p_color, RS::EnvironmentAmbientSource p_ambient = RS::ENV_AMBIENT_SOURCE_BG, float p_energy = 1.0, float p_sky_contribution = 0.0, RS::EnvironmentReflectionSource p_reflection_source = RS::ENV_REFLECTION_SOURCE_BG, const Color &p_ao_color = Color()); RS::EnvironmentBG environment_get_background(RID p_env) const; RID environment_get_sky(RID p_env) const; float environment_get_sky_custom_fov(RID p_env) const; Basis environment_get_sky_orientation(RID p_env) const; Color environment_get_bg_color(RID p_env) const; float environment_get_bg_energy(RID p_env) const; int environment_get_canvas_max_layer(RID p_env) const; Color environment_get_ambient_light_color(RID p_env) const; RS::EnvironmentAmbientSource environment_get_ambient_light_ambient_source(RID p_env) const; float environment_get_ambient_light_ambient_energy(RID p_env) const; float environment_get_ambient_sky_contribution(RID p_env) const; RS::EnvironmentReflectionSource environment_get_reflection_source(RID p_env) const; Color environment_get_ao_color(RID p_env) const; bool is_environment(RID p_env) const; void environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_mix, float p_bloom_threshold, RS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap); void environment_glow_set_use_bicubic_upscale(bool p_enable); void environment_set_fog(RID p_env, bool p_enable, float p_begin, float p_end, RID p_gradient_texture) {} void environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_int, float p_fade_out, float p_depth_tolerance); void environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_bias, float p_light_affect, float p_ao_channel_affect, RS::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness); void environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size); bool environment_is_ssao_enabled(RID p_env) const; float environment_get_ssao_ao_affect(RID p_env) const; float environment_get_ssao_light_affect(RID p_env) const; bool environment_is_ssr_enabled(RID p_env) const; void environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality); RS::EnvironmentSSRRoughnessQuality environment_get_ssr_roughness_quality() const; void environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale); void environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, RID p_ramp) {} void environment_set_fog(RID p_env, bool p_enable, const Color &p_color, const Color &p_sun_color, float p_sun_amount) {} void environment_set_fog_depth(RID p_env, bool p_enable, float p_depth_begin, float p_depth_end, float p_depth_curve, bool p_transmit, float p_transmit_curve) {} void environment_set_fog_height(RID p_env, bool p_enable, float p_min_height, float p_max_height, float p_height_curve) {} virtual RID camera_effects_create(); virtual void camera_effects_set_dof_blur_quality(RS::DOFBlurQuality p_quality, bool p_use_jitter); virtual void camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape p_shape); virtual void camera_effects_set_dof_blur(RID p_camera_effects, bool p_far_enable, float p_far_distance, float p_far_transition, bool p_near_enable, float p_near_distance, float p_near_transition, float p_amount); virtual void camera_effects_set_custom_exposure(RID p_camera_effects, bool p_enable, float p_exposure); RID light_instance_create(RID p_light); void light_instance_set_transform(RID p_light_instance, const Transform &p_transform); void light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale = 1.0, float p_range_begin = 0, const Vector2 &p_uv_scale = Vector2()); void light_instance_mark_visible(RID p_light_instance); _FORCE_INLINE_ RID light_instance_get_base_light(RID p_light_instance) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->light; } _FORCE_INLINE_ Transform light_instance_get_base_transform(RID p_light_instance) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->transform; } _FORCE_INLINE_ Rect2 light_instance_get_shadow_atlas_rect(RID p_light_instance, RID p_shadow_atlas) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); LightInstance *li = light_instance_owner.getornull(p_light_instance); uint32_t key = shadow_atlas->shadow_owners[li->self]; uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; ERR_FAIL_COND_V(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size(), Rect2()); uint32_t atlas_size = shadow_atlas->size; uint32_t quadrant_size = atlas_size >> 1; uint32_t x = (quadrant & 1) * quadrant_size; uint32_t y = (quadrant >> 1) * quadrant_size; uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; uint32_t width = shadow_size; uint32_t height = shadow_size; return Rect2(x / float(shadow_atlas->size), y / float(shadow_atlas->size), width / float(shadow_atlas->size), height / float(shadow_atlas->size)); } _FORCE_INLINE_ CameraMatrix light_instance_get_shadow_camera(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].camera; } _FORCE_INLINE_ float light_instance_get_shadow_texel_size(RID p_light_instance, RID p_shadow_atlas) { #ifdef DEBUG_ENABLED LightInstance *li = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND_V(!li->shadow_atlases.has(p_shadow_atlas), 