/**************************************************************************/ /* image.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "image.h" #include "core/error/error_list.h" #include "core/error/error_macros.h" #include "core/io/image_loader.h" #include "core/io/resource_loader.h" #include "core/math/math_funcs.h" #include "core/string/print_string.h" #include "core/templates/hash_map.h" #include "core/variant/dictionary.h" #include #include const char *Image::format_names[Image::FORMAT_MAX] = { "Lum8", //luminance "LumAlpha8", //luminance-alpha "Red8", "RedGreen", "RGB8", "RGBA8", "RGBA4444", "RGBA5551", "RFloat", //float "RGFloat", "RGBFloat", "RGBAFloat", "RHalf", //half float "RGHalf", "RGBHalf", "RGBAHalf", "RGBE9995", "DXT1 RGB8", //s3tc "DXT3 RGBA8", "DXT5 RGBA8", "RGTC Red8", "RGTC RedGreen8", "BPTC_RGBA", "BPTC_RGBF", "BPTC_RGBFU", "ETC", //etc1 "ETC2_R11", //etc2 "ETC2_R11S", //signed", NOT srgb. "ETC2_RG11", "ETC2_RG11S", "ETC2_RGB8", "ETC2_RGBA8", "ETC2_RGB8A1", "ETC2_RA_AS_RG", "FORMAT_DXT5_RA_AS_RG", "ASTC_4x4", "ASTC_4x4_HDR", "ASTC_8x8", "ASTC_8x8_HDR", }; SavePNGFunc Image::save_png_func = nullptr; SaveJPGFunc Image::save_jpg_func = nullptr; SaveEXRFunc Image::save_exr_func = nullptr; SavePNGBufferFunc Image::save_png_buffer_func = nullptr; SaveEXRBufferFunc Image::save_exr_buffer_func = nullptr; SaveJPGBufferFunc Image::save_jpg_buffer_func = nullptr; SaveWebPFunc Image::save_webp_func = nullptr; SaveWebPBufferFunc Image::save_webp_buffer_func = nullptr; void Image::_put_pixelb(int p_x, int p_y, uint32_t p_pixel_size, uint8_t *p_data, const uint8_t *p_pixel) { uint32_t ofs = (p_y * width + p_x) * p_pixel_size; memcpy(p_data + ofs, p_pixel, p_pixel_size); } void Image::_get_pixelb(int p_x, int p_y, uint32_t p_pixel_size, const uint8_t *p_data, uint8_t *p_pixel) { uint32_t ofs = (p_y * width + p_x) * p_pixel_size; memcpy(p_pixel, p_data + ofs, p_pixel_size); } int Image::get_format_pixel_size(Format p_format) { switch (p_format) { case FORMAT_L8: return 1; //luminance case FORMAT_LA8: return 2; //luminance-alpha case FORMAT_R8: return 1; case FORMAT_RG8: return 2; case FORMAT_RGB8: return 3; case FORMAT_RGBA8: return 4; case FORMAT_RGBA4444: return 2; case FORMAT_RGB565: return 2; case FORMAT_RF: return 4; //float case FORMAT_RGF: return 8; case FORMAT_RGBF: return 12; case FORMAT_RGBAF: return 16; case FORMAT_RH: return 2; //half float case FORMAT_RGH: return 4; case FORMAT_RGBH: return 6; case FORMAT_RGBAH: return 8; case FORMAT_RGBE9995: return 4; case FORMAT_DXT1: return 1; //s3tc bc1 case FORMAT_DXT3: return 1; //bc2 case FORMAT_DXT5: return 1; //bc3 case FORMAT_RGTC_R: return 1; //bc4 case FORMAT_RGTC_RG: return 1; //bc5 case FORMAT_BPTC_RGBA: return 1; //btpc bc6h case FORMAT_BPTC_RGBF: return 1; //float / case FORMAT_BPTC_RGBFU: return 1; //unsigned float case FORMAT_ETC: return 1; //etc1 case FORMAT_ETC2_R11: return 1; //etc2 case FORMAT_ETC2_R11S: return 1; //signed: return 1; NOT srgb. case FORMAT_ETC2_RG11: return 1; case FORMAT_ETC2_RG11S: return 1; case FORMAT_ETC2_RGB8: return 1; case FORMAT_ETC2_RGBA8: return 1; case FORMAT_ETC2_RGB8A1: return 1; case FORMAT_ETC2_RA_AS_RG: return 1; case FORMAT_DXT5_RA_AS_RG: return 1; case FORMAT_ASTC_4x4: return 1; case FORMAT_ASTC_4x4_HDR: return 1; case FORMAT_ASTC_8x8: return 1; case FORMAT_ASTC_8x8_HDR: return 1; case FORMAT_MAX: { } } return 0; } void Image::get_format_min_pixel_size(Format p_format, int &r_w, int &r_h) { switch (p_format) { case FORMAT_DXT1: //s3tc bc1 case FORMAT_DXT3: //bc2 case FORMAT_DXT5: //bc3 case FORMAT_RGTC_R: //bc4 case FORMAT_RGTC_RG: { //bc5 case case FORMAT_DXT1: r_w = 4; r_h = 4; } break; case FORMAT_ETC: { r_w = 4; r_h = 4; } break; case FORMAT_BPTC_RGBA: case FORMAT_BPTC_RGBF: case FORMAT_BPTC_RGBFU: { r_w = 4; r_h = 4; } break; case FORMAT_ETC2_R11: //etc2 case FORMAT_ETC2_R11S: //signed: NOT srgb. case FORMAT_ETC2_RG11: case FORMAT_ETC2_RG11S: case FORMAT_ETC2_RGB8: case FORMAT_ETC2_RGBA8: case FORMAT_ETC2_RGB8A1: case FORMAT_ETC2_RA_AS_RG: case FORMAT_DXT5_RA_AS_RG: { r_w = 4; r_h = 4; } break; case FORMAT_ASTC_4x4: case FORMAT_ASTC_4x4_HDR: { r_w = 4; r_h = 4; } break; case FORMAT_ASTC_8x8: case FORMAT_ASTC_8x8_HDR: { r_w = 8; r_h = 8; } break; default: { r_w = 1; r_h = 1; } break; } } int Image::get_format_pixel_rshift(Format p_format) { if (p_format == FORMAT_ASTC_8x8) { return 2; } else if (p_format == FORMAT_DXT1 || p_format == FORMAT_RGTC_R || p_format == FORMAT_ETC || p_format == FORMAT_ETC2_R11 || p_format == FORMAT_ETC2_R11S || p_format == FORMAT_ETC2_RGB8 || p_format == FORMAT_ETC2_RGB8A1) { return 1; } else { return 0; } } int Image::get_format_block_size(Format p_format) { switch (p_format) { case FORMAT_DXT1: //s3tc bc1 case FORMAT_DXT3: //bc2 case FORMAT_DXT5: //bc3 case FORMAT_RGTC_R: //bc4 case FORMAT_RGTC_RG: { //bc5 case case FORMAT_DXT1: return 4; } case FORMAT_ETC: { return 4; } case FORMAT_BPTC_RGBA: case FORMAT_BPTC_RGBF: case FORMAT_BPTC_RGBFU: { return 4; } case FORMAT_ETC2_R11: //etc2 case FORMAT_ETC2_R11S: //signed: NOT srgb. case FORMAT_ETC2_RG11: case FORMAT_ETC2_RG11S: case FORMAT_ETC2_RGB8: case FORMAT_ETC2_RGBA8: case FORMAT_ETC2_RGB8A1: case FORMAT_ETC2_RA_AS_RG: //used to make basis universal happy case FORMAT_DXT5_RA_AS_RG: //used to make basis universal happy { return 4; } case FORMAT_ASTC_4x4: case FORMAT_ASTC_4x4_HDR: { return 4; } case FORMAT_ASTC_8x8: case FORMAT_ASTC_8x8_HDR: { return 8; } default: { } } return 1; } void Image::_get_mipmap_offset_and_size(int p_mipmap, int &r_offset, int &r_width, int &r_height) const { int w = width; int h = height; int ofs = 0; int pixel_size = get_format_pixel_size(format); int pixel_rshift = get_format_pixel_rshift(format); int block = get_format_block_size(format); int minw, minh; get_format_min_pixel_size(format, minw, minh); for (int i = 0; i < p_mipmap; i++) { int bw = w % block != 0 ? w + (block - w % block) : w; int bh = h % block != 0 ? h + (block - h % block) : h; int s = bw * bh; s *= pixel_size; s >>= pixel_rshift; ofs += s; w = MAX(minw, w >> 1); h = MAX(minh, h >> 1); } r_offset = ofs; r_width = w; r_height = h; } int Image::get_mipmap_offset(int p_mipmap) const { ERR_FAIL_INDEX_V(p_mipmap, get_mipmap_count() + 1, -1); int ofs, w, h; _get_mipmap_offset_and_size(p_mipmap, ofs, w, h); return ofs; } int Image::get_mipmap_byte_size(int p_mipmap) const { ERR_FAIL_INDEX_V(p_mipmap, get_mipmap_count() + 1, -1); int ofs, w, h; _get_mipmap_offset_and_size(p_mipmap, ofs, w, h); int ofs2; _get_mipmap_offset_and_size(p_mipmap + 1, ofs2, w, h); return ofs2 - ofs; } void Image::get_mipmap_offset_and_size(int p_mipmap, int &r_ofs, int &r_size) const { int ofs, w, h; _get_mipmap_offset_and_size(p_mipmap, ofs, w, h); int ofs2; _get_mipmap_offset_and_size(p_mipmap + 1, ofs2, w, h); r_ofs = ofs; r_size = ofs2 - ofs; } void Image::get_mipmap_offset_size_and_dimensions(int p_mipmap, int &r_ofs, int &r_size, int &w, int &h) const { int ofs; _get_mipmap_offset_and_size(p_mipmap, ofs, w, h); int ofs2, w2, h2; _get_mipmap_offset_and_size(p_mipmap + 1, ofs2, w2, h2); r_ofs = ofs; r_size = ofs2 - ofs; } Image::Image3DValidateError Image::validate_3d_image(Image::Format p_format, int p_width, int p_height, int p_depth, bool p_mipmaps, const Vector> &p_images) { int w = p_width; int h = p_height; int d = p_depth; int arr_ofs = 0; while (true) { for (int i = 0; i < d; i++) { int idx = i + arr_ofs; if (idx >= p_images.size()) { return VALIDATE_3D_ERR_MISSING_IMAGES; } if (p_images[idx].is_null() || p_images[idx]->is_empty()) { return VALIDATE_3D_ERR_IMAGE_EMPTY; } if (p_images[idx]->get_format() != p_format) { return VALIDATE_3D_ERR_IMAGE_FORMAT_MISMATCH; } if (p_images[idx]->get_width() != w || p_images[idx]->get_height() != h) { return VALIDATE_3D_ERR_IMAGE_SIZE_MISMATCH; } if (p_images[idx]->has_mipmaps()) { return VALIDATE_3D_ERR_IMAGE_HAS_MIPMAPS; } } arr_ofs += d; if (!p_mipmaps) { break; } if (w == 1 && h == 1 && d == 1) { break; } w = MAX(1, w >> 1); h = MAX(1, h >> 1); d = MAX(1, d >> 1); } if (arr_ofs != p_images.size()) { return VALIDATE_3D_ERR_EXTRA_IMAGES; } return VALIDATE_3D_OK; } String Image::get_3d_image_validation_error_text(Image3DValidateError p_error) { switch (p_error) { case VALIDATE_3D_OK: { return "Ok"; } break; case VALIDATE_3D_ERR_IMAGE_EMPTY: { return "Empty Image found"; } break; case VALIDATE_3D_ERR_MISSING_IMAGES: { return "Missing Images"; } break; case VALIDATE_3D_ERR_EXTRA_IMAGES: { return "Too many Images"; } break; case VALIDATE_3D_ERR_IMAGE_SIZE_MISMATCH: { return "Image size mismatch"; } break; case VALIDATE_3D_ERR_IMAGE_FORMAT_MISMATCH: { return "Image format mismatch"; } break; case VALIDATE_3D_ERR_IMAGE_HAS_MIPMAPS: { return "Image has included mipmaps"; } break; } return String(); } int Image::get_width() const { return width; } int Image::get_height() const { return height; } Size2i Image::get_size() const { return Size2i(width, height); } bool Image::has_mipmaps() const { return mipmaps; } int Image::get_mipmap_count() const { if (mipmaps) { return get_image_required_mipmaps(width, height, format); } else { return 0; } } //using template generates perfectly optimized code due to constant expression reduction and unused variable removal present in all compilers template static void _convert(int p_width, int p_height, const uint8_t *p_src, uint8_t *p_dst) { constexpr uint32_t max_bytes = MAX(read_bytes, write_bytes); for (int y = 0; y < p_height; y++) { for (int x = 0; x < p_width; x++) { const uint8_t *rofs = &p_src[((y * p_width) + x) * (read_bytes + (read_alpha ? 1 : 0))]; uint8_t *wofs = &p_dst[((y * p_width) + x) * (write_bytes + (write_alpha ? 1 : 0))]; uint8_t rgba[4] = { 0, 0, 0, 255 }; if constexpr (read_gray) { rgba[0] = rofs[0]; rgba[1] = rofs[0]; rgba[2] = rofs[0]; } else { for (uint32_t i = 0; i < max_bytes; i++) { rgba[i] = (i < read_bytes) ? rofs[i] : 0; } } if constexpr (read_alpha || write_alpha) { rgba[3] = read_alpha ? rofs[read_bytes] : 255; } if constexpr (write_gray) { // REC.709 const uint8_t luminance = (13938U * rgba[0] + 46869U * rgba[1] + 4729U * rgba[2] + 32768U) >> 16U; wofs[0] = luminance; } else { for (uint32_t i = 0; i < write_bytes; i++) { wofs[i] = rgba[i]; } } if constexpr (write_alpha) { wofs[write_bytes] = rgba[3]; } } } } void Image::convert(Format p_new_format) { if (data.size() == 0) { return; } if (p_new_format == format) { return; } // Includes the main image. const int mipmap_count = get_mipmap_count() + 1; if (format > FORMAT_RGBE9995 || p_new_format > FORMAT_RGBE9995) { ERR_FAIL_MSG("Cannot convert to <-> from compressed formats. Use compress() and decompress() instead."); } else if (format > FORMAT_RGBA8 || p_new_format > FORMAT_RGBA8) { //use put/set pixel which is slower but works with non byte formats Image new_img(width, height, mipmaps, p_new_format); for (int mip = 0; mip < mipmap_count; mip++) { Ref src_mip = get_image_from_mipmap(mip); Ref new_mip = new_img.get_image_from_mipmap(mip); for (int y = 0; y < src_mip->height; y++) { for (int x = 0; x < src_mip->width; x++) { new_mip->set_pixel(x, y, src_mip->get_pixel(x, y)); } } int mip_offset = 0; int mip_size = 0; new_img.get_mipmap_offset_and_size(mip, mip_offset, mip_size); memcpy(new_img.data.ptrw() + mip_offset, new_mip->data.ptr(), mip_size); } _copy_internals_from(new_img); return; } Image new_img(width, height, mipmaps, p_new_format); int conversion_type = format | p_new_format << 8; for (int mip = 0; mip < mipmap_count; mip++) { int mip_offset = 0; int mip_size = 0; int mip_width = 0; int mip_height = 0; get_mipmap_offset_size_and_dimensions(mip, mip_offset, mip_size, mip_width, mip_height); const uint8_t *rptr = data.ptr() + mip_offset; uint8_t *wptr = new_img.data.ptrw() + new_img.get_mipmap_offset(mip); switch (conversion_type) { case FORMAT_L8 | (FORMAT_LA8 << 8): _convert<1, false, 1, true, true, true>(mip_width, mip_height, rptr, wptr); break; case FORMAT_L8 | (FORMAT_R8 << 8): _convert<1, false, 1, false, true, false>(mip_width, mip_height, rptr, wptr); break; case FORMAT_L8 | (FORMAT_RG8 << 8): _convert<1, false, 2, false, true, false>(mip_width, mip_height, rptr, wptr); break; case FORMAT_L8 | (FORMAT_RGB8 << 8): _convert<1, false, 3, false, true, false>(mip_width, mip_height, rptr, wptr); break; case FORMAT_L8 | (FORMAT_RGBA8 << 8): _convert<1, false, 3, true, true, false>(mip_width, mip_height, rptr, wptr); break; case FORMAT_LA8 | (FORMAT_L8 << 8): _convert<1, true, 1, false, true, true>(mip_width, mip_height, rptr, wptr); break; case FORMAT_LA8 | (FORMAT_R8 << 8): _convert<1, true, 1, false, true, false>(mip_width, mip_height, rptr, wptr); break; case FORMAT_LA8 | (FORMAT_RG8 << 8): _convert<1, true, 2, false, true, false>(mip_width, mip_height, rptr, wptr); break; case FORMAT_LA8 | (FORMAT_RGB8 << 8): _convert<1, true, 3, false, true, false>(mip_width, mip_height, rptr, wptr); break; case FORMAT_LA8 | (FORMAT_RGBA8 << 8): _convert<1, true, 3, true, true, false>(mip_width, mip_height, rptr, wptr); break; case FORMAT_R8 | (FORMAT_L8 << 8): _convert<1, false, 1, false, false, true>(mip_width, mip_height, rptr, wptr); break; case FORMAT_R8 | (FORMAT_LA8 << 8): _convert<1, false, 1, true, false, true>(mip_width, mip_height, rptr, wptr); break; case FORMAT_R8 | (FORMAT_RG8 << 8): _convert<1, false, 2, false, false, false>(mip_width, mip_height, rptr, wptr); break; case FORMAT_R8 | (FORMAT_RGB8 << 8): _convert<1, false, 3, false, false, false>(mip_width, mip_height, rptr, wptr); break; case FORMAT_R8 | (FORMAT_RGBA8 << 8): _convert<1, false, 3, true, false, false>(mip_width, mip_height, rptr, wptr); break; case FORMAT_RG8 | (FORMAT_L8 << 8): _convert<2, false, 1, false, false, true>(mip_width, mip_height, rptr, wptr); break; case FORMAT_RG8 | (FORMAT_LA8 << 8): _convert<2, false, 1, true, false, true>(mip_width, mip_height, rptr, wptr); break; case FORMAT_RG8 | (FORMAT_R8 << 8): _convert<2, false, 1, false, false, false>(mip_width, mip_height, rptr, wptr); break; case FORMAT_RG8 | (FORMAT_RGB8 << 8): _convert<2, false, 3, false, false, false>(mip_width, mip_height, rptr, wptr); break; case FORMAT_RG8 | (FORMAT_RGBA8 << 8): _convert<2, false, 3, true, false, false>(mip_width, mip_height, rptr, wptr); break; case FORMAT_RGB8 | (FORMAT_L8 << 8): _convert<3, false, 1, false, false, true>(mip_width, mip_height, rptr, wptr); break; case FORMAT_RGB8 | (FORMAT_LA8 << 8): _convert<3, false, 1, true, false, true>(mip_width, mip_height, rptr, wptr); break; case FORMAT_RGB8 | (FORMAT_R8 << 8): _convert<3, false, 1, false, false, false>(mip_width, mip_height, rptr, wptr); break; case FORMAT_RGB8 | (FORMAT_RG8 << 8): _convert<3, false, 2, false, false, false>(mip_width, mip_height, rptr, wptr); break; case FORMAT_RGB8 | (FORMAT_RGBA8 << 8): _convert<3, false, 3, true, false, false>(mip_width, mip_height, rptr, wptr); break; case FORMAT_RGBA8 | (FORMAT_L8 << 8): _convert<3, true, 1, false, false, true>(mip_width, mip_height, rptr, wptr); break; case FORMAT_RGBA8 | (FORMAT_LA8 << 8): _convert<3, true, 1, true, false, true>(mip_width, mip_height, rptr, wptr); break; case FORMAT_RGBA8 | (FORMAT_R8 << 8): _convert<3, true, 1, false, false, false>(mip_width, mip_height, rptr, wptr); break; case FORMAT_RGBA8 | (FORMAT_RG8 << 8): _convert<3, true, 2, false, false, false>(mip_width, mip_height, rptr, wptr); break; case FORMAT_RGBA8 | (FORMAT_RGB8 << 8): _convert<3, true, 3, false, false, false>(mip_width, mip_height, rptr, wptr); break; } } _copy_internals_from(new_img); } Image::Format Image::get_format() const { return format; } static double _bicubic_interp_kernel(double x) { x = ABS(x); double bc = 0; if (x <= 1) { bc = (1.5 * x - 2.5) * x * x + 1; } else if (x < 2) { bc = ((-0.5 * x + 2.5) * x - 4) * x + 2; } return bc; } template static void _scale_cubic(const uint8_t *__restrict p_src, uint8_t *__restrict p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) { // get source image size int width = p_src_width; int height = p_src_height; double xfac = (double)width / p_dst_width; double yfac = (double)height / p_dst_height; // coordinates of source points and coefficients double ox, oy, dx, dy; int ox1, oy1, ox2, oy2; // destination pixel values // width and height decreased by 1 int ymax = height - 1; int xmax = width - 1; // temporary pointer for (uint32_t y = 0; y < p_dst_height; y++) { // Y coordinates oy = (double)y * yfac - 0.5f; oy1 = (int)oy; dy = oy - (double)oy1; for (uint32_t x = 0; x < p_dst_width; x++) { // X coordinates ox = (double)x * xfac - 0.5f; ox1 = (int)ox; dx = ox - (double)ox1; // initial pixel value T *__restrict dst = ((T *)p_dst) + (y * p_dst_width + x) * CC; double color[CC]; for (int i = 0; i < CC; i++) { color[i] = 0; } for (int n = -1; n < 3; n++) { // get Y coefficient [[maybe_unused]] double k1 = _bicubic_interp_kernel(dy - (double)n); oy2 = oy1 + n; if (oy2 < 0) { oy2 = 0; } if (oy2 > ymax) { oy2 = ymax; } for (int m = -1; m < 3; m++) { // get X coefficient [[maybe_unused]] double k2 = k1 * _bicubic_interp_kernel((double)m - dx); ox2 = ox1 + m; if (ox2 < 0) { ox2 = 0; } if (ox2 > xmax) { ox2 = xmax; } // get pixel of original image const T *__restrict p = ((T *)p_src) + (oy2 * p_src_width + ox2) * CC; for (int i = 0; i < CC; i++) { if constexpr (sizeof(T) == 2) { //half float color[i] = Math::half_to_float(p[i]); } else { color[i] += p[i] * k2; } } } } for (int i = 0; i < CC; i++) { if constexpr (sizeof(T) == 1) { //byte dst[i] = CLAMP(Math::fast_ftoi(color[i]), 0, 255); } else if constexpr (sizeof(T) == 2) { //half float dst[i] = Math::make_half_float(color[i]); } else { dst[i] = color[i]; } } } } } template static void _scale_bilinear(const uint8_t *__restrict p_src, uint8_t *__restrict p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) { enum { FRAC_BITS = 8, FRAC_LEN = (1 << FRAC_BITS), FRAC_HALF = (FRAC_LEN >> 1), FRAC_MASK = FRAC_LEN - 1 }; for (uint32_t i = 0; i < p_dst_height; i++) { // Add 0.5 in order to interpolate based on pixel center uint32_t src_yofs_up_fp = (i + 0.5) * p_src_height * FRAC_LEN / p_dst_height; // Calculate nearest src pixel center above current, and truncate to get y index uint32_t src_yofs_up = src_yofs_up_fp >= FRAC_HALF ? (src_yofs_up_fp - FRAC_HALF) >> FRAC_BITS : 0; uint32_t src_yofs_down = (src_yofs_up_fp + FRAC_HALF) >> FRAC_BITS; if (src_yofs_down >= p_src_height) { src_yofs_down = p_src_height - 1; } // Calculate distance to pixel center of src_yofs_up uint32_t src_yofs_frac = src_yofs_up_fp & FRAC_MASK; src_yofs_frac = src_yofs_frac >= FRAC_HALF ? src_yofs_frac - FRAC_HALF : src_yofs_frac + FRAC_HALF; uint32_t y_ofs_up = src_yofs_up * p_src_width * CC; uint32_t y_ofs_down = src_yofs_down * p_src_width * CC; for (uint32_t j = 0; j < p_dst_width; j++) { uint32_t src_xofs_left_fp = (j + 0.5) * p_src_width * FRAC_LEN / p_dst_width; uint32_t src_xofs_left = src_xofs_left_fp >= FRAC_HALF ? (src_xofs_left_fp - FRAC_HALF) >> FRAC_BITS : 0; uint32_t src_xofs_right = (src_xofs_left_fp + FRAC_HALF) >> FRAC_BITS; if (src_xofs_right >= p_src_width) { src_xofs_right = p_src_width - 1; } uint32_t src_xofs_frac = src_xofs_left_fp & FRAC_MASK; src_xofs_frac = src_xofs_frac >= FRAC_HALF ? src_xofs_frac - FRAC_HALF : src_xofs_frac + FRAC_HALF; src_xofs_left *= CC; src_xofs_right *= CC; for (uint32_t l = 0; l < CC; l++) { if constexpr (sizeof(T) == 1) { //uint8 uint32_t p00 = p_src[y_ofs_up + src_xofs_left + l] << FRAC_BITS; uint32_t p10 = p_src[y_ofs_up + src_xofs_right + l] << FRAC_BITS; uint32_t p01 = p_src[y_ofs_down + src_xofs_left + l] << FRAC_BITS; uint32_t p11 = p_src[y_ofs_down + src_xofs_right + l] << FRAC_BITS; uint32_t interp_up = p00 + (((p10 - p00) * src_xofs_frac) >> FRAC_BITS); uint32_t interp_down = p01 + (((p11 - p01) * src_xofs_frac) >> FRAC_BITS); uint32_t interp = interp_up + (((interp_down - interp_up) * src_yofs_frac) >> FRAC_BITS); interp >>= FRAC_BITS; p_dst[i * p_dst_width * CC + j * CC + l] = uint8_t(interp); } else if constexpr (sizeof(T) == 2) { //half float float xofs_frac = float(src_xofs_frac) / (1 << FRAC_BITS); float yofs_frac = float(src_yofs_frac) / (1 << FRAC_BITS); const T *src = ((const T *)p_src); T *dst = ((T *)p_dst); float p00 = Math::half_to_float(src[y_ofs_up + src_xofs_left + l]); float p10 = Math::half_to_float(src[y_ofs_up + src_xofs_right + l]); float p01 = Math::half_to_float(src[y_ofs_down + src_xofs_left + l]); float p11 = Math::half_to_float(src[y_ofs_down + src_xofs_right + l]); float interp_up = p00 + (p10 - p00) * xofs_frac; float interp_down = p01 + (p11 - p01) * xofs_frac; float interp = interp_up + ((interp_down - interp_up) * yofs_frac); dst[i * p_dst_width * CC + j * CC + l] = Math::make_half_float(interp); } else if constexpr (sizeof(T) == 4) { //float float xofs_frac = float(src_xofs_frac) / (1 << FRAC_BITS); float yofs_frac = float(src_yofs_frac) / (1 << FRAC_BITS); const T *src = ((const T *)p_src); T *dst = ((T *)p_dst); float p00 = src[y_ofs_up + src_xofs_left + l]; float p10 = src[y_ofs_up + src_xofs_right + l]; float p01 = src[y_ofs_down + src_xofs_left + l]; float p11 = src[y_ofs_down + src_xofs_right + l]; float interp_up = p00 + (p10 - p00) * xofs_frac; float interp_down = p01 + (p11 - p01) * xofs_frac; float interp = interp_up + ((interp_down - interp_up) * yofs_frac); dst[i * p_dst_width * CC + j * CC + l] = interp; } } } } } template static void _scale_nearest(const uint8_t *__restrict p_src, uint8_t *__restrict p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) { for (uint32_t i = 0; i < p_dst_height; i++) { uint32_t src_yofs = i * p_src_height / p_dst_height; uint32_t y_ofs = src_yofs * p_src_width * CC; for (uint32_t j = 0; j < p_dst_width; j++) { uint32_t src_xofs = j * p_src_width / p_dst_width; src_xofs *= CC; for (uint32_t l = 0; l < CC; l++) { const T *src = ((const T *)p_src); T *dst = ((T *)p_dst); T p = src[y_ofs + src_xofs + l]; dst[i * p_dst_width * CC + j * CC + l] = p; } } } } #define LANCZOS_TYPE 3 static float _lanczos(float p_x) { return Math::abs(p_x) >= LANCZOS_TYPE ? 