// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details #include "meshoptimizer.h" #include #include #include #include // This work is based on: // Graham Wihlidal. Optimizing the Graphics Pipeline with Compute. 2016 // Matthaeus Chajdas. GeometryFX 1.2 - Cluster Culling. 2016 // Jack Ritter. An Efficient Bounding Sphere. 1990 namespace meshopt { // This must be <= 255 since index 0xff is used internally to indice a vertex that doesn't belong to a meshlet const size_t kMeshletMaxVertices = 255; // A reasonable limit is around 2*max_vertices or less const size_t kMeshletMaxTriangles = 512; struct TriangleAdjacency2 { unsigned int* counts; unsigned int* offsets; unsigned int* data; }; static void buildTriangleAdjacency(TriangleAdjacency2& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator) { size_t face_count = index_count / 3; // allocate arrays adjacency.counts = allocator.allocate(vertex_count); adjacency.offsets = allocator.allocate(vertex_count); adjacency.data = allocator.allocate(index_count); // fill triangle counts memset(adjacency.counts, 0, vertex_count * sizeof(unsigned int)); for (size_t i = 0; i < index_count; ++i) { assert(indices[i] < vertex_count); adjacency.counts[indices[i]]++; } // fill offset table unsigned int offset = 0; for (size_t i = 0; i < vertex_count; ++i) { adjacency.offsets[i] = offset; offset += adjacency.counts[i]; } assert(offset == index_count); // fill triangle data for (size_t i = 0; i < face_count; ++i) { unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2]; adjacency.data[adjacency.offsets[a]++] = unsigned(i); adjacency.data[adjacency.offsets[b]++] = unsigned(i); adjacency.data[adjacency.offsets[c]++] = unsigned(i); } // fix offsets that have been disturbed by the previous pass for (size_t i = 0; i < vertex_count; ++i) { assert(adjacency.offsets[i] >= adjacency.counts[i]); adjacency.offsets[i] -= adjacency.counts[i]; } } static void computeBoundingSphere(float result[4], const float points[][3], size_t count) { assert(count > 0); // find extremum points along all 3 axes; for each axis we get a pair of points with min/max coordinates size_t pmin[3] = {0, 0, 0}; size_t pmax[3] = {0, 0, 0}; for (size_t i = 0; i < count; ++i) { const float* p = points[i]; for (int axis = 0; axis < 3; ++axis) { pmin[axis] = (p[axis] < points[pmin[axis]][axis]) ? i : pmin[axis]; pmax[axis] = (p[axis] > points[pmax[axis]][axis]) ? i : pmax[axis]; } } // find the pair of points with largest distance float paxisd2 = 0; int paxis = 0; for (int axis = 0; axis < 3; ++axis) { const float* p1 = points[pmin[axis]]; const float* p2 = points[pmax[axis]]; float d2 = (p2[0] - p1[0]) * (p2[0] - p1[0]) + (p2[1] - p1[1]) * (p2[1] - p1[1]) + (p2[2] - p1[2]) * (p2[2] - p1[2]); if (d2 > paxisd2) { paxisd2 = d2; paxis = axis; } } // use the longest segment as the initial sphere diameter const float* p1 = points[pmin[paxis]]; const float* p2 = points[pmax[paxis]]; float center[3] = {(p1[0] + p2[0]) / 2, (p1[1] + p2[1]) / 2, (p1[2] + p2[2]) / 2}; float radius = sqrtf(paxisd2) / 2; // iteratively adjust the sphere up until all points fit for (size_t i = 0; i < count; ++i) { const float* p = points[i]; float d2 = (p[0] - center[0]) * (p[0] - center[0]) + (p[1] - center[1]) * (p[1] - center[1]) + (p[2] - center[2]) * (p[2] - center[2]); if (d2 > radius * radius) { float d = sqrtf(d2); assert(d > 0); float k = 0.5f + (radius / d) / 2; center[0] = center[0] * k + p[0] * (1 - k); center[1] = center[1] * k + p[1] * (1 - k); center[2] = center[2] * k + p[2] * (1 - k); radius = (radius + d) / 2; } } result[0] = center[0]; result[1] = center[1]; result[2] = center[2]; result[3] = radius; } struct Cone { float px, py, pz; float nx, ny, nz; }; static float getMeshletScore(float distance2, float spread, float cone_weight, float expected_radius) { float cone = 1.f - spread * cone_weight; float cone_clamped = cone < 1e-3f ? 