0); #endif ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); ERR_FAIL_COND_V(!shadow_atlas, 0); #ifdef DEBUG_ENABLED ERR_FAIL_COND_V(!shadow_atlas->shadow_owners.has(p_light_instance), 0); #endif uint32_t key = shadow_atlas->shadow_owners[p_light_instance]; uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t quadrant_size = shadow_atlas->size >> 1; uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); return float(1.0) / shadow_size; } _FORCE_INLINE_ Transform light_instance_get_shadow_transform(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].transform; } _FORCE_INLINE_ float light_instance_get_shadow_bias_scale(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].bias_scale; } _FORCE_INLINE_ float light_instance_get_shadow_range(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].farplane; } _FORCE_INLINE_ float light_instance_get_shadow_range_begin(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].range_begin; } _FORCE_INLINE_ Vector2 light_instance_get_shadow_uv_scale(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].uv_scale; } _FORCE_INLINE_ Rect2 light_instance_get_directional_shadow_atlas_rect(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].atlas_rect; } _FORCE_INLINE_ float light_instance_get_directional_shadow_split(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].split; } _FORCE_INLINE_ float light_instance_get_directional_shadow_texel_size(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].shadow_texel_size; } _FORCE_INLINE_ void light_instance_set_render_pass(RID p_light_instance, uint64_t p_pass) { LightInstance *li = light_instance_owner.getornull(p_light_instance); li->last_pass = p_pass; } _FORCE_INLINE_ uint64_t light_instance_get_render_pass(RID p_light_instance) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->last_pass; } _FORCE_INLINE_ void light_instance_set_index(RID p_light_instance, uint32_t p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); li->light_index = p_index; } _FORCE_INLINE_ uint32_t light_instance_get_index(RID p_light_instance) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->light_index; } _FORCE_INLINE_ RS::LightType light_instance_get_type(RID p_light_instance) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->light_type; } virtual RID reflection_atlas_create(); virtual void reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count); _FORCE_INLINE_ RID reflection_atlas_get_texture(RID p_ref_atlas) { ReflectionAtlas *atlas = reflection_atlas_owner.getornull(p_ref_atlas); ERR_FAIL_COND_V(!atlas, RID()); return atlas->reflection; } virtual RID reflection_probe_instance_create(RID p_probe); virtual void reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform); virtual void reflection_probe_release_atlas_index(RID p_instance); virtual bool reflection_probe_instance_needs_redraw(RID p_instance); virtual bool reflection_probe_instance_has_reflection(RID p_instance); virtual bool reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas); virtual bool reflection_probe_instance_postprocess_step(RID p_instance); uint32_t reflection_probe_instance_get_resolution(RID p_instance); RID reflection_probe_instance_get_framebuffer(RID p_instance, int p_index); RID reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index); _FORCE_INLINE_ RID reflection_probe_instance_get_probe(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, RID()); return rpi->probe; } _FORCE_INLINE_ void reflection_probe_instance_set_render_index(RID p_instance, uint32_t p_render_index) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!rpi); rpi->render_index = p_render_index; } _FORCE_INLINE_ uint32_t reflection_probe_instance_get_render_index(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, 0); return rpi->render_index; } _FORCE_INLINE_ void reflection_probe_instance_set_render_pass(RID p_instance, uint32_t p_render_pass) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!rpi); rpi->last_pass = p_render_pass; } _FORCE_INLINE_ uint32_t reflection_probe_instance_get_render_pass(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, 0); return rpi->last_pass; } _FORCE_INLINE_ Transform reflection_probe_instance_get_transform(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, Transform()); return rpi->transform; } _FORCE_INLINE_ int reflection_probe_instance_get_atlas_index(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, -1); return rpi->atlas_index; } virtual RID decal_instance_create(RID p_decal); virtual void decal_instance_set_transform(RID p_decal, const Transform &p_transform); _FORCE_INLINE_ RID decal_instance_get_base(RID p_decal) const { DecalInstance *decal = decal_instance_owner.getornull(p_decal); return decal->decal; } _FORCE_INLINE_ Transform decal_instance_get_transform(RID p_decal) const { DecalInstance *decal = decal_instance_owner.getornull(p_decal); return decal->transform; } RID gi_probe_instance_create(RID p_base); void gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform); bool