0 : Math::sincn(p_x) * Math::sincn(p_x / LANCZOS_TYPE); } template static void _scale_lanczos(const uint8_t *__restrict p_src, uint8_t *__restrict p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) { int32_t src_width = p_src_width; int32_t src_height = p_src_height; int32_t dst_height = p_dst_height; int32_t dst_width = p_dst_width; uint32_t buffer_size = src_height * dst_width * CC; float *buffer = memnew_arr(float, buffer_size); // Store the first pass in a buffer { // FIRST PASS (horizontal) float x_scale = float(src_width) / float(dst_width); float scale_factor = MAX(x_scale, 1); // A larger kernel is required only when downscaling int32_t half_kernel = LANCZOS_TYPE * scale_factor; float *kernel = memnew_arr(float, half_kernel * 2); for (int32_t buffer_x = 0; buffer_x < dst_width; buffer_x++) { // The corresponding point on the source image float src_x = (buffer_x + 0.5f) * x_scale; // Offset by 0.5 so it uses the pixel's center int32_t start_x = MAX(0, int32_t(src_x) - half_kernel + 1); int32_t end_x = MIN(src_width - 1, int32_t(src_x) + half_kernel); // Create the kernel used by all the pixels of the column for (int32_t target_x = start_x; target_x <= end_x; target_x++) { kernel[target_x - start_x] = _lanczos((target_x + 0.5f - src_x) / scale_factor); } for (int32_t buffer_y = 0; buffer_y < src_height; buffer_y++) { float pixel[CC] = { 0 }; float weight = 0; for (int32_t target_x = start_x; target_x <= end_x; target_x++) { float lanczos_val = kernel[target_x - start_x]; weight += lanczos_val; const T *__restrict src_data = ((const T *)p_src) + (buffer_y * src_width + target_x) * CC; for (uint32_t i = 0; i < CC; i++) { if constexpr (sizeof(T) == 2) { //half float pixel[i] += Math::half_to_float(src_data[i]) * lanczos_val; } else { pixel[i] += src_data[i] * lanczos_val; } } } float *dst_data = ((float *)buffer) + (buffer_y * dst_width + buffer_x) * CC; for (uint32_t i = 0; i < CC; i++) { dst_data[i] = pixel[i] / weight; // Normalize the sum of all the samples } } } memdelete_arr(kernel); } // End of first pass { // SECOND PASS (vertical + result) float y_scale = float(src_height) / float(dst_height); float scale_factor = MAX(y_scale, 1); int32_t half_kernel = LANCZOS_TYPE * scale_factor; float *kernel = memnew_arr(float, half_kernel * 2); for (int32_t dst_y = 0; dst_y < dst_height; dst_y++) { float buffer_y = (dst_y + 0.5f) * y_scale; int32_t start_y = MAX(0, int32_t(buffer_y) - half_kernel + 1); int32_t end_y = MIN(src_height - 1, int32_t(buffer_y) + half_kernel); for (int32_t target_y = start_y; target_y <= end_y; target_y++) { kernel[target_y - start_y] = _lanczos((target_y + 0.5f - buffer_y) / scale_factor); } for (int32_t dst_x = 0; dst_x < dst_width; dst_x++) { float pixel[CC] = { 0 }; float weight = 0; for (int32_t target_y = start_y; target_y <= end_y; target_y++) { float lanczos_val = kernel[target_y - start_y]; weight += lanczos_val; float *buffer_data = ((float *)buffer) + (target_y * dst_width + dst_x) * CC; for (uint32_t i = 0; i < CC; i++) { pixel[i] += buffer_data[i] * lanczos_val; } } T *dst_data = ((T *)p_dst) + (dst_y * dst_width + dst_x) * CC; for (uint32_t i = 0; i < CC; i++) { pixel[i] /= weight; if constexpr (sizeof(T) == 1) { //byte dst_data[i] = CLAMP(Math::fast_ftoi(pixel[i]), 0, 255); } else if constexpr (sizeof(T) == 2) { //half float dst_data[i] = Math::make_half_float(pixel[i]); } else { // float dst_data[i] = pixel[i]; } } } } memdelete_arr(kernel); } // End of second pass memdelete_arr(buffer); } static void _overlay(const uint8_t *__restrict p_src, uint8_t *__restrict p_dst, float p_alpha, uint32_t p_width, uint32_t p_height, uint32_t p_pixel_size) { uint16_t alpha = MIN((uint16_t)(p_alpha * 256.0f), 256); for (uint32_t i = 0; i < p_width * p_height * p_pixel_size; i++) { p_dst[i] = (p_dst[i] * (256 - alpha) + p_src[i] * alpha) >> 8; } } bool Image::is_size_po2() const { return uint32_t(width) == next_power_of_2(width) && uint32_t(height) == next_power_of_2(height); } void Image::resize_to_po2(bool p_square, Interpolation p_interpolation) { ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot resize in compressed or custom image formats."); int w = next_power_of_2(width); int h = next_power_of_2(height); if (p_square) { w = h = MAX(w, h); } if (w == width && h == height) { if (!p_square || w == h) { return; //nothing to do } } resize(w, h, p_interpolation); } void Image::resize(int p_width, int p_height, Interpolation p_interpolation) { ERR_FAIL_COND_MSG(data.size() == 0, "Cannot resize image before creating it, use set_data() first."); ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot resize in compressed or custom image formats."); bool mipmap_aware = p_interpolation == INTERPOLATE_TRILINEAR /* || p_interpolation == INTERPOLATE_TRICUBIC */; ERR_FAIL_COND_MSG(p_width <= 0, "Image width must be greater than 0."); ERR_FAIL_COND_MSG(p_height <= 0, "Image height must be greater than 0."); ERR_FAIL_COND_MSG(p_width > MAX_WIDTH, "Image width cannot be greater than " + itos(MAX_WIDTH) + "."); ERR_FAIL_COND_MSG(p_height > MAX_HEIGHT, "Image height cannot be greater than " + itos(MAX_HEIGHT) + "."); ERR_FAIL_COND_MSG(p_width * p_height > MAX_PIXELS, "Too many pixels for image, maximum is " + itos(MAX_PIXELS)); if (p_width == width && p_height == height) { return; } Image dst(p_width, p_height, false, format); // Setup mipmap-aware scaling Image dst2; int mip1 = 0; int mip2 = 0; float mip1_weight = 0; if (mipmap_aware) { float avg_scale = ((float)p_width / width + (float)p_height / height) * 0.5f; if (avg_scale >= 1.0f) { mipmap_aware = false; } else { float level = Math::log(1.0f / avg_scale) / Math::log(2.0f); mip1 = CLAMP((int)Math::floor(level), 0, get_mipmap_count()); mip2 = CLAMP((int)Math::ceil(level), 0, get_mipmap_count()); mip1_weight = 1.0f - (level - mip1); } } bool interpolate_mipmaps = mipmap_aware && mip1 != mip2; if (interpolate_mipmaps) { dst2.initialize_data(p_width, p_height, false, format); } bool had_mipmaps = mipmaps; if (interpolate_mipmaps && !had_mipmaps) { generate_mipmaps(); } // -- const uint8_t *r = data.ptr(); const unsigned char *r_ptr = r; uint8_t *w = dst.data.ptrw(); unsigned char *w_ptr = w; switch (p_interpolation) { case INTERPOLATE_NEAREST: { if (format >= FORMAT_L8 && format <= FORMAT_RGBA8) { switch (get_format_pixel_size(format)) { case 1: _scale_nearest<1, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 2: _scale_nearest<2, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 3: _scale_nearest<3, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 4: _scale_nearest<4, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; } } else if (format >= FORMAT_RF && format <= FORMAT_RGBAF) { switch (get_format_pixel_size(format)) { case 4: _scale_nearest<1, float>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 8: _scale_nearest<2, float>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 12: _scale_nearest<3, float>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 16: _scale_nearest<4, float>(r_ptr, w_ptr, width, height, p_width, p_height); break; } } else if (format >= FORMAT_RH && format <= FORMAT_RGBAH) { switch (get_format_pixel_size(format)) { case 2: _scale_nearest<1, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 4: _scale_nearest<2, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 6: _scale_nearest<3, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 8: _scale_nearest<4, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; } } } break; case INTERPOLATE_BILINEAR: case INTERPOLATE_TRILINEAR: { for (int i = 0; i < 2; ++i) { int src_width; int src_height; const unsigned char *src_ptr; if (!mipmap_aware) { if (i == 0) { // Standard behavior src_width = width; src_height = height; src_ptr = r_ptr; } else { // No need for a second iteration break; } } else { if (i == 0) { // Read from the first mipmap that will be interpolated // (if both levels are the same, we will not interpolate, but at least we'll sample from the right level) int offs; _get_mipmap_offset_and_size(mip1, offs, src_width, src_height); src_ptr = r_ptr + offs; } else if (!interpolate_mipmaps) { // No need generate a second image break; } else { // Switch to read from the second mipmap that will be interpolated int offs; _get_mipmap_offset_and_size(mip2, offs, src_width, src_height); src_ptr = r_ptr + offs; // Switch to write to the second destination image w = dst2.data.ptrw(); w_ptr = w; } } if (format >= FORMAT_L8 && format <= FORMAT_RGBA8) { switch (get_format_pixel_size(format)) { case 1: _scale_bilinear<1, uint8_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break; case 2: _scale_bilinear<2, uint8_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break; case 3: _scale_bilinear<3, uint8_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break; case 4: _scale_bilinear<4, uint8_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break; } } else if (format >= FORMAT_RF && format <= FORMAT_RGBAF) { switch (get_format_pixel_size(format)) { case 4: _scale_bilinear<1, float>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break; case 8: _scale_bilinear<2, float>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break; case 12: _scale_bilinear<3, float>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break; case 16: _scale_bilinear<4, float>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break; } } else if (format >= FORMAT_RH && format <= FORMAT_RGBAH) { switch (get_format_pixel_size(format)) { case 2: _scale_bilinear<1, uint16_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break; case 4: _scale_bilinear<2, uint16_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break; case 6: _scale_bilinear<3, uint16_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break; case 8: _scale_bilinear<4, uint16_t>(src_ptr, w_ptr, src_width, src_height, p_width, p_height); break; } } } if (interpolate_mipmaps) { // Switch to read again from the first scaled mipmap to overlay it over the second r = dst.data.ptr(); _overlay(r, w, mip1_weight, p_width, p_height, get_format_pixel_size(format)); } } break; case INTERPOLATE_CUBIC: { if (format >= FORMAT_L8 && format <= FORMAT_RGBA8) { switch (get_format_pixel_size(format)) { case 1: _scale_cubic<1, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 2: _scale_cubic<2, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 3: _scale_cubic<3, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 4: _scale_cubic<4, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; } } else if (format >= FORMAT_RF && format <= FORMAT_RGBAF) { switch (get_format_pixel_size(format)) { case 4: _scale_cubic<1, float>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 8: _scale_cubic<2, float>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 12: _scale_cubic<3, float>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 16: _scale_cubic<4, float>(r_ptr, w_ptr, width, height, p_width, p_height); break; } } else if (format >= FORMAT_RH && format <= FORMAT_RGBAH) { switch (get_format_pixel_size(format)) { case 2: _scale_cubic<1, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 4: _scale_cubic<2, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 6: _scale_cubic<3, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 8: _scale_cubic<4, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; } } } break; case INTERPOLATE_LANCZOS: { if (format >= FORMAT_L8 && format <= FORMAT_RGBA8) { switch (get_format_pixel_size(format)) { case 1: _scale_lanczos<1, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 2: _scale_lanczos<2, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 3: _scale_lanczos<3, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 4: _scale_lanczos<4, uint8_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; } } else if (format >= FORMAT_RF && format <= FORMAT_RGBAF) { switch (get_format_pixel_size(format)) { case 4: _scale_lanczos<1, float>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 8: _scale_lanczos<2, float>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 12: _scale_lanczos<3, float>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 16: _scale_lanczos<4, float>(r_ptr, w_ptr, width, height, p_width, p_height); break; } } else if (format >= FORMAT_RH && format <= FORMAT_RGBAH) { switch (get_format_pixel_size(format)) { case 2: _scale_lanczos<1, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 4: _scale_lanczos<2, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 6: _scale_lanczos<3, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 8: _scale_lanczos<4, uint16_t>(r_ptr, w_ptr, width, height, p_width, p_height); break; } } } break; } if (interpolate_mipmaps) { dst._copy_internals_from(dst2); } if (had_mipmaps) { dst.generate_mipmaps(); } _copy_internals_from(dst); } void Image::crop_from_point(int p_x, int p_y, int p_width, int p_height) { ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot crop in compressed or custom image formats."); ERR_FAIL_COND_MSG(p_x < 0, "Start x position cannot be smaller than 0."); ERR_FAIL_COND_MSG(p_y < 