1e-3f : cone; return (1 + sqrtf(distance2) / expected_radius * (1 - cone_weight)) * cone_clamped; } static Cone getMeshletCone(const Cone& acc, unsigned int triangle_count) { Cone result = acc; float center_scale = triangle_count == 0 ? 0.f : 1.f / float(triangle_count); result.px *= center_scale; result.py *= center_scale; result.pz *= center_scale; float axis_length = result.nx * result.nx + result.ny * result.ny + result.nz * result.nz; float axis_scale = axis_length == 0.f ? 0.f : 1.f / sqrtf(axis_length); result.nx *= axis_scale; result.ny *= axis_scale; result.nz *= axis_scale; return result; } static float computeTriangleCones(Cone* triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) { (void)vertex_count; size_t vertex_stride_float = vertex_positions_stride / sizeof(float); size_t face_count = index_count / 3; float mesh_area = 0; for (size_t i = 0; i < face_count; ++i) { unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2]; assert(a < vertex_count && b < vertex_count && c < vertex_count); const float* p0 = vertex_positions + vertex_stride_float * a; const float* p1 = vertex_positions + vertex_stride_float * b; const float* p2 = vertex_positions + vertex_stride_float * c; float p10[3] = {p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2]}; float p20[3] = {p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2]}; float normalx = p10[1] * p20[2] - p10[2] * p20[1]; float normaly = p10[2] * p20[0] - p10[0] * p20[2]; float normalz = p10[0] * p20[1] - p10[1] * p20[0]; float area = sqrtf(normalx * normalx + normaly * normaly + normalz * normalz); float invarea = (area == 0.f) ? 0.f : 1.f / area; triangles[i].px = (p0[0] + p1[0] + p2[0]) / 3.f; triangles[i].py = (p0[1] + p1[1] + p2[1]) / 3.f; triangles[i].pz = (p0[2] + p1[2] + p2[2]) / 3.f; triangles[i].nx = normalx * invarea; triangles[i].ny = normaly * invarea; triangles[i].nz = normalz * invarea; mesh_area += area; } return mesh_area; } static void finishMeshlet(meshopt_Meshlet& meshlet, unsigned char* meshlet_triangles) { size_t offset = meshlet.triangle_offset + meshlet.triangle_count * 3; // fill 4b padding with 0 while (offset & 3) meshlet_triangles[offset++] = 0; } static bool appendMeshlet(meshopt_Meshlet& meshlet, unsigned int a, unsigned int b, unsigned int c, unsigned char* used, meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, size_t meshlet_offset, size_t max_vertices, size_t max_triangles) { unsigned char& av = used[a]; unsigned char& bv = used[b]; unsigned char& cv = used[c]; bool result = false; int used_extra = (av == 0xff) + (bv == 0xff) + (cv == 0xff); if (meshlet.vertex_count + used_extra > max_vertices || meshlet.triangle_count >= max_triangles) { meshlets[meshlet_offset] = meshlet; for (size_t j = 0; j < meshlet.vertex_count; ++j) used[meshlet_vertices[meshlet.vertex_offset + j]] = 0xff; finishMeshlet(meshlet, meshlet_triangles); meshlet.vertex_offset += meshlet.vertex_count; meshlet.triangle_offset += (meshlet.triangle_count * 3 + 3) & ~3; // 4b padding meshlet.vertex_count = 0; meshlet.triangle_count = 0; result = true; } if (av == 0xff) { av = (unsigned char)meshlet.vertex_count; meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = a; } if (bv == 0xff) { bv = (unsigned char)meshlet.vertex_count; meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = b; } if (cv == 0xff) { cv = (unsigned char)meshlet.vertex_count; meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = c; } meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 0] = av; meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 1] = bv; meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 2] = cv; meshlet.triangle_count++; return result; } static unsigned int getNeighborTriangle(const meshopt_Meshlet& meshlet, const Cone* meshlet_cone, unsigned int* meshlet_vertices, const unsigned int* indices, const TriangleAdjacency2& adjacency, const Cone* triangles, const unsigned int* live_triangles, const unsigned char* used, float