gi_probe_needs_update(RID p_probe) const; void gi_probe_update(RID p_probe, bool p_update_light_instances, const Vector &p_light_instances, int p_dynamic_object_count, InstanceBase **p_dynamic_objects); _FORCE_INLINE_ uint32_t gi_probe_instance_get_slot(RID p_probe) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); return gi_probe->slot; } _FORCE_INLINE_ RID gi_probe_instance_get_base_probe(RID p_probe) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); return gi_probe->probe; } _FORCE_INLINE_ Transform gi_probe_instance_get_transform_to_cell(RID p_probe) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); return storage->gi_probe_get_to_cell_xform(gi_probe->probe) * gi_probe->transform.affine_inverse(); } _FORCE_INLINE_ RID gi_probe_instance_get_texture(RID p_probe) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); return gi_probe->texture; } _FORCE_INLINE_ RID gi_probe_instance_get_aniso_texture(RID p_probe, int p_index) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); return gi_probe->anisotropy[p_index]; } _FORCE_INLINE_ void gi_probe_instance_set_render_index(RID p_instance, uint32_t p_render_index) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!gi_probe); gi_probe->render_index = p_render_index; } _FORCE_INLINE_ uint32_t gi_probe_instance_get_render_index(RID p_instance) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!gi_probe, 0); return gi_probe->render_index; } _FORCE_INLINE_ void gi_probe_instance_set_render_pass(RID p_instance, uint32_t p_render_pass) { GIProbeInstance *g_probe = gi_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!g_probe); g_probe->last_pass = p_render_pass; } _FORCE_INLINE_ uint32_t gi_probe_instance_get_render_pass(RID p_instance) { GIProbeInstance *g_probe = gi_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!g_probe, 0); return g_probe->last_pass; } const Vector &gi_probe_get_slots() const; _FORCE_INLINE_ bool gi_probe_is_anisotropic() const { return gi_probe_use_anisotropy; } GIProbeQuality gi_probe_get_quality() const; RID render_buffers_create(); void render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, RS::ViewportMSAA p_msaa, RS::ViewportScreenSpaceAA p_screen_space_aa); RID render_buffers_get_ao_texture(RID p_render_buffers); RID render_buffers_get_back_buffer_texture(RID p_render_buffers); void render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID *p_decal_cull_result, int p_decal_cull_count, RID p_environment, RID p_shadow_atlas, RID p_camera_effects, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass); void render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count); void render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region); virtual void set_scene_pass(uint64_t p_pass) { scene_pass = p_pass; } _FORCE_INLINE_ uint64_t get_scene_pass() { return scene_pass; } virtual void screen_space_roughness_limiter_set_active(bool p_enable, float p_curve); virtual bool screen_space_roughness_limiter_is_active() const; virtual float screen_space_roughness_limiter_get_curve() const; virtual void sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality); RS::SubSurfaceScatteringQuality sub_surface_scattering_get_quality() const; virtual void sub_surface_scattering_set_scale(float p_scale, float p_depth_scale); virtual void shadows_quality_set(RS::ShadowQuality p_quality); virtual void directional_shadow_quality_set(RS::ShadowQuality p_quality); _FORCE_INLINE_ RS::ShadowQuality shadows_quality_get() const { return shadows_quality; } _FORCE_INLINE_ RS::ShadowQuality directional_shadow_quality_get() const { return directional_shadow_quality; } _FORCE_INLINE_ float shadows_quality_radius_get() const { return shadows_quality_radius; } _FORCE_INLINE_ float directional_shadow_quality_radius_get() const { return directional_shadow_quality_radius; } _FORCE_INLINE_ float *directional_penumbra_shadow_kernel_get() { return directional_penumbra_shadow_kernel; } _FORCE_INLINE_ float *directional_soft_shadow_kernel_get() { return directional_soft_shadow_kernel; } _FORCE_INLINE_ float *penumbra_shadow_kernel_get() { return penumbra_shadow_kernel; } _FORCE_INLINE_ float *soft_shadow_kernel_get() { return soft_shadow_kernel; } _FORCE_INLINE_ int directional_penumbra_shadow_samples_get() const { return directional_penumbra_shadow_samples; } _FORCE_INLINE_ int directional_soft_shadow_samples_get() const { return directional_soft_shadow_samples; } _FORCE_INLINE_ int penumbra_shadow_samples_get() const { return penumbra_shadow_samples; } _FORCE_INLINE_ int soft_shadow_samples_get() const { return soft_shadow_samples; } int get_roughness_layers() const; bool is_using_radiance_cubemap_array() const; virtual bool free(RID p_rid); virtual void update(); virtual void set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw); _FORCE_INLINE_ RS::ViewportDebugDraw get_debug_draw_mode() const { return debug_draw; } virtual void set_time(double p_time, double p_step); RasterizerSceneRD(RasterizerStorageRD *p_storage); ~RasterizerSceneRD(); }; #endif // RASTERIZER_SCENE_RD_H