0, "Start y position cannot be smaller than 0."); ERR_FAIL_COND_MSG(p_width <= 0, "Width of image must be greater than 0."); ERR_FAIL_COND_MSG(p_height <= 0, "Height of image must be greater than 0."); ERR_FAIL_COND_MSG(p_x + p_width > MAX_WIDTH, "End x position cannot be greater than " + itos(MAX_WIDTH) + "."); ERR_FAIL_COND_MSG(p_y + p_height > MAX_HEIGHT, "End y position cannot be greater than " + itos(MAX_HEIGHT) + "."); /* to save memory, cropping should be done in-place, however, since this function will most likely either not be used much, or in critical areas, for now it won't, because it's a waste of time. */ if (p_width == width && p_height == height && p_x == 0 && p_y == 0) { return; } uint8_t pdata[16]; //largest is 16 uint32_t pixel_size = get_format_pixel_size(format); Image dst(p_width, p_height, false, format); { const uint8_t *r = data.ptr(); uint8_t *w = dst.data.ptrw(); int m_h = p_y + p_height; int m_w = p_x + p_width; for (int y = p_y; y < m_h; y++) { for (int x = p_x; x < m_w; x++) { if ((x >= width || y >= height)) { for (uint32_t i = 0; i < pixel_size; i++) { pdata[i] = 0; } } else { _get_pixelb(x, y, pixel_size, r, pdata); } dst._put_pixelb(x - p_x, y - p_y, pixel_size, w, pdata); } } } if (has_mipmaps()) { dst.generate_mipmaps(); } _copy_internals_from(dst); } void Image::crop(int p_width, int p_height) { crop_from_point(0, 0, p_width, p_height); } void Image::rotate_90(ClockDirection p_direction) { ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot rotate in compressed or custom image formats."); ERR_FAIL_COND_MSG(width <= 0, "The Image width specified (" + itos(width) + " pixels) must be greater than 0 pixels."); ERR_FAIL_COND_MSG(height <= 0, "The Image height specified (" + itos(height) + " pixels) must be greater than 0 pixels."); bool used_mipmaps = has_mipmaps(); if (used_mipmaps) { clear_mipmaps(); } // In-place 90 degrees rotation by following the permutation cycles. { // Explanation by example (clockwise): // // abc da // def -> eb // fc // // In memory: // 012345 012345 // abcdef -> daebfc // // Permutation cycles: // (0 --a--> 1 --b--> 3 --d--> 0) // (2 --c--> 5 --f--> 4 --e--> 2) // // Applying cycles (backwards): // 0->s s=a (store) // 3->0 abcdef -> dbcdef // 1->3 dbcdef -> dbcbef // s->1 dbcbef -> dacbef // // 2->s s=c // 4->2 dacbef -> daebef // 5->4 daebef -> daebff // s->5 daebff -> daebfc const int w = width; const int h = height; const int size = w * h; uint8_t *data_ptr = data.ptrw(); uint32_t pixel_size = get_format_pixel_size(format); uint8_t single_pixel_buffer[16]; #define PREV_INDEX_IN_CYCLE(index) (p_direction == CLOCKWISE) ? ((h - 1 - (index % h)) * w + (index / h)) : ((index % h) * w + (w - 1 - (index / h))) if (w == h) { // Square case, 4-length cycles only (plus irrelevant thus skipped 1-length cycle in the middle for odd-sized squares). for (int y = 0; y < h / 2; y++) { for (int x = 0; x < (w + 1) / 2; x++) { int current = y * w + x; memcpy(single_pixel_buffer, data_ptr + current * pixel_size, pixel_size); for (int i = 0; i < 3; i++) { int prev = PREV_INDEX_IN_CYCLE(current); memcpy(data_ptr + current * pixel_size, data_ptr + prev * pixel_size, pixel_size); current = prev; } memcpy(data_ptr + current * pixel_size, single_pixel_buffer, pixel_size); } } } else { // Rectangular case (w != h), kinda unpredictable cycles. int permuted_pixels_count = 0; for (int i = 0; i < size; i++) { int prev = PREV_INDEX_IN_CYCLE(i); if (prev == i) { // 1-length cycle, pixel remains at the same index. permuted_pixels_count++; continue; } // Check whether we already processed this cycle. // We iterate over it and if we'll find an index smaller than `i` then we already // processed this cycle because we always start at the smallest index in the cycle. // TODO: Improve this naive approach, can be done better. while (prev > i) { prev = PREV_INDEX_IN_CYCLE(prev); } if (prev < i) { continue; } // Save the in-cycle pixel with the smallest index (`i`). memcpy(single_pixel_buffer, data_ptr + i * pixel_size, pixel_size); // Overwrite pixels one by one by the preceding pixel in the cycle. int current = i; prev = PREV_INDEX_IN_CYCLE(current); while (prev != i) { memcpy(data_ptr + current * pixel_size, data_ptr + prev * pixel_size, pixel_size); permuted_pixels_count++; current = prev; prev = PREV_INDEX_IN_CYCLE(current); }; // Overwrite the remaining pixel in the cycle by the saved pixel with the smallest index. memcpy(data_ptr + current * pixel_size, single_pixel_buffer, pixel_size); permuted_pixels_count++; if (permuted_pixels_count == size) { break; } } width = h; height = w; } #undef PREV_INDEX_IN_CYCLE } if (used_mipmaps) { generate_mipmaps(); } } void Image::rotate_180() { ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot rotate in compressed or custom image formats."); ERR_FAIL_COND_MSG(width <= 0, "The Image width specified (" + itos(width) + " pixels) must be greater than 0 pixels."); ERR_FAIL_COND_MSG(height <= 0, "The Image height specified (" + itos(height) + " pixels) must be greater than 0 pixels."); bool used_mipmaps = has_mipmaps(); if (used_mipmaps) { clear_mipmaps(); } { uint8_t *data_ptr = data.ptrw(); uint32_t pixel_size = get_format_pixel_size(format); uint8_t single_pixel_buffer[16]; uint8_t *from_begin_ptr = data_ptr; uint8_t *from_end_ptr = data_ptr + (width * height - 1) * pixel_size; while (from_begin_ptr < from_end_ptr) { memcpy(single_pixel_buffer, from_begin_ptr, pixel_size); memcpy(from_begin_ptr, from_end_ptr, pixel_size); memcpy(from_end_ptr, single_pixel_buffer, pixel_size); from_begin_ptr += pixel_size; from_end_ptr -= pixel_size; } } if (used_mipmaps) { generate_mipmaps(); } } void Image::flip_y() { ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot flip_y in compressed or custom image formats."); bool used_mipmaps = has_mipmaps(); if (used_mipmaps) { clear_mipmaps(); } { uint8_t *w = data.ptrw(); uint8_t up[16]; uint8_t down[16]; uint32_t pixel_size = get_format_pixel_size(format); for (int y = 0; y < height / 2; y++) { for (int x = 0; x < width; x++) { _get_pixelb(x, y, pixel_size, w, up); _get_pixelb(x, height - y - 1, pixel_size, w, down); _put_pixelb(x, height - y - 1, pixel_size, w, up); _put_pixelb(x, y, pixel_size, w, down); } } } if (used_mipmaps) { generate_mipmaps(); } } void Image::flip_x() { ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot flip_x in compressed or custom image formats."); bool used_mipmaps = has_mipmaps(); if (used_mipmaps) { clear_mipmaps(); } { uint8_t *w = data.ptrw(); uint8_t up[16]; uint8_t down[16]; uint32_t pixel_size = get_format_pixel_size(format); for (int y = 0; y < height; y++) { for (int x = 0; x < width / 2; x++) { _get_pixelb(x, y, pixel_size, w, up); _get_pixelb(width - x - 1, y, pixel_size, w, down); _put_pixelb(width - x - 1, y, pixel_size, w, up); _put_pixelb(x, y, pixel_size, w, down); } } } if (used_mipmaps) { generate_mipmaps(); } } /// Get mipmap size and offset. int Image::_get_dst_image_size(int p_width, int p_height, Format p_format, int &r_mipmaps, int p_mipmaps, int *r_mm_width, int *r_mm_height) { // Data offset in mipmaps (including the original texture). int size = 0; int w = p_width; int h = p_height; // Current mipmap index in the loop below. p_mipmaps is the target mipmap index. // In this function, mipmap 0 represents the first mipmap instead of the original texture. int mm = 0; int pixsize = get_format_pixel_size(p_format); int pixshift = get_format_pixel_rshift(p_format); int block = get_format_block_size(p_format); // Technically, you can still compress up to 1 px no matter the format, so commenting this. //int minw, minh; //get_format_min_pixel_size(p_format, minw, minh); int minw = 1, minh = 1; while (true) { int bw = w % block != 0 ? w + (block - w % block) : w; int bh = h % block != 0 ? h + (block - h % block) : h; int s = bw * bh; s *= pixsize; s >>= pixshift; size += s; if (p_mipmaps >= 0) { w = MAX(minw, w >> 1); h = MAX(minh, h >> 1); } else { if (w == minw && h == minh) { break; } w = MAX(minw, w >> 1); h = MAX(minh, h >> 1); } // Set mipmap size. if (r_mm_width) { *r_mm_width = w; } if (r_mm_height) { *r_mm_height = h; } // Reach target mipmap. if (p_mipmaps >= 0 && mm == p_mipmaps) { break; } mm++; } r_mipmaps = mm; return size; } bool Image::_can_modify(Format p_format) const { return p_format <= FORMAT_RGBE9995; } template static void _generate_po2_mipmap(const Component *p_src, Component *p_dst, uint32_t p_width, uint32_t p_height) { //fast power of 2 mipmap generation uint32_t dst_w = MAX(p_width >> 1, 1u); uint32_t dst_h = MAX(p_height >> 1, 1u); int right_step = (p_width == 1) ? 0 : CC; int down_step = (p_height == 1) ? 0 : (p_width * CC); for (uint32_t i = 0; i < dst_h; i++) { const Component *rup_ptr = &p_src[i * 2 * down_step]; const Component *rdown_ptr = rup_ptr + down_step; Component *dst_ptr = &p_dst[i * dst_w * CC]; uint32_t count = dst_w; while (count) { count--; for (int j = 0; j < CC; j++) { average_func(dst_ptr[j], rup_ptr[j], rup_ptr[j + right_step], rdown_ptr[j], rdown_ptr[j + right_step]); } if (renormalize) { renormalize_func(dst_ptr); } dst_ptr += CC; rup_ptr += right_step * 2; rdown_ptr += right_step * 2; } } } void Image::shrink_x2() { ERR_FAIL_COND(data.size() == 0); if (mipmaps) { //just use the lower mipmap as base and copy all Vector new_img; int ofs = get_mipmap_offset(1); int new_size = data.size() - ofs; new_img.resize(new_size); ERR_FAIL_COND(new_img.size() == 0); { uint8_t *w = new_img.ptrw(); const uint8_t *r = data.ptr(); memcpy(w, &r[ofs], new_size); } width = MAX(width / 2, 1); height = MAX(height / 2, 1); data = new_img; } else { Vector new_img; ERR_FAIL_COND(!_can_modify(format)); int ps = get_format_pixel_size(format); new_img.resize((width / 2) * (height / 2) * ps); ERR_FAIL_COND(new_img.size() == 0); ERR_FAIL_COND(data.size() == 0); { uint8_t *w = new_img.ptrw(); const uint8_t *r = data.ptr(); switch (format) { case FORMAT_L8: case FORMAT_R8: _generate_po2_mipmap(r, w, width, height); break; case FORMAT_LA8: _generate_po2_mipmap(r, w, width, height); break; case FORMAT_RG8: _generate_po2_mipmap(r, w, width, height); break; case FORMAT_RGB8: _generate_po2_mipmap(r, w, width, height); break; case FORMAT_RGBA8: _generate_po2_mipmap(r, w, width, height); break; case FORMAT_RF: _generate_po2_mipmap(reinterpret_cast(r), reinterpret_cast(w), width, height); break; case FORMAT_RGF: _generate_po2_mipmap(reinterpret_cast(r), reinterpret_cast(w), width, height); break; case FORMAT_RGBF: _generate_po2_mipmap(reinterpret_cast(r), reinterpret_cast(w), width, height); break; case FORMAT_RGBAF: _generate_po2_mipmap(reinterpret_cast(r), reinterpret_cast(w), width, height); break; case FORMAT_RH: _generate_po2_mipmap(reinterpret_cast(r), reinterpret_cast(w), width, height); break; case FORMAT_RGH: _generate_po2_mipmap(reinterpret_cast(r), reinterpret_cast(w), width, height); break; case FORMAT_RGBH: _generate_po2_mipmap(reinterpret_cast(r), reinterpret_cast(w), width, height); break; case FORMAT_RGBAH: _generate_po2_mipmap(reinterpret_cast(r), reinterpret_cast(w), width, height); break; case FORMAT_RGBE9995: _generate_po2_mipmap(reinterpret_cast(r), reinterpret_cast(w), width, height); break; default: { } } } width /= 2; height /= 2; data = new_img; } } void Image::normalize() { bool used_mipmaps = has_mipmaps(); if (used_mipmaps) { clear_mipmaps(); } for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { Color c = get_pixel(x, y); Vector3 v(c.r * 2.0 - 1.0, c.g * 2.0 - 1.0, c.b * 2.0 - 1.0); v.normalize(); c.r = v.x * 0.5 + 0.5; c.g = v.y * 0.5 + 0.5; c.b = v.z * 0.5 + 0.5; set_pixel(x, y, c); } } if (used_mipmaps) { generate_mipmaps(true); } } Error Image::generate_mipmaps(bool p_renormalize) { ERR_FAIL_COND_V_MSG(!