meshlet_expected_radius, float cone_weight) { unsigned int best_triangle = ~0u; int best_priority = 5; float best_score = FLT_MAX; for (size_t i = 0; i < meshlet.vertex_count; ++i) { unsigned int index = meshlet_vertices[meshlet.vertex_offset + i]; unsigned int* neighbors = &adjacency.data[0] + adjacency.offsets[index]; size_t neighbors_size = adjacency.counts[index]; for (size_t j = 0; j < neighbors_size; ++j) { unsigned int triangle = neighbors[j]; unsigned int a = indices[triangle * 3 + 0], b = indices[triangle * 3 + 1], c = indices[triangle * 3 + 2]; int extra = (used[a] == 0xff) + (used[b] == 0xff) + (used[c] == 0xff); assert(extra <= 2); int priority = -1; // triangles that don't add new vertices to meshlets are max. priority if (extra == 0) priority = 0; // artificially increase the priority of dangling triangles as they're expensive to add to new meshlets else if (live_triangles[a] == 1 || live_triangles[b] == 1 || live_triangles[c] == 1) priority = 1; // if two vertices have live count of 2, removing this triangle will make another triangle dangling which is good for overall flow else if ((live_triangles[a] == 2) + (live_triangles[b] == 2) + (live_triangles[c] == 2) >= 2) priority = 1 + extra; // otherwise adjust priority to be after the above cases, 3 or 4 based on used[] count else priority = 2 + extra; // since topology-based priority is always more important than the score, we can skip scoring in some cases if (priority > best_priority) continue; float score = 0; // caller selects one of two scoring functions: geometrical (based on meshlet cone) or topological (based on remaining triangles) if (meshlet_cone) { const Cone& tri_cone = triangles[triangle]; float distance2 = (tri_cone.px - meshlet_cone->px) * (tri_cone.px - meshlet_cone->px) + (tri_cone.py - meshlet_cone->py) * (tri_cone.py - meshlet_cone->py) + (tri_cone.pz - meshlet_cone->pz) * (tri_cone.pz - meshlet_cone->pz); float spread = tri_cone.nx * meshlet_cone->nx + tri_cone.ny * meshlet_cone->ny + tri_cone.nz * meshlet_cone->nz; score = getMeshletScore(distance2, spread, cone_weight, meshlet_expected_radius); } else { // each live_triangles entry is >= 1 since it includes the current triangle we're processing score = float(live_triangles[a] + live_triangles[b] + live_triangles[c] - 3); } // note that topology-based priority is always more important than the score // this helps maintain reasonable effectiveness of meshlet data and reduces scoring cost if (priority < best_priority || score < best_score) { best_triangle = triangle; best_priority = priority; best_score = score; } } } return best_triangle; } struct KDNode { union { float split; unsigned int index; }; // leaves: axis = 3, children = number of extra points after this one (0 if 'index' is the only point) // branches: axis != 3, left subtree = skip 1, right subtree = skip 1+children unsigned int axis : 2; unsigned int children : 30; }; static size_t kdtreePartition(unsigned int* indices, size_t count, const float* points, size_t stride, unsigned int axis, float pivot) { size_t m = 0; // invariant: elements in range [0, m) are < pivot, elements in range [m, i) are >= pivot for (size_t i = 0; i < count; ++i) { float v = points[indices[i] * stride + axis]; // swap(m, i) unconditionally unsigned int t = indices[m]; indices[m] = indices[i]; indices[i] = t; // when v >= pivot, we swap i with m without advancing it, preserving invariants m += v < pivot; } return m; } static size_t kdtreeBuildLeaf(size_t offset, KDNode* nodes, size_t node_count, unsigned int* indices, size_t count) { assert(offset + count <= node_count); (void)node_count; KDNode& result = nodes[offset]; result.index = indices[0]; result.axis = 3; result.children = unsigned(count - 1); // all remaining points are stored in nodes immediately following the leaf for (size_t i = 1; i < count; ++i) { KDNode& tail = nodes[offset + i]; tail.index = indices[i]; tail.axis = 3; tail.children = ~0u >> 2; // bogus value to prevent misuse } return offset + count; } static size_t kdtreeBuild(size_t offset, KDNode* nodes, size_t node_count, const float* points, size_t stride, unsigned int* indices, size_t count, size_t leaf_size) { assert(count > 0); assert(offset < node_count); if (count <= leaf_size) return kdtreeBuildLeaf(offset, nodes, node_count, indices, count); float mean[3] = {}; float vars[3] = {}; float runc = 1, runs = 1; // gather statistics on the points in the subtree using Welford's algorithm for (size_t i = 0; i < count; ++i, runc += 1.f, runs = 1.f / runc) { const float* point = points + indices[i] * stride; for (int k = 0; k < 3; ++k) { float delta = point[k] - mean[k]; mean[k] += delta * runs; vars[k] += delta * (point[k] - mean[k]); } } // split axis is one where the variance is largest unsigned int axis = (vars[0] >= vars[1] && vars[0] >= vars[2]) ? 0 : (vars[1] >= vars[2] ? 1 : 2); float split = mean[axis]; size_t middle = kdtreePartition(indices, count, points, stride, axis, split); // when the partition is degenerate simply consolidate the points into a single node if (middle <= leaf_size / 2 || middle >= count - leaf_size / 2) return kdtreeBuildLeaf(offset, nodes, node_count, indices, count); KDNode& result = nodes[offset]; result.split = split; result.axis = axis; // left subtree is right after our node size_t next_offset = kdtreeBuild(offset + 1, nodes, node_count, points, stride, indices, middle, leaf_size); // distance to the right subtree is represented explicitly result.children = unsigned(next_offset - offset - 1); return kdtreeBuild(next_offset, nodes, node_count, points, stride, indices + middle, count - middle, leaf_size); } static void kdtreeNearest(KDNode* nodes, unsigned int root, const float* points, size_t stride, const unsigned char* emitted_flags, const float* position, unsigned int& result, float& limit) { const KDNode& node = nodes[root]; if (node.axis == 3) { // leaf for (unsigned int i = 0; i <= node.children; ++i) { unsigned int index = nodes[root + i].index; if (emitted_flags[index]) continue; const float* point = points + index * stride; float distance2 = (point[0] - position[0]) * (point[0] - position[0]) + (point[1] - position[1]) * (point[1] - position[1]) + (point[2] - position[2]) * (point[2] - position[2]); float distance = sqrtf(distance2); if (distance < limit) { result = index; limit = distance; } } } else { // branch; we order recursion to process the node that search position is in first float delta = position[node.axis] - node.split; unsigned int first = (delta <= 0) ? 0 : node.children; unsigned int second = first ^ node.children; kdtreeNearest(nodes, root + 1 + first, points, stride, emitted_flags, position, result, limit); // only process the other node if it can have a match based on closest distance so far if (fabsf(delta) <= limit) kdtreeNearest(nodes, root + 1 + second, points, stride, emitted_flags, position, result, limit); } } } // namespace meshopt size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles) { using namespace meshopt; assert(index_count % 3 == 0); assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices); assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles); assert(max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned (void)kMeshletMaxVertices; (void)kMeshletMaxTriangles; // meshlet construction is limited by max vertices and max triangles per meshlet // the worst case is that the input is an unindexed stream since this equally stresses both limits // note that we assume that in the worst case, we leave 2 vertices unpacked in each meshlet - if we have space for 3 we can pack any triangle size_t max_vertices_conservative = max_vertices - 2; size_t meshlet_limit_vertices = (index_count + max_vertices_conservative - 1) / max_vertices_conservative; size_t meshlet_limit_triangles = (index_count / 3 + max_triangles - 1) / max_triangles; return