_can_modify(format), ERR_UNAVAILABLE, "Cannot generate mipmaps in compressed or custom image formats."); ERR_FAIL_COND_V_MSG(format == FORMAT_RGBA4444, ERR_UNAVAILABLE, "Cannot generate mipmaps from RGBA4444 format."); ERR_FAIL_COND_V_MSG(width == 0 || height == 0, ERR_UNCONFIGURED, "Cannot generate mipmaps with width or height equal to 0."); int mmcount; int size = _get_dst_image_size(width, height, format, mmcount); data.resize(size); uint8_t *wp = data.ptrw(); int prev_ofs = 0; int prev_h = height; int prev_w = width; for (int i = 1; i <= mmcount; i++) { int ofs, w, h; _get_mipmap_offset_and_size(i, ofs, w, h); switch (format) { case FORMAT_L8: case FORMAT_R8: _generate_po2_mipmap(&wp[prev_ofs], &wp[ofs], prev_w, prev_h); break; case FORMAT_LA8: case FORMAT_RG8: _generate_po2_mipmap(&wp[prev_ofs], &wp[ofs], prev_w, prev_h); break; case FORMAT_RGB8: if (p_renormalize) { _generate_po2_mipmap(&wp[prev_ofs], &wp[ofs], prev_w, prev_h); } else { _generate_po2_mipmap(&wp[prev_ofs], &wp[ofs], prev_w, prev_h); } break; case FORMAT_RGBA8: if (p_renormalize) { _generate_po2_mipmap(&wp[prev_ofs], &wp[ofs], prev_w, prev_h); } else { _generate_po2_mipmap(&wp[prev_ofs], &wp[ofs], prev_w, prev_h); } break; case FORMAT_RF: _generate_po2_mipmap(reinterpret_cast(&wp[prev_ofs]), reinterpret_cast(&wp[ofs]), prev_w, prev_h); break; case FORMAT_RGF: _generate_po2_mipmap(reinterpret_cast(&wp[prev_ofs]), reinterpret_cast(&wp[ofs]), prev_w, prev_h); break; case FORMAT_RGBF: if (p_renormalize) { _generate_po2_mipmap(reinterpret_cast(&wp[prev_ofs]), reinterpret_cast(&wp[ofs]), prev_w, prev_h); } else { _generate_po2_mipmap(reinterpret_cast(&wp[prev_ofs]), reinterpret_cast(&wp[ofs]), prev_w, prev_h); } break; case FORMAT_RGBAF: if (p_renormalize) { _generate_po2_mipmap(reinterpret_cast(&wp[prev_ofs]), reinterpret_cast(&wp[ofs]), prev_w, prev_h); } else { _generate_po2_mipmap(reinterpret_cast(&wp[prev_ofs]), reinterpret_cast(&wp[ofs]), prev_w, prev_h); } break; case FORMAT_RH: _generate_po2_mipmap(reinterpret_cast(&wp[prev_ofs]), reinterpret_cast(&wp[ofs]), prev_w, prev_h); break; case FORMAT_RGH: _generate_po2_mipmap(reinterpret_cast(&wp[prev_ofs]), reinterpret_cast(&wp[ofs]), prev_w, prev_h); break; case FORMAT_RGBH: if (p_renormalize) { _generate_po2_mipmap(reinterpret_cast(&wp[prev_ofs]), reinterpret_cast(&wp[ofs]), prev_w, prev_h); } else { _generate_po2_mipmap(reinterpret_cast(&wp[prev_ofs]), reinterpret_cast(&wp[ofs]), prev_w, prev_h); } break; case FORMAT_RGBAH: if (p_renormalize) { _generate_po2_mipmap(reinterpret_cast(&wp[prev_ofs]), reinterpret_cast(&wp[ofs]), prev_w, prev_h); } else { _generate_po2_mipmap(reinterpret_cast(&wp[prev_ofs]), reinterpret_cast(&wp[ofs]), prev_w, prev_h); } break; case FORMAT_RGBE9995: if (p_renormalize) { _generate_po2_mipmap(reinterpret_cast(&wp[prev_ofs]), reinterpret_cast(&wp[ofs]), prev_w, prev_h); } else { _generate_po2_mipmap(reinterpret_cast(&wp[prev_ofs]), reinterpret_cast(&wp[ofs]), prev_w, prev_h); } break; default: { } } prev_ofs = ofs; prev_w = w; prev_h = h; } mipmaps = true; return OK; } Error Image::generate_mipmap_roughness(RoughnessChannel p_roughness_channel, const Ref &p_normal_map) { Vector normal_sat_vec; //summed area table double *normal_sat = nullptr; //summed area table for normal map int normal_w = 0, normal_h = 0; ERR_FAIL_COND_V_MSG(p_normal_map.is_null() || p_normal_map->is_empty(), ERR_INVALID_PARAMETER, "Must provide a valid normal map for roughness mipmaps"); Ref nm = p_normal_map->duplicate(); if (nm->is_compressed()) { nm->decompress(); } normal_w = nm->get_width(); normal_h = nm->get_height(); normal_sat_vec.resize(normal_w * normal_h * 3); normal_sat = normal_sat_vec.ptrw(); //create summed area table for (int y = 0; y < normal_h; y++) { double line_sum[3] = { 0, 0, 0 }; for (int x = 0; x < normal_w; x++) { double normal[3]; Color color = nm->get_pixel(x, y); normal[0] = color.r * 2.0 - 1.0; normal[1] = color.g * 2.0 - 1.0; normal[2] = Math::sqrt(MAX(0.0, 1.0 - (normal[0] * normal[0] + normal[1] * normal[1]))); //reconstruct if missing line_sum[0] += normal[0]; line_sum[1] += normal[1]; line_sum[2] += normal[2]; uint32_t ofs = (y * normal_w + x) * 3; normal_sat[ofs + 0] = line_sum[0]; normal_sat[ofs + 1] = line_sum[1]; normal_sat[ofs + 2] = line_sum[2]; if (y > 0) { uint32_t prev_ofs = ((y - 1) * normal_w + x) * 3; normal_sat[ofs + 0] += normal_sat[prev_ofs + 0]; normal_sat[ofs + 1] += normal_sat[prev_ofs + 1]; normal_sat[ofs + 2] += normal_sat[prev_ofs + 2]; } } } #if 0 { Vector3 beg(normal_sat_vec[0], normal_sat_vec[1], normal_sat_vec[2]); Vector3 end(normal_sat_vec[normal_sat_vec.size() - 3], normal_sat_vec[normal_sat_vec.size() - 2], normal_sat_vec[normal_sat_vec.size() - 1]); Vector3 avg = (end - beg) / (normal_w * normal_h); print_line("average: " + avg); } #endif int mmcount; _get_dst_image_size(width, height, format, mmcount); uint8_t *base_ptr = data.ptrw(); for (int i = 1; i <= mmcount; i++) { int ofs, w, h; _get_mipmap_offset_and_size(i, ofs, w, h); uint8_t *ptr = &base_ptr[ofs]; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { int from_x = x * normal_w / w; int from_y = y * normal_h / h; int to_x = (x + 1) * normal_w / w; int to_y = (y + 1) * normal_h / h; to_x = MIN(to_x - 1, normal_w); to_y = MIN(to_y - 1, normal_h); int size_x = (to_x - from_x) + 1; int size_y = (to_y - from_y) + 1; //summed area table version (much faster) double avg[3] = { 0, 0, 0 }; if (from_x > 0 && from_y > 0) { uint32_t tofs = ((from_y - 1) * normal_w + (from_x - 1)) * 3; avg[0] += normal_sat[tofs + 0]; avg[1] += normal_sat[tofs + 1]; avg[2] += normal_sat[tofs + 2]; } if (from_y > 0) { uint32_t tofs = ((from_y - 1) * normal_w + to_x) * 3; avg[0] -= normal_sat[tofs + 0]; avg[1] -= normal_sat[tofs + 1]; avg[2] -= normal_sat[tofs + 2]; } if (from_x > 0) { uint32_t tofs = (to_y * normal_w + (from_x - 1)) * 3; avg[0] -= normal_sat[tofs + 0]; avg[1] -= normal_sat[tofs + 1]; avg[2] -= normal_sat[tofs + 2]; } uint32_t tofs = (to_y * normal_w + to_x) * 3; avg[0] += normal_sat[tofs + 0]; avg[1] += normal_sat[tofs + 1]; avg[2] += normal_sat[tofs + 2]; double div = double(size_x * size_y); Vector3 vec(avg[0] / div, avg[1] / div, avg[2] / div); float r = vec.length(); int pixel_ofs = y * w + x; Color c = _get_color_at_ofs(ptr, pixel_ofs); float roughness = 0; switch (p_roughness_channel) { case ROUGHNESS_CHANNEL_R: { roughness = c.r; } break; case ROUGHNESS_CHANNEL_G: { roughness = c.g; } break; case ROUGHNESS_CHANNEL_B: { roughness = c.b; } break; case ROUGHNESS_CHANNEL_L: { roughness = c.get_v(); } break; case ROUGHNESS_CHANNEL_A: { roughness = c.a; } break; } float variance = 0; if (r < 1.0f) { float r2 = r * r; float kappa = (3.0f * r - r * r2) / (1.0f - r2); variance = 0.25f / kappa; } float threshold = 0.4; roughness = Math::sqrt(roughness * roughness + MIN(3.0f * variance, threshold * threshold)); switch (p_roughness_channel) { case ROUGHNESS_CHANNEL_R: { c.r = roughness; } break; case ROUGHNESS_CHANNEL_G: { c.g = roughness; } break; case ROUGHNESS_CHANNEL_B: { c.b = roughness; } break; case ROUGHNESS_CHANNEL_L: { c.r = roughness; c.g = roughness; c.b = roughness; } break; case ROUGHNESS_CHANNEL_A: { c.a = roughness; } break; } _set_color_at_ofs(ptr, pixel_ofs, c); } } #if 0 { int size = get_mipmap_byte_size(i); print_line("size for mimpap " + itos(i) + ": " + itos(size)); Vector imgdata; imgdata.resize(size); uint8_t* wr = imgdata.ptrw(); memcpy(wr.ptr(), ptr, size); wr = uint8_t*(); Ref im = Image::create_from_data(w, h, false, format, imgdata); im->save_png("res://mipmap_" + itos(i) + ".png"); } #endif } return OK; } void Image::clear_mipmaps() { if (!mipmaps) { return; } if (is_empty()) { return; } int ofs, w, h; _get_mipmap_offset_and_size(1, ofs, w, h); data.resize(ofs); mipmaps = false; } bool Image::is_empty() const { return (data.size() == 0); } Vector Image::get_data() const { return data; } Ref Image::create_empty(int p_width, int p_height, bool p_use_mipmaps, Format p_format) { Ref image; image.instantiate(); image->initialize_data(p_width, p_height, p_use_mipmaps, p_format); return image; } Ref Image::create_from_data(int p_width, int p_height, bool p_use_mipmaps, Format p_format, const Vector &p_data) { Ref image; image.instantiate(); image->initialize_data(p_width, p_height, p_use_mipmaps, p_format, p_data); return image; } void Image::set_data(int p_width, int p_height, bool p_use_mipmaps, Format p_format, const Vector &p_data) { initialize_data(p_width, p_height, p_use_mipmaps, p_format, p_data); } void Image::initialize_data(int p_width, int p_height, bool p_use_mipmaps, Format p_format) { ERR_FAIL_COND_MSG(p_width <= 0, "The Image width specified (" + itos(p_width) + " pixels) must be greater than 0 pixels."); ERR_FAIL_COND_MSG(p_height <= 0, "The Image height specified (" + itos(p_height) + " pixels) must be greater than 0 pixels."); ERR_FAIL_COND_MSG(p_width > MAX_WIDTH, "The Image width specified (" + itos(p_width) + " pixels) cannot be greater than " + itos(MAX_WIDTH) + "pixels."); ERR_FAIL_COND_MSG(p_height > MAX_HEIGHT, "The Image height specified (" + itos(p_height) + " pixels) cannot be greater than " + itos(MAX_HEIGHT) + "pixels."); ERR_FAIL_COND_MSG(p_width * p_height > MAX_PIXELS, "Too many pixels for Image. Maximum is " + itos(MAX_WIDTH) + "x" + itos(MAX_HEIGHT) + " = " + itos(MAX_PIXELS) + "pixels."); ERR_FAIL_INDEX_MSG(p_format, FORMAT_MAX, "The Image format specified (" + itos(p_format) + ") is out of range. See Image's Format enum."); int mm = 0; int size = _get_dst_image_size(p_width, p_height, p_format, mm, p_use_mipmaps ? -1 : 0); data.resize(size); { uint8_t *w = data.ptrw(); memset(w, 0, size); } width = p_width; height = p_height; mipmaps = p_use_mipmaps; format = p_format; } void Image::initialize_data(int p_width, int p_height, bool p_use_mipmaps, Format p_format, const Vector &p_data) { ERR_FAIL_COND_MSG(p_width <= 0, "The Image width specified (" + itos(p_width) + " pixels) must be greater than 0 pixels."); ERR_FAIL_COND_MSG(p_height <= 0, "The Image height specified (" + itos(p_height) + " pixels) must be greater than 0 pixels."); ERR_FAIL_COND_MSG(p_width > MAX_WIDTH, "The Image width specified (" + itos(p_width) + " pixels) cannot be greater than " + itos(MAX_WIDTH) + " pixels."); ERR_FAIL_COND_MSG(p_height > MAX_HEIGHT, "The Image height specified (" + itos(p_height) + " pixels) cannot be greater than " + itos(MAX_HEIGHT) + " pixels."); ERR_FAIL_COND_MSG(p_width * p_height > MAX_PIXELS, "Too many pixels for Image. Maximum is " + itos(MAX_WIDTH) + "x" + itos(MAX_HEIGHT) + " = " + itos(MAX_PIXELS) + "pixels ."); ERR_FAIL_INDEX_MSG(p_format, FORMAT_MAX, "The Image format specified (" + itos(p_format) + ") is out of range. See Image's Format enum."); int mm; int size = _get_dst_image_size(p_width, p_height, p_format, mm, p_use_mipmaps ? -1 : 0); if (unlikely(p_data.size() != size)) { String description_mipmaps = get_format_name(p_format) + " "; if (p_use_mipmaps) { const int num_mipmaps = get_image_required_mipmaps(p_width, p_height, p_format); if (num_mipmaps != 1) { description_mipmaps += vformat("with %d mipmaps", num_mipmaps); } else { description_mipmaps += "with 1 mipmap"; } } else { description_mipmaps += "without mipmaps"; } const String description = vformat("%dx%dx%d (%s)", p_width, p_height, get_format_pixel_size(p_format), description_mipmaps); ERR_FAIL_MSG(vformat("Expected Image data size of %s = %d bytes, got %d bytes instead.", description, size, p_data.size())); } height = p_height; width = p_width; format = p_format; data = p_data; mipmaps = p_use_mipmaps; } void Image::initialize_data(const char **p_xpm) { int size_width = 0; int size_height = 0; int pixelchars = 0; mipmaps = false; bool has_alpha = false; enum Status { READING_HEADER, READING_COLORS, READING_PIXELS, DONE }; Status status = READING_HEADER; int line = 0; HashMap colormap; int colormap_size = 0; uint32_t pixel_size = 0; uint8_t *data_write = nullptr; while (status != DONE) { const char *line_ptr = p_xpm[line]; switch (status) { case READING_HEADER: { String line_str = line_ptr; line_str.replace("\t", " "); size_width = line_str.get_slicec(' ', 0).to_int(); size_height = line_str.get_slicec(' ', 1).to_int(); colormap_size = line_str.get_slicec(' ', 2).to_int(); pixelchars = line_str.get_slicec(' ', 3).to_int(); ERR_FAIL_COND(colormap_size > 32766); ERR_FAIL_COND(pixelchars > 5); ERR_FAIL_COND(size_width > 32767); ERR_FAIL_COND(size_height > 32767); status = READING_COLORS; } break; case READING_COLORS: { String colorstring; for (int i = 0; i < pixelchars; i++) { colorstring += *line_ptr; line_ptr++; } //skip spaces while (*line_ptr == ' ' || *line_ptr == '\t' || *line_ptr == 0) { if (*line_ptr == 0) { break; } line_ptr++; } if (*line_ptr == 'c') { line_ptr++; while (*line_ptr == ' ' || *line_ptr == '\t' || *line_ptr == 0) { if (*line_ptr == 0) { break; } line_ptr++; } if (*line_ptr == '#') { line_ptr++; uint8_t col_r = 0; uint8_t col_g = 0; uint8_t col_b = 0; //uint8_t col_a=255; for (int i = 0; i < 6; i++) { char v = line_ptr[i]; if (is_digit(v)) { v -= '0'; } else if (v >= 'A' && v <= 'F') { v = (v - 'A') + 10; } else if (v >= 'a' && v <= 'f') { v = (v - 'a') + 10; } else { break; } switch (i) { case 0: col_r = v << 4; break; case 1: col_r |= v; break; case 2: col_g = v << 4; break; case 3: col_g |= v; break; case 4: col_b = v << 4; break; case 5: col_b |= v; break; } } // magenta mask if (col_r == 255 && col_g == 0 && col_b == 255) { colormap[colorstring] = Color(0, 0, 0, 0); has_alpha = true; } else { colormap[colorstring] = Color(col_r / 255.0, col_g / 255.0, col_b / 255.0, 1.0); } } } if (line == colormap_size) { status = READING_PIXELS; initialize_data(size_width, size_height, false, has_alpha ? FORMAT_RGBA8 : FORMAT_RGB8); data_write = data.ptrw(); pixel_size = has_alpha ? 4 : 3; } } break; case READING_PIXELS: { int y = line - colormap_size - 1; for (int x = 0; x < size_width; x++) { char pixelstr[6] = { 0, 0, 0, 0, 0, 0 }; for (int i = 0; i < pixelchars; i++) { pixelstr[i] = line_ptr[x * pixelchars + i]; } Color *colorptr = colormap.getptr(pixelstr); ERR_FAIL_COND(!colorptr); uint8_t pixel[4]; for (uint32_t i = 0; i < pixel_size; i++) { pixel[i] = CLAMP((*colorptr)[i] * 255, 0, 255); } _put_pixelb(x, y, pixel_size, data_write, pixel); } if (y == (size_height - 1)) { status = DONE; } } break; default: { } } line++; } } #define DETECT_ALPHA_MAX_THRESHOLD 254 #define DETECT_ALPHA_MIN_THRESHOLD 2 #define DETECT_ALPHA(m_value) \ { \ uint8_t value = m_value; \ if (value < DETECT_ALPHA_MIN_THRESHOLD) \ bit = true; \ else if (value < DETECT_ALPHA_MAX_THRESHOLD) { \ detected = true; \ break; \ } \ } #define DETECT_NON_ALPHA(m_value) \ { \ uint8_t value = m_value; \ if (value > 0) { \ detected = true; \ break; \ } \ } bool Image::is_invisible() const { if (format == FORMAT_L8 || format == FORMAT_RGB8 || format == FORMAT_RG8) { return false; } int len = data.size(); if (len == 0) { return true; } int w, h; _get_mipmap_offset_and_size(1, len, w, h); const uint8_t *r = data.ptr(); const unsigned char *data_ptr = r; bool detected = false; switch (format) { case FORMAT_LA8: { for (int i = 0; i < (len >> 1); i++) { DETECT_NON_ALPHA(data_ptr[(i << 1) + 1]); } } break; case FORMAT_RGBA8: { for (int i = 0; i < (len >> 2); i++) { DETECT_NON_ALPHA(data_ptr[(i << 2) + 3]) } } break; case FORMAT_DXT3: case FORMAT_DXT5: { detected = true; } break; default: { } } return !detected; } Image::AlphaMode Image::detect_alpha() const { int len = data.size(); if (len == 0) { return ALPHA_NONE; } int w, h; _get_mipmap_offset_and_size(1, len, w, h); const uint8_t *r = data.ptr(); const unsigned char *data_ptr = r; bool bit = false; bool detected = false; switch (format) { case FORMAT_LA8: { for (int i = 0; i < (len >> 1); i++) { DETECT_ALPHA(data_ptr[(i << 1) + 1]); } } break; case FORMAT_RGBA8: { for (int i = 0; i < (len >> 2); i++) { DETECT_ALPHA(data_ptr[(i << 2) + 3]) } } break; case FORMAT_DXT3: case FORMAT_DXT5: { detected = true; } break; default: { } } if (detected) { return ALPHA_BLEND; } else if (bit) { return ALPHA_BIT; } else { return ALPHA_NONE; } } Error Image::load(const String &p_path) { #ifdef DEBUG_ENABLED if (p_path.begins_with("res://") && ResourceLoader::exists(p_path)) { WARN_PRINT("Loaded resource as image file, this will not work on export: '" + p_path + "'. Instead, import the image file as an Image resource and load it normally as a resource."); } #endif return ImageLoader::load_image(p_path, this); } Ref Image::load_from_file(const String &p_path) { #ifdef DEBUG_ENABLED if (p_path.begins_with("res://") && ResourceLoader::exists(p_path)) { WARN_PRINT("Loaded resource as image file, this will not work on export: '" + p_path + "'. Instead, import the image file as an Image resource and load it normally as a resource."); } #endif Ref image; image.instantiate(); Error err = ImageLoader::load_image(p_path, image); if (err != OK) { ERR_FAIL_V_MSG(Ref(), vformat("Failed to load image. Error %d", err)); } return image; } Error Image::save_png(const String &p_path) const { if (save_png_func == nullptr) { return ERR_UNAVAILABLE; } return save_png_func(p_path, Ref((Image *)this)); } Error Image::save_jpg(const String &p_path, float p_quality) const { if (save_jpg_func == nullptr) { return ERR_UNAVAILABLE; } return save_jpg_func(p_path, Ref((Image *)this), p_quality); } Vector Image::save_png_to_buffer() const { if (save_png_buffer_func == nullptr) { return Vector(); } return save_png_buffer_func(Ref((Image *)this)); } Vector Image::save_jpg_to_buffer(float p_quality) const { if (save_jpg_buffer_func == nullptr) { return Vector(); } return save_jpg_buffer_func(Ref((Image *)this), p_quality); } Error Image::save_exr(const String &p_path, bool p_grayscale) const { if (save_exr_func == nullptr) { return ERR_UNAVAILABLE; } return save_exr_func(p_path, Ref((Image *)this), p_grayscale); } Vector Image::save_exr_to_buffer(bool p_grayscale) const { if (save_exr_buffer_func == nullptr) { return Vector(); } return save_exr_buffer_func(Ref((Image *)this), p_grayscale); } Error Image::save_webp(const String &p_path, const bool p_lossy, const float p_quality) const { if (save_webp_func == nullptr) { return ERR_UNAVAILABLE; } ERR_FAIL_COND_V_MSG(p_lossy && !(0.0f <= p_quality && p_quality <= 1.0f), ERR_INVALID_PARAMETER, "The WebP lossy quality was set to " + rtos(p_quality) + ", which is not valid. WebP lossy quality must be between 0.0 and 1.0 (inclusive)."); return save_webp_func(p_path, Ref((Image *)this), p_lossy, p_quality); } Vector Image::save_webp_to_buffer(const bool p_lossy, const float p_quality) const { if (save_webp_buffer_func == nullptr) { return Vector(); } ERR_FAIL_COND_V_MSG(p_lossy && !(0.0f <= p_quality && p_quality <= 1.0f), Vector(), "The WebP lossy quality was set to " + rtos(p_quality) + ", which is not valid. WebP lossy quality must be between 0.0 and 1.0 (inclusive)."); return save_webp_buffer_func(Ref((Image *)this), p_lossy, p_quality); } int Image::get_image_data_size(int p_width, int p_height, Format p_format, bool p_mipmaps) { int mm; return _get_dst_image_size(p_width, p_height, p_format, mm, p_mipmaps ? -1 : 0); } int Image::get_image_required_mipmaps(int p_width, int p_height, Format p_format) { int mm; _get_dst_image_size(p_width, p_height, p_format, mm, -1); return mm; } Size2i Image::get_image_mipmap_size(int p_width, int p_height, Format p_format, int p_mipmap) { int mm; Size2i ret; _get_dst_image_size(p_width, p_height, p_format, mm, p_mipmap, &ret.x, &ret.y); return ret; } int Image::get_image_mipmap_offset(int p_width, int p_height, Format p_format, int p_mipmap) { if (p_mipmap <= 0) { return 0; } int mm; return _get_dst_image_size(p_width, p_height, p_format, mm, p_mipmap - 1); } int Image::get_image_mipmap_offset_and_dimensions(int p_width, int p_height, Format p_format, int p_mipmap, int &r_w, int &r_h) { if (p_mipmap <= 0) { r_w = p_width; r_h = p_height; return 0; } int mm; return _get_dst_image_size(p_width, p_height, p_format, mm, p_mipmap - 1, &r_w, &r_h); } bool Image::is_compressed() const { return format > FORMAT_RGBE9995; } Error Image::decompress() { if (((format >= FORMAT_DXT1 && format <= FORMAT_RGTC_RG) || (format == FORMAT_DXT5_RA_AS_RG)) && _image_decompress_bc) { _image_decompress_bc(this); } else if (format >= FORMAT_BPTC_RGBA && format <= FORMAT_BPTC_RGBFU && _image_decompress_bptc) { _image_decompress_bptc(this); } else if (format == FORMAT_ETC && _image_decompress_etc1) { _image_decompress_etc1(this); } else if (format >= FORMAT_ETC2_R11 && format <= FORMAT_ETC2_RA_AS_RG && _image_decompress_etc2) { _image_decompress_etc2(this); } else if (format >= FORMAT_ASTC_4x4 && format <= FORMAT_ASTC_8x8_HDR && _image_decompress_astc) { _image_decompress_astc(this); } else { return ERR_UNAVAILABLE; } return OK; } Error Image::compress(CompressMode p_mode, CompressSource p_source, ASTCFormat p_astc_format) { ERR_FAIL_INDEX_V_MSG(p_mode, COMPRESS_MAX, ERR_INVALID_PARAMETER, "Invalid compress mode."); ERR_FAIL_INDEX_V_MSG(p_source, COMPRESS_SOURCE_MAX, ERR_INVALID_PARAMETER, "Invalid compress source."); return compress_from_channels(p_mode, detect_used_channels(p_source), p_astc_format); } Error Image::compress_from_channels(CompressMode p_mode, UsedChannels p_channels, ASTCFormat p_astc_format) { ERR_FAIL_COND_V(data.is_empty(), ERR_INVALID_DATA); switch (p_mode) { case COMPRESS_S3TC: { ERR_FAIL_COND_V(!_image_compress_bc_func, ERR_UNAVAILABLE); _image_compress_bc_func(this, p_channels); } break; case COMPRESS_ETC: { ERR_FAIL_COND_V(!_image_compress_etc1_func, ERR_UNAVAILABLE); _image_compress_etc1_func(this); } break; case COMPRESS_ETC2: { ERR_FAIL_COND_V(!_image_compress_etc2_func, ERR_UNAVAILABLE); _image_compress_etc2_func(this, p_channels); } break; case COMPRESS_BPTC: { ERR_FAIL_COND_V(!_image_compress_bptc_func, ERR_UNAVAILABLE); _image_compress_bptc_func(this, p_channels); } break; case COMPRESS_ASTC: { ERR_FAIL_COND_V(!_image_compress_astc_func, ERR_UNAVAILABLE); _image_compress_astc_func(this, p_astc_format); } break; case COMPRESS_MAX: { ERR_FAIL_V(ERR_INVALID_PARAMETER); } break; } return OK; } Image::Image(const char **p_xpm) { width = 0; height = 0; mipmaps = false; format = FORMAT_L8; initialize_data(p_xpm); } Image::Image(int p_width, int p_height, bool p_use_mipmaps, Format p_format) { width = 0; height = 0; mipmaps = p_use_mipmaps; format = FORMAT_L8; initialize_data(p_width, p_height, p_use_mipmaps, p_format); } Image::Image(int p_width, int p_height, bool p_mipmaps, Format p_format, const Vector &p_data) { width = 0; height = 0; mipmaps = p_mipmaps; format = FORMAT_L8; initialize_data(p_width, p_height, p_mipmaps, p_format, p_data); } Rect2i Image::get_used_rect() const { if (format != FORMAT_LA8 && format != FORMAT_RGBA8 && format != FORMAT_RGBAF && format != FORMAT_RGBAH && format != FORMAT_RGBA4444 && format != FORMAT_RGB565) { return Rect2i(0, 0, width, height); } int len = data.size(); if (len == 0) { return Rect2i(); } int minx = 0xFFFFFF, miny = 0xFFFFFFF; int maxx = -1, maxy = -1; for (int j = 0; j < height; j++) { for (int i = 0; i < width; i++) { if (!