meshlet_limit_vertices > meshlet_limit_triangles ? meshlet_limit_vertices : meshlet_limit_triangles; } size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight) { using namespace meshopt; assert(index_count % 3 == 0); assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); assert(vertex_positions_stride % sizeof(float) == 0); assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices); assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles); assert(max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned assert(cone_weight >= 0 && cone_weight <= 1); meshopt_Allocator allocator; TriangleAdjacency2 adjacency = {}; buildTriangleAdjacency(adjacency, indices, index_count, vertex_count, allocator); unsigned int* live_triangles = allocator.allocate(vertex_count); memcpy(live_triangles, adjacency.counts, vertex_count * sizeof(unsigned int)); size_t face_count = index_count / 3; unsigned char* emitted_flags = allocator.allocate(face_count); memset(emitted_flags, 0, face_count); // for each triangle, precompute centroid & normal to use for scoring Cone* triangles = allocator.allocate(face_count); float mesh_area = computeTriangleCones(triangles, indices, index_count, vertex_positions, vertex_count, vertex_positions_stride); // assuming each meshlet is a square patch, expected radius is sqrt(expected area) float triangle_area_avg = face_count == 0 ? 0.f : mesh_area / float(face_count) * 0.5f; float meshlet_expected_radius = sqrtf(triangle_area_avg * max_triangles) * 0.5f; // build a kd-tree for nearest neighbor lookup unsigned int* kdindices = allocator.allocate(face_count); for (size_t i = 0; i < face_count; ++i) kdindices[i] = unsigned(i); KDNode* nodes = allocator.allocate(face_count * 2); kdtreeBuild(0, nodes, face_count * 2, &triangles[0].px, sizeof(Cone) / sizeof(float), kdindices, face_count, /* leaf_size= */ 8); // index of the vertex in the meshlet, 0xff if the vertex isn't used unsigned char* used = allocator.allocate(vertex_count); memset(used, -1, vertex_count); meshopt_Meshlet meshlet = {}; size_t meshlet_offset = 0; Cone meshlet_cone_acc = {}; for (;;) { Cone meshlet_cone = getMeshletCone(meshlet_cone_acc, meshlet.triangle_count); unsigned int best_triangle = getNeighborTriangle(meshlet, &meshlet_cone, meshlet_vertices, indices, adjacency, triangles, live_triangles, used, meshlet_expected_radius, cone_weight); int best_extra = best_triangle == ~0u ? -1 : (used[indices[best_triangle * 3 + 0]] == 0xff) + (used[indices[best_triangle * 3 + 1]] == 0xff) + (used[indices[best_triangle * 3 + 2]] == 0xff); // if the best triangle doesn't fit into current meshlet, the spatial scoring we've used is not very meaningful, so we re-select using topological scoring if (best_triangle != ~0u && (meshlet.vertex_count + best_extra > max_vertices || meshlet.triangle_count >= max_triangles)) { best_triangle = getNeighborTriangle(meshlet, NULL, meshlet_vertices, indices, adjacency, triangles, live_triangles, used, meshlet_expected_radius, 0.f); } // when we run out of neighboring triangles we need to switch to spatial search; we currently just pick the closest triangle irrespective of connectivity if (best_triangle == ~0u) { float position[3] = {meshlet_cone.px, meshlet_cone.py, meshlet_cone.pz}; unsigned int index = ~0u; float limit = FLT_MAX; kdtreeNearest(nodes, 0, &triangles[0].px, sizeof(Cone) / sizeof(float), emitted_flags, position, index, limit); best_triangle = index; } if (best_triangle == ~0u) break; unsigned int a = indices[best_triangle * 3 + 0], b = indices[best_triangle * 3 + 1], c = indices[best_triangle * 3 + 2]; assert(a < vertex_count && b < vertex_count && c < vertex_count); // add meshlet to the output; when the current meshlet is full we reset the accumulated bounds if (appendMeshlet(meshlet, a, b, c, used, meshlets, meshlet_vertices, meshlet_triangles, meshlet_offset, max_vertices, max_triangles)) { meshlet_offset++; memset(&meshlet_cone_acc, 0, sizeof(meshlet_cone_acc)); } live_triangles[a]--; live_triangles[b]--; live_triangles[c]--; // remove emitted triangle from adjacency data // this makes sure that we spend less time traversing these lists on subsequent iterations for (size_t k = 0; k < 3; ++k) { unsigned int index = indices[best_triangle * 3 + k]; unsigned int* neighbors = &adjacency.data[0] + adjacency.offsets[index]; size_t neighbors_size = adjacency.counts[index]; for (size_t i = 0; i < neighbors_size; ++i) { unsigned int tri = neighbors[i]; if (tri == best_triangle) { neighbors[i] = neighbors[neighbors_size - 1]; adjacency.counts[index]--; break; } } } // update aggregated meshlet cone data for scoring subsequent triangles meshlet_cone_acc.px += triangles[best_triangle].px; meshlet_cone_acc.py += triangles[best_triangle].py; meshlet_cone_acc.pz += triangles[best_triangle].pz; meshlet_cone_acc.nx += triangles[best_triangle].nx; meshlet_cone_acc.ny += triangles[best_triangle].ny; meshlet_cone_acc.nz += triangles[best_triangle].nz; emitted_flags[best_triangle] = 1; } if (meshlet.triangle_count) { finishMeshlet(meshlet, meshlet_triangles); meshlets[meshlet_offset++] = meshlet; } assert(meshlet_offset <= meshopt_buildMeshletsBound(index_count, max_vertices, max_triangles)); return meshlet_offset; } size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles) { using namespace meshopt; assert(index_count % 3 == 0); assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices); assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles); assert(max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned meshopt_Allocator allocator; // index of the vertex in the meshlet, 0xff if the vertex isn't used unsigned char* used = allocator.allocate(vertex_count); memset(used, -1, vertex_count); meshopt_Meshlet meshlet = {}; size_t meshlet_offset = 0; for (size_t i = 0; i < index_count; i += 3) { unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2]; assert(a < vertex_count && b < vertex_count && c < vertex_count); // appends triangle to the meshlet and writes previous meshlet to the output if full meshlet_offset += appendMeshlet(meshlet, a, b, c, used, meshlets, meshlet_vertices, meshlet_triangles, meshlet_offset, max_vertices, max_triangles); } if (meshlet.triangle_count) { finishMeshlet(meshlet, meshlet_triangles); meshlets[meshlet_offset++] = meshlet; } assert(meshlet_offset <= meshopt_buildMeshletsBound(index_count, max_vertices, max_triangles)); return meshlet_offset; } meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) { using namespace meshopt; assert(index_count % 3 == 0); assert(index_count / 3 <= kMeshletMaxTriangles); assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); assert(vertex_positions_stride % sizeof(float) == 0); (void)vertex_count; size_t vertex_stride_float = vertex_positions_stride / sizeof(float); // compute triangle normals and gather triangle corners float normals[kMeshletMaxTriangles][3]; float corners[kMeshletMaxTriangles][3][3]; size_t triangles = 0; for (size_t i = 0; i < index_count; i += 3) { unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2]; assert(a < vertex_count && b < vertex_count && c < vertex_count); const float* p0 = vertex_positions + vertex_stride_float * a; const float* p1 = vertex_positions + vertex_stride_float * b; const float* p2 = vertex_positions + vertex_stride_float * c; float p10[3] = {p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2]}; float p20[3] = {p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2]}; float normalx = p10[1] * p20[2] - p10[2] * p20[1]; float normaly = p10[2] * p20[0] - p10[0] * p20[2]; float normalz = p10[0] * p20[1] - p10[1] * p20[0]; float area = sqrtf(normalx * normalx + normaly * normaly + normalz * normalz); // no need to include degenerate triangles - they will be invisible anyway if (area == 0.f) continue; // record triangle normals & corners for future use; normal and corner 0 define a plane equation normals[triangles][0] = normalx / area; normals[triangles][1] = normaly / area; normals[triangles][2] = normalz / area; memcpy(corners[triangles][0], p0, 3 * sizeof(float)); memcpy(corners[triangles][1], p1, 3 * sizeof(float)); memcpy(corners[triangles][2], p2, 3 * sizeof(float)); triangles++; } meshopt_Bounds bounds = {}; // degenerate cluster, no valid triangles => trivial reject (cone data is 0) if (triangles == 0) return bounds; // compute cluster bounding sphere; we'll use the center to determine normal cone apex as well float psphere[4] = {}; computeBoundingSphere(psphere, corners[0], triangles * 3); float center[3] = {psphere[0], psphere[1], psphere[2]}; // treating triangle normals as points, find the bounding sphere - the sphere center determines the optimal cone axis float nsphere[4] = {}; computeBoundingSphere(nsphere, normals, triangles); float axis[3] = {nsphere[0], nsphere[1], nsphere[2]}; float axislength = sqrtf(axis[0] * axis[0] + axis[1] * axis[1] + axis[2] * axis[2]); float invaxislength = axislength == 0.f ? 0.f : 1.f / axislength; axis[0] *= invaxislength; axis[1] *= invaxislength; axis[2] *= invaxislength; // compute a tight cone around all normals, mindp = cos(angle/2) float mindp = 1.f; for (size_t i = 0; i < triangles; ++i) { float dp = normals[i][0] * axis[0] + normals[i][1] * axis[1] + normals[i][2] * axis[2]; mindp = (dp < mindp) ? dp : mindp; } // fill bounding sphere info; note that below we can return bounds without cone information for degenerate cones bounds.center[0] = center[0]; bounds.center[1] = center[1]; bounds.center[2] = center[2]; bounds.radius = psphere[3]; // degenerate cluster, normal cone is larger than a hemisphere => trivial accept // note that if mindp is positive but close to 0, the triangle intersection code below gets less stable // we arbitrarily decide that if a normal cone is ~168 degrees wide or more, the cone isn't useful if (mindp <= 0.1f) { bounds.cone_cutoff = 1; bounds.cone_cutoff_s8 = 127; return bounds; } float maxt = 0; // we need to find the point on center-t*axis ray that lies in negative half-space of all triangles for (size_t i = 0; i < triangles; ++i) { // dot(center-t*axis-corner, trinormal) = 0 // dot(center-corner, trinormal) - t * dot(axis, trinormal) = 0 float cx = center[0] - corners[i][0][0]; float cy = center[1] - corners[i][0][1]; float cz = center[2] - corners[i][0][2]; float dc = cx * normals[i][0] + cy * normals[i][1] + cz * normals[i][2]; float dn = axis[0] * normals[i][0] + axis[1] * normals[i][1] + axis[2] * normals[i][2]; // dn should be larger than mindp cutoff above assert(dn > 0.f); float t = dc / dn; maxt = (t > maxt) ? t : maxt; } // cone apex should be in the negative half-space of all cluster triangles by construction bounds.cone_apex[0] = center[0] - axis[0] * maxt; bounds.cone_apex[1] = center[1] - axis[1] * maxt; bounds.cone_apex[2] = center[2] - axis[2] * maxt; // note: this axis is the axis of the normal cone, but our test for perspective camera effectively negates the axis bounds.cone_axis[0] = axis[0]; bounds.cone_axis[1] = axis[1]; bounds.cone_axis[2] = axis[2]; // cos(a) for normal cone is mindp; we need to add 90 degrees on both sides and invert the cone // which gives us -cos(a+90) = -(-sin(a)) = sin(a) = sqrt(1 - cos^2(a)) bounds.cone_cutoff = sqrtf(1 - mindp * mindp); // quantize axis & cutoff to 8-bit SNORM format bounds.cone_axis_s8[0] = (signed char)(meshopt_quantizeSnorm(bounds.cone_axis[0], 8)); bounds.cone_axis_s8[1] = (signed char)(meshopt_quantizeSnorm(bounds.cone_axis[1], 8)); bounds.cone_axis_s8[2] = (signed char)(meshopt_quantizeSnorm(bounds.cone_axis[2], 8)); // for the 8-bit test to be conservative, we need to adjust the cutoff by measuring the max. error float cone_axis_s8_e0 = fabsf(bounds.cone_axis_s8[0] / 127.f - bounds.cone_axis[0]); float cone_axis_s8_e1 = fabsf(bounds.cone_axis_s8[1] / 127.f - bounds.cone_axis[1]); float cone_axis_s8_e2 = fabsf(bounds.cone_axis_s8[2] / 127.f - bounds.cone_axis[2]); // note that we need to round this up instead of rounding to nearest, hence +1 int cone_cutoff_s8 = int(127 * (bounds.cone_cutoff + cone_axis_s8_e0 + cone_axis_s8_e1 + cone_axis_s8_e2) + 1); bounds.cone_cutoff_s8 = (cone_cutoff_s8 > 127) ? 127 : (signed char)(cone_cutoff_s8); return bounds; } meshopt_Bounds meshopt_computeMeshletBounds(const unsigned int* meshlet_vertices, const unsigned char* meshlet_triangles, size_t triangle_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) { using namespace meshopt; assert(triangle_count <= kMeshletMaxTriangles); assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); assert(vertex_positions_stride % sizeof(float) == 0); unsigned int indices[kMeshletMaxTriangles * 3]; for (size_t i = 0; i < triangle_count * 3; ++i) { unsigned int index = meshlet_vertices[meshlet_triangles[i]]; assert(index < vertex_count); indices[i] = index; } return meshopt_computeClusterBounds(indices, triangle_count * 3, vertex_positions, vertex_count, vertex_positions_stride); } void meshopt_optimizeMeshlet(unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, size_t triangle_count, size_t vertex_count) { using namespace meshopt; assert(triangle_count <= kMeshletMaxTriangles); assert(vertex_count <= kMeshletMaxVertices); unsigned char* indices = meshlet_triangles; unsigned int* vertices = meshlet_vertices; // cache tracks vertex timestamps (corresponding to triangle index! all 3 vertices are added at the same time and never removed) unsigned char cache[kMeshletMaxVertices]; memset(cache, 0, vertex_count); // note that we start from a value that means all vertices aren't in cache unsigned char cache_last = 128; const unsigned char cache_cutoff = 3; // 3 triangles = ~5..9 vertices depending on reuse for (size_t i = 0; i < triangle_count; ++i) { int next = -1; int next_match = -1; for (size_t j = i; j < triangle_count; ++j) { unsigned char a = indices[j * 3 + 0], b = indices[j * 3 + 1], c = indices[j * 3 + 2]; assert(a < vertex_count && b < vertex_count && c < vertex_count); // score each triangle by how many vertices are in cache // note: the distance is computed using unsigned 8-bit values, so cache timestamp overflow is handled gracefully int aok = (unsigned char)(cache_last - cache[a]) < cache_cutoff; int bok = (unsigned char)(cache_last - cache[b]) < cache_cutoff; int cok = (unsigned char)(cache_last - cache[c]) < cache_cutoff; if (aok + bok + cok > next_match) { next = (int)j; next_match = aok + bok + cok; // note that we could end up with all 3 vertices in the cache, but 2 is enough for ~strip traversal if (next_match >= 2) break; } } assert(next >= 0); unsigned char a = indices[next * 3 + 0], b = indices[next * 3 + 1], c = indices[next * 3 + 2]; // shift triangles before the next one forward so that we always keep an ordered partition // note: this could have swapped triangles [i] and [next] but that distorts the order and may skew the output sequence memmove(indices + (i + 1) * 3, indices + i * 3, (next - i) * 3 * sizeof(unsigned char)); indices[i * 3 + 0] = a; indices[i * 3 + 1] = b; indices[i * 3 + 2] = c; // cache timestamp is the same between all vertices of each triangle to reduce overflow cache_last++; cache[a] = cache_last; cache[b] = cache_last; cache[c] = cache_last; } // reorder meshlet vertices for access locality assuming index buffer is scanned sequentially unsigned int order[kMeshletMaxVertices]; unsigned char remap[kMeshletMaxVertices]; memset(remap, -1, vertex_count); size_t vertex_offset = 0; for (size_t i = 0; i < triangle_count * 3; ++i) { unsigned char& r = remap[indices[i]]; if (r == 0xff) { r = (unsigned char)(vertex_offset); order[vertex_offset] = vertices[indices[i]]; vertex_offset++; } indices[i] = r; } assert(vertex_offset <= vertex_count); memcpy(vertices, order, vertex_offset * sizeof(unsigned int)); }