(get_pixel(i, j).a > 0)) { continue; } if (i > maxx) { maxx = i; } if (j > maxy) { maxy = j; } if (i < minx) { minx = i; } if (j < miny) { miny = j; } } } if (maxx == -1) { return Rect2i(); } else { return Rect2i(minx, miny, maxx - minx + 1, maxy - miny + 1); } } Ref Image::get_region(const Rect2i &p_region) const { Ref img = memnew(Image(p_region.size.x, p_region.size.y, mipmaps, format)); img->blit_rect(Ref((Image *)this), p_region, Point2i(0, 0)); return img; } void Image::_get_clipped_src_and_dest_rects(const Ref &p_src, const Rect2i &p_src_rect, const Point2i &p_dest, Rect2i &r_clipped_src_rect, Rect2i &r_clipped_dest_rect) const { r_clipped_dest_rect.position = p_dest; r_clipped_src_rect = p_src_rect; if (r_clipped_src_rect.position.x < 0) { r_clipped_dest_rect.position.x -= r_clipped_src_rect.position.x; r_clipped_src_rect.size.x += r_clipped_src_rect.position.x; r_clipped_src_rect.position.x = 0; } if (r_clipped_src_rect.position.y < 0) { r_clipped_dest_rect.position.y -= r_clipped_src_rect.position.y; r_clipped_src_rect.size.y += r_clipped_src_rect.position.y; r_clipped_src_rect.position.y = 0; } if (r_clipped_dest_rect.position.x < 0) { r_clipped_src_rect.position.x -= r_clipped_dest_rect.position.x; r_clipped_src_rect.size.x += r_clipped_dest_rect.position.x; r_clipped_dest_rect.position.x = 0; } if (r_clipped_dest_rect.position.y < 0) { r_clipped_src_rect.position.y -= r_clipped_dest_rect.position.y; r_clipped_src_rect.size.y += r_clipped_dest_rect.position.y; r_clipped_dest_rect.position.y = 0; } r_clipped_src_rect.size.x = MAX(0, MIN(r_clipped_src_rect.size.x, MIN(p_src->width - r_clipped_src_rect.position.x, width - r_clipped_dest_rect.position.x))); r_clipped_src_rect.size.y = MAX(0, MIN(r_clipped_src_rect.size.y, MIN(p_src->height - r_clipped_src_rect.position.y, height - r_clipped_dest_rect.position.y))); r_clipped_dest_rect.size.x = r_clipped_src_rect.size.x; r_clipped_dest_rect.size.y = r_clipped_src_rect.size.y; } void Image::blit_rect(const Ref &p_src, const Rect2i &p_src_rect, const Point2i &p_dest) { ERR_FAIL_COND_MSG(p_src.is_null(), "It's not a reference to a valid Image object."); int dsize = data.size(); int srcdsize = p_src->data.size(); ERR_FAIL_COND(dsize == 0); ERR_FAIL_COND(srcdsize == 0); ERR_FAIL_COND(format != p_src->format); ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot blit_rect in compressed or custom image formats."); Rect2i src_rect; Rect2i dest_rect; _get_clipped_src_and_dest_rects(p_src, p_src_rect, p_dest, src_rect, dest_rect); if (!src_rect.has_area() || !dest_rect.has_area()) { return; } uint8_t *wp = data.ptrw(); uint8_t *dst_data_ptr = wp; const uint8_t *rp = p_src->data.ptr(); const uint8_t *src_data_ptr = rp; int pixel_size = get_format_pixel_size(format); for (int i = 0; i < dest_rect.size.y; i++) { for (int j = 0; j < dest_rect.size.x; j++) { int src_x = src_rect.position.x + j; int src_y = src_rect.position.y + i; int dst_x = dest_rect.position.x + j; int dst_y = dest_rect.position.y + i; const uint8_t *src = &src_data_ptr[(src_y * p_src->width + src_x) * pixel_size]; uint8_t *dst = &dst_data_ptr[(dst_y * width + dst_x) * pixel_size]; for (int k = 0; k < pixel_size; k++) { dst[k] = src[k]; } } } } void Image::blit_rect_mask(const Ref &p_src, const Ref &p_mask, const Rect2i &p_src_rect, const Point2i &p_dest) { ERR_FAIL_COND_MSG(p_src.is_null(), "It's not a reference to a valid Image object."); ERR_FAIL_COND_MSG(p_mask.is_null(), "It's not a reference to a valid Image object."); int dsize = data.size(); int srcdsize = p_src->data.size(); int maskdsize = p_mask->data.size(); ERR_FAIL_COND(dsize == 0); ERR_FAIL_COND(srcdsize == 0); ERR_FAIL_COND(maskdsize == 0); ERR_FAIL_COND_MSG(p_src->width != p_mask->width, "Source image width is different from mask width."); ERR_FAIL_COND_MSG(p_src->height != p_mask->height, "Source image height is different from mask height."); ERR_FAIL_COND(format != p_src->format); Rect2i src_rect; Rect2i dest_rect; _get_clipped_src_and_dest_rects(p_src, p_src_rect, p_dest, src_rect, dest_rect); if (!src_rect.has_area() || !dest_rect.has_area()) { return; } uint8_t *wp = data.ptrw(); uint8_t *dst_data_ptr = wp; const uint8_t *rp = p_src->data.ptr(); const uint8_t *src_data_ptr = rp; int pixel_size = get_format_pixel_size(format); Ref msk = p_mask; for (int i = 0; i < dest_rect.size.y; i++) { for (int j = 0; j < dest_rect.size.x; j++) { int src_x = src_rect.position.x + j; int src_y = src_rect.position.y + i; if (msk->get_pixel(src_x, src_y).a != 0) { int dst_x = dest_rect.position.x + j; int dst_y = dest_rect.position.y + i; const uint8_t *src = &src_data_ptr[(src_y * p_src->width + src_x) * pixel_size]; uint8_t *dst = &dst_data_ptr[(dst_y * width + dst_x) * pixel_size]; for (int k = 0; k < pixel_size; k++) { dst[k] = src[k]; } } } } } void Image::blend_rect(const Ref &p_src, const Rect2i &p_src_rect, const Point2i &p_dest) { ERR_FAIL_COND_MSG(p_src.is_null(), "It's not a reference to a valid Image object."); int dsize = data.size(); int srcdsize = p_src->data.size(); ERR_FAIL_COND(dsize == 0); ERR_FAIL_COND(srcdsize == 0); ERR_FAIL_COND(format != p_src->format); Rect2i src_rect; Rect2i dest_rect; _get_clipped_src_and_dest_rects(p_src, p_src_rect, p_dest, src_rect, dest_rect); if (!src_rect.has_area() || !dest_rect.has_area()) { return; } Ref img = p_src; for (int i = 0; i < dest_rect.size.y; i++) { for (int j = 0; j < dest_rect.size.x; j++) { int src_x = src_rect.position.x + j; int src_y = src_rect.position.y + i; int dst_x = dest_rect.position.x + j; int dst_y = dest_rect.position.y + i; Color sc = img->get_pixel(src_x, src_y); if (sc.a != 0) { Color dc = get_pixel(dst_x, dst_y); dc = dc.blend(sc); set_pixel(dst_x, dst_y, dc); } } } } void Image::blend_rect_mask(const Ref &p_src, const Ref &p_mask, const Rect2i &p_src_rect, const Point2i &p_dest) { ERR_FAIL_COND_MSG(p_src.is_null(), "It's not a reference to a valid Image object."); ERR_FAIL_COND_MSG(p_mask.is_null(), "It's not a reference to a valid Image object."); int dsize = data.size(); int srcdsize = p_src->data.size(); int maskdsize = p_mask->data.size(); ERR_FAIL_COND(dsize == 0); ERR_FAIL_COND(srcdsize == 0); ERR_FAIL_COND(maskdsize == 0); ERR_FAIL_COND_MSG(p_src->width != p_mask->width, "Source image width is different from mask width."); ERR_FAIL_COND_MSG(p_src->height != p_mask->height, "Source image height is different from mask height."); ERR_FAIL_COND(format != p_src->format); Rect2i src_rect; Rect2i dest_rect; _get_clipped_src_and_dest_rects(p_src, p_src_rect, p_dest, src_rect, dest_rect); if (!src_rect.has_area() || !dest_rect.has_area()) { return; } Ref img = p_src; Ref msk = p_mask; for (int i = 0; i < dest_rect.size.y; i++) { for (int j = 0; j < dest_rect.size.x; j++) { int src_x = src_rect.position.x + j; int src_y = src_rect.position.y + i; // If the mask's pixel is transparent then we skip it //Color c = msk->get_pixel(src_x, src_y); //if (c.a == 0) continue; if (msk->get_pixel(src_x, src_y).a != 0) { int dst_x = dest_rect.position.x + j; int dst_y = dest_rect.position.y + i; Color sc = img->get_pixel(src_x, src_y); if (sc.a != 0) { Color dc = get_pixel(dst_x, dst_y); dc = dc.blend(sc); set_pixel(dst_x, dst_y, dc); } } } } } // Repeats `p_pixel` `p_count` times in consecutive memory. // Results in the original pixel and `p_count - 1` subsequent copies of it. void Image::_repeat_pixel_over_subsequent_memory(uint8_t *p_pixel, int p_pixel_size, int p_count) { int offset = 1; for (int stride = 1; offset + stride <= p_count; stride *= 2) { memcpy(p_pixel + offset * p_pixel_size, p_pixel, stride * p_pixel_size); offset += stride; } if (offset < p_count) { memcpy(p_pixel + offset * p_pixel_size, p_pixel, (p_count - offset) * p_pixel_size); } } void Image::fill(const Color &p_color) { if (data.size() == 0) { return; } ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot fill in compressed or custom image formats."); uint8_t *dst_data_ptr = data.ptrw(); int pixel_size = get_format_pixel_size(format); // Put first pixel with the format-aware API. _set_color_at_ofs(dst_data_ptr, 0, p_color); _repeat_pixel_over_subsequent_memory(dst_data_ptr, pixel_size, width * height); } void Image::fill_rect(const Rect2i &p_rect, const Color &p_color) { if (data.size() == 0) { return; } ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot fill rect in compressed or custom image formats."); Rect2i r = Rect2i(0, 0, width, height).intersection(p_rect.abs()); if (!r.has_area()) { return; } uint8_t *dst_data_ptr = data.ptrw(); int pixel_size = get_format_pixel_size(format); // Put first pixel with the format-aware API. uint8_t *rect_first_pixel_ptr = &dst_data_ptr[(r.position.y * width + r.position.x) * pixel_size]; _set_color_at_ofs(rect_first_pixel_ptr, 0, p_color); if (r.size.x == width) { // No need to fill rows separately. _repeat_pixel_over_subsequent_memory(rect_first_pixel_ptr, pixel_size, width * r.size.y); } else { _repeat_pixel_over_subsequent_memory(rect_first_pixel_ptr, pixel_size, r.size.x); for (int y = 1; y < r.size.y; y++) { memcpy(rect_first_pixel_ptr + y * width * pixel_size, rect_first_pixel_ptr, r.size.x * pixel_size); } } } ImageMemLoadFunc Image::_png_mem_loader_func = nullptr; ImageMemLoadFunc Image::_jpg_mem_loader_func = nullptr; ImageMemLoadFunc Image::_webp_mem_loader_func = nullptr; ImageMemLoadFunc Image::_tga_mem_loader_func = nullptr; ImageMemLoadFunc Image::_bmp_mem_loader_func = nullptr; ScalableImageMemLoadFunc Image::_svg_scalable_mem_loader_func = nullptr; ImageMemLoadFunc Image::_dds_mem_loader_func = nullptr; void (*Image::_image_compress_bc_func)(Image *, Image::UsedChannels) = nullptr; void (*Image::_image_compress_bptc_func)(Image *, Image::UsedChannels) = nullptr; void (*Image::_image_compress_etc1_func)(Image *) = nullptr; void (*Image::_image_compress_etc2_func)(Image *, Image::UsedChannels) = nullptr; void (*Image::_image_compress_astc_func)(Image *, Image::ASTCFormat) = nullptr; void (*Image::_image_decompress_bc)(Image *) = nullptr; void (*Image::_image_decompress_bptc)(Image *) = nullptr; void (*Image::_image_decompress_etc1)(Image *) = nullptr; void (*Image::_image_decompress_etc2)(Image *) = nullptr; void (*Image::_image_decompress_astc)(Image *) = nullptr; Vector (*Image::webp_lossy_packer)(const Ref &, float) = nullptr; Vector (*Image::webp_lossless_packer)(const Ref &) = nullptr; Ref (*Image::webp_unpacker)(const Vector &) = nullptr; Vector (*Image::png_packer)(const Ref &) = nullptr; Ref (*Image::png_unpacker)(const Vector &) = nullptr; Vector (*Image::basis_universal_packer)(const Ref &, Image::UsedChannels) = nullptr; Ref (*Image::basis_universal_unpacker)(const Vector &) = nullptr; Ref (*Image::basis_universal_unpacker_ptr)(const uint8_t *, int) = nullptr; void Image::_set_data(const Dictionary &p_data) { ERR_FAIL_COND(!p_data.has("width")); ERR_FAIL_COND(!p_data.has("height")); ERR_FAIL_COND(!p_data.has("format")); ERR_FAIL_COND(!p_data.has("mipmaps")); ERR_FAIL_COND(!p_data.has("data")); int dwidth = p_data["width"]; int dheight = p_data["height"]; String dformat = p_data["format"]; bool dmipmaps = p_data["mipmaps"]; Vector ddata = p_data["data"]; Format ddformat = FORMAT_MAX; for (int i = 0; i < FORMAT_MAX; i++) { if (dformat == get_format_name(Format(i))) { ddformat = Format(i); break; } } ERR_FAIL_COND(ddformat == FORMAT_MAX); initialize_data(dwidth, dheight, dmipmaps, ddformat, ddata); } Dictionary Image::_get_data() const { Dictionary d; d["width"] = width; d["height"] = height; d["format"] = get_format_name(format); d["mipmaps"] = mipmaps; d["data"] = data; return d; } Color Image::get_pixelv(const Point2i &p_point) const { return get_pixel(p_point.x, p_point.y); } Color Image::_get_color_at_ofs(const uint8_t *ptr, uint32_t ofs) const { switch (format) { case FORMAT_L8: { float l = ptr[ofs] / 255.0; return Color(l, l, l, 1); } case FORMAT_LA8: { float l = ptr[ofs * 2 + 0] / 255.0; float a = ptr[ofs * 2 + 1] / 255.0; return Color(l, l, l, a); } case FORMAT_R8: { float r = ptr[ofs] / 255.0; return Color(r, 0, 0, 1); } case FORMAT_RG8: { float r = ptr[ofs * 2 + 0] / 255.0; float g = ptr[ofs * 2 + 1] / 255.0; return Color(r, g, 0, 1); } case FORMAT_RGB8: { float r = ptr[ofs * 3 + 0] / 255.0; float g = ptr[ofs * 3 + 1] / 255.0; float b = ptr[ofs * 3 + 2] / 255.0; return Color(r, g, b, 1); } case FORMAT_RGBA8: { float r = ptr[ofs * 4 + 0] / 255.0; float g = ptr[ofs * 4 + 1] / 255.0; float b = ptr[ofs * 4 + 2] / 255.0; float a = ptr[ofs * 4 + 3] / 255.0; return Color(r, g, b, a); } case FORMAT_RGBA4444: { uint16_t u = ((uint16_t *)ptr)[ofs]; float r = ((u >> 12) & 0xF) / 15.0; float g = ((u >> 8) & 0xF) / 15.0; float b = ((u >> 4) & 0xF) / 15.0; float a = (u & 0xF) / 15.0; return Color(r, g, b, a); } case FORMAT_RGB565: { uint16_t u = ((uint16_t *)ptr)[ofs]; float r = (u & 0x1F) / 31.0; float g = ((u >> 5) & 0x3F) / 63.0; float b = ((u >> 11) & 0x1F) / 31.0; return Color(r, g, b, 1.0); } case FORMAT_RF: { float r = ((float *)ptr)[ofs]; return Color(r, 0, 0, 1); } case FORMAT_RGF: { float r = ((float *)ptr)[ofs * 2 + 0]; float g = ((float *)ptr)[ofs * 2 + 1]; return Color(r, g, 0, 1); } case FORMAT_RGBF: { float r = ((float *)ptr)[ofs * 3 + 0]; float g = ((float *)ptr)[ofs * 3 + 1]; float b = ((float *)ptr)[ofs * 3 + 2]; return Color(r, g, b, 1); } case FORMAT_RGBAF: { float r = ((float *)ptr)[ofs * 4 + 0]; float g = ((float *)ptr)[ofs * 4 + 1]; float b = ((float *)ptr)[ofs * 4 + 2]; float a = ((float *)ptr)[ofs * 4 + 3]; return Color(r, g, b, a); } case FORMAT_RH: { uint16_t r = ((uint16_t *)ptr)[ofs]; return Color(Math::half_to_float(r), 0, 0, 1); } case FORMAT_RGH: { uint16_t r = ((uint16_t *)ptr)[ofs * 2 + 0]; uint16_t g = ((uint16_t *)ptr)[ofs * 2 + 1]; return Color(Math::half_to_float(r), Math::half_to_float(g), 0, 1); } case FORMAT_RGBH: { uint16_t r = ((uint16_t *)ptr)[ofs * 3 + 0]; uint16_t g = ((uint16_t *)ptr)[ofs * 3 + 1]; uint16_t b = ((uint16_t *)ptr)[ofs * 3 + 2]; return Color(Math::half_to_float(r), Math::half_to_float(g), Math::half_to_float(b), 1); } case FORMAT_RGBAH: { uint16_t r = ((uint16_t *)ptr)[ofs * 4 + 0]; uint16_t g = ((uint16_t *)ptr)[ofs * 4 + 1]; uint16_t b = ((uint16_t *)ptr)[ofs * 4 + 2]; uint16_t a = ((uint16_t *)ptr)[ofs * 4 + 3]; return Color(Math::half_to_float(r), Math::half_to_float(g), Math::half_to_float(b), Math::half_to_float(a)); } case FORMAT_RGBE9995: { return Color::from_rgbe9995(((uint32_t *)ptr)[ofs]); } default: { ERR_FAIL_V_MSG(Color(), "Can't get_pixel() on compressed image, sorry."); } } } void Image::_set_color_at_ofs(uint8_t *ptr, uint32_t ofs, const Color &p_color) { switch (format) { case FORMAT_L8: { ptr[ofs] = uint8_t(CLAMP(p_color.get_v() * 255.0, 0, 255)); } break; case FORMAT_LA8: { ptr[ofs * 2 + 0] = uint8_t(CLAMP(p_color.get_v() * 255.0, 0, 255)); ptr[ofs * 2 + 1] = uint8_t(CLAMP(p_color.a * 255.0, 0, 255)); } break; case FORMAT_R8: { ptr[ofs] = uint8_t(CLAMP(p_color.r * 255.0, 0, 255)); } break; case FORMAT_RG8: { ptr[ofs * 2 + 0] = uint8_t(CLAMP(p_color.r * 255.0, 0, 255)); ptr[ofs * 2 + 1] = uint8_t(CLAMP(p_color.g * 255.0, 0, 255)); } break; case FORMAT_RGB8: { ptr[ofs * 3 + 0] = uint8_t(CLAMP(p_color.r * 255.0, 0, 255)); ptr[ofs * 3 + 1] = uint8_t(CLAMP(p_color.g * 255.0, 0, 255)); ptr[ofs * 3 + 2] = uint8_t(CLAMP(p_color.b * 255.0, 0, 255)); } break; case FORMAT_RGBA8: { ptr[ofs * 4 + 0] = uint8_t(CLAMP(p_color.r * 255.0, 0, 255)); ptr[ofs * 4 + 1] = uint8_t(CLAMP(p_color.g * 255.0, 0, 255)); ptr[ofs * 4 + 2] = uint8_t(CLAMP(p_color.b * 255.0, 0, 255)); ptr[ofs * 4 + 3] = uint8_t(CLAMP(p_color.a * 255.0, 0, 255)); } break; case FORMAT_RGBA4444: { uint16_t rgba = 0; rgba = uint16_t(CLAMP(p_color.r * 15.0, 0, 15)) << 12; rgba |= uint16_t(CLAMP(p_color.g * 15.0, 0, 15)) << 8; rgba |= uint16_t(CLAMP(p_color.b * 15.0, 0, 15)) << 4; rgba |= uint16_t(CLAMP(p_color.a * 15.0, 0, 15)); ((uint16_t *)ptr)[ofs] = rgba; } break; case FORMAT_RGB565: { uint16_t rgba = 0; rgba = uint16_t(CLAMP(p_color.r * 31.0, 0, 31)); rgba |= uint16_t(CLAMP(p_color.g * 63.0, 0, 33)) << 5; rgba |= uint16_t(CLAMP(p_color.b * 31.0, 0, 31)) << 11; ((uint16_t *)ptr)[ofs] = rgba; } break; case FORMAT_RF: { ((float *)ptr)[ofs] = p_color.r; } break; case FORMAT_RGF: { ((float *)ptr)[ofs * 2 + 0] = p_color.r; ((float *)ptr)[ofs * 2 + 1] = p_color.g; } break; case FORMAT_RGBF: { ((float *)ptr)[ofs * 3 + 0] = p_color.r; ((float *)ptr)[ofs * 3 + 1] = p_color.g; ((float *)ptr)[ofs * 3 + 2] = p_color.b; } break; case FORMAT_RGBAF: { ((float *)ptr)[ofs * 4 + 0] = p_color.r; ((float *)ptr)[ofs * 4 + 1] = p_color.g; ((float *)ptr)[ofs * 4 + 2] = p_color.b; ((float *)ptr)[ofs * 4 + 3] = p_color.a; } break; case FORMAT_RH: { ((uint16_t *)ptr)[ofs] = Math::make_half_float(p_color.r); } break; case FORMAT_RGH: { ((uint16_t *)ptr)[ofs * 2 + 0] = Math::make_half_float(p_color.r); ((uint16_t *)ptr)[ofs * 2 + 1] = Math::make_half_float(p_color.g); } break; case FORMAT_RGBH: { ((uint16_t *)ptr)[ofs * 3 + 0] = Math::make_half_float(p_color.r); ((uint16_t *)ptr)[ofs * 3 + 1] = Math::make_half_float(p_color.g); ((uint16_t *)ptr)[ofs * 3 + 2] = Math::make_half_float(p_color.b); } break; case FORMAT_RGBAH: { ((uint16_t *)ptr)[ofs * 4 + 0] = Math::make_half_float(p_color.r); ((uint16_t *)ptr)[ofs * 4 + 1] = Math::make_half_float(p_color.g); ((uint16_t *)ptr)[ofs * 4 + 2] = Math::make_half_float(p_color.b); ((uint16_t *)ptr)[ofs * 4 + 3] = Math::make_half_float(p_color.a); } break; case FORMAT_RGBE9995: { ((uint32_t *)ptr)[ofs] = p_color.to_rgbe9995(); } break; default: { ERR_FAIL_MSG("Can't set_pixel() on compressed image, sorry."); } } } Color Image::get_pixel(int p_x, int p_y) const { #ifdef DEBUG_ENABLED ERR_FAIL_INDEX_V(p_x, width, Color()); ERR_FAIL_INDEX_V(p_y, height, Color()); #endif uint32_t ofs = p_y * width + p_x; return _get_color_at_ofs(data.ptr(), ofs); } void Image::set_pixelv(const Point2i &p_point, const Color &p_color) { set_pixel(p_point.x, p_point.y, p_color); } void Image::set_pixel(int p_x, int p_y, const Color &p_color) { #ifdef DEBUG_ENABLED ERR_FAIL_INDEX(p_x, width); ERR_FAIL_INDEX(p_y, height); #endif uint32_t ofs = p_y * width + p_x; _set_color_at_ofs(data.ptrw(), ofs, p_color); } void Image::adjust_bcs(float p_brightness, float p_contrast, float p_saturation) { ERR_FAIL_COND_MSG(!_can_modify(format), "Cannot adjust_bcs in compressed or custom image formats."); uint8_t *w = data.ptrw(); uint32_t pixel_size = get_format_pixel_size(format); uint32_t pixel_count = data.size() / pixel_size; for (uint32_t i = 0; i < pixel_count; i++) { Color c = _get_color_at_ofs(w, i); Vector3 rgb(c.r, c.g, c.b); rgb *= p_brightness; rgb = Vector3(0.5, 0.5, 0.5).lerp(rgb, p_contrast); float center = (rgb.x + rgb.y + rgb.z) / 3.0; rgb = Vector3(center, center, center).lerp(rgb, p_saturation); c.r = rgb.x; c.g = rgb.y; c.b = rgb.z; _set_color_at_ofs(w, i, c); } } Image::UsedChannels Image::detect_used_channels(CompressSource p_source) const { ERR_FAIL_COND_V(data.size() == 0, USED_CHANNELS_RGBA); ERR_FAIL_COND_V(is_compressed(), USED_CHANNELS_RGBA); bool r = false, g = false, b = false, a = false, c = false; const uint8_t *data_ptr = data.ptr(); uint32_t data_total = width * height; for (uint32_t i = 0; i < data_total; i++) { Color col = _get_color_at_ofs(data_ptr, i); if (col.r > 0.001) { r = true; } if (col.g > 0.001) { g = true; } if (col.b > 0.001) { b = true; } if (col.a < 0.999) { a = true; } if (col.r != col.b || col.r != col.g || col.b != col.g) { c = true; } } UsedChannels used_channels; if (!c && !a) { used_channels = USED_CHANNELS_L; } else if (!c && a) { used_channels = USED_CHANNELS_LA; } else if (r && !g && !b && !a) { used_channels = USED_CHANNELS_R; } else if (r && g && !b && !a) { used_channels = USED_CHANNELS_RG; } else if (r && g && b && !a) { used_channels = USED_CHANNELS_RGB; } else { used_channels = USED_CHANNELS_RGBA; } if (p_source == COMPRESS_SOURCE_SRGB && (used_channels == USED_CHANNELS_R || used_channels == USED_CHANNELS_RG)) { //R and RG do not support SRGB used_channels = USED_CHANNELS_RGB; } if (p_source == COMPRESS_SOURCE_NORMAL) { //use RG channels only for normal used_channels = USED_CHANNELS_RG; } return used_channels; } void Image::optimize_channels() { switch (detect_used_channels()) { case USED_CHANNELS_L: convert(FORMAT_L8); break; case USED_CHANNELS_LA: convert(FORMAT_LA8); break; case USED_CHANNELS_R: convert(FORMAT_R8); break; case USED_CHANNELS_RG: convert(FORMAT_RG8); break; case USED_CHANNELS_RGB: convert(FORMAT_RGB8); break; case USED_CHANNELS_RGBA: convert(FORMAT_RGBA8); break; } } void Image::_bind_methods() { ClassDB::bind_method(D_METHOD("get_width"), &Image::get_width); ClassDB::bind_method(D_METHOD("get_height"), &Image::get_height); ClassDB::bind_method(D_METHOD("get_size"), &Image::get_size); ClassDB::bind_method(D_METHOD("has_mipmaps"), &Image::has_mipmaps); ClassDB::bind_method(D_METHOD("get_format"), &Image::get_format); ClassDB::bind_method(D_METHOD("get_data"), &Image::get_data); ClassDB::bind_method(D_METHOD("convert", "format"), &Image::convert); ClassDB::bind_method(D_METHOD("get_mipmap_offset", "mipmap"), &Image::get_mipmap_offset); ClassDB::bind_method(D_METHOD("resize_to_po2", "square", "interpolation"), &Image::resize_to_po2, DEFVAL(false), DEFVAL(INTERPOLATE_BILINEAR)); ClassDB::bind_method(D_METHOD("resize", "width", "height", "interpolation"), &Image::resize, DEFVAL(INTERPOLATE_BILINEAR)); ClassDB::bind_method(D_METHOD("shrink_x2"), &Image::shrink_x2); ClassDB::bind_method(D_METHOD("crop", "width", "height"), &Image::crop); ClassDB::bind_method(D_METHOD("flip_x"), &Image::flip_x); ClassDB::bind_method(D_METHOD("flip_y"), &Image::flip_y); ClassDB::bind_method(D_METHOD("generate_mipmaps", "renormalize"), &Image::generate_mipmaps, DEFVAL(false)); ClassDB::bind_method(D_METHOD("clear_mipmaps"), &Image::clear_mipmaps); ClassDB::bind_static_method("Image", D_METHOD("create", "width", "height", "use_mipmaps", "format"), &Image::create_empty); ClassDB::bind_static_method("Image", D_METHOD("create_from_data", "width", "height", "use_mipmaps", "format", "data"), &Image::create_from_data); ClassDB::bind_method(D_METHOD("set_data", "width", "height", "use_mipmaps", "format", "data"), &Image::set_data); ClassDB::bind_method(D_METHOD("is_empty"), &Image::is_empty); ClassDB::bind_method(D_METHOD("load", "path"), &Image::load); ClassDB::bind_static_method("Image", D_METHOD("load_from_file", "path"), &Image::load_from_file); ClassDB::bind_method(D_METHOD("save_png", "path"), &Image::save_png); ClassDB::bind_method(D_METHOD("save_png_to_buffer"), &Image::save_png_to_buffer); ClassDB::bind_method(D_METHOD("save_jpg", "path", "quality"), &Image::save_jpg, DEFVAL(0.75)); ClassDB::bind_method(D_METHOD("save_jpg_to_buffer", "quality"), &Image::save_jpg_to_buffer, DEFVAL(0.75)); ClassDB::bind_method(D_METHOD("save_exr", "path", "grayscale"), &Image::save_exr, DEFVAL(false)); ClassDB::bind_method(D_METHOD("save_exr_to_buffer", "grayscale"), &Image::save_exr_to_buffer, DEFVAL(false)); ClassDB::bind_method(D_METHOD("save_webp", "path", "lossy", "quality"), &Image::save_webp, DEFVAL(false), DEFVAL(0.75f)); ClassDB::bind_method(D_METHOD("save_webp_to_buffer", "lossy", "quality"), &Image::save_webp_to_buffer, DEFVAL(false), DEFVAL(0.75f)); ClassDB::bind_method(D_METHOD("detect_alpha"), &Image::detect_alpha); ClassDB::bind_method(D_METHOD("is_invisible"), &Image::is_invisible); ClassDB::bind_method(D_METHOD("detect_used_channels", "source"), &Image::detect_used_channels, DEFVAL(COMPRESS_SOURCE_GENERIC)); ClassDB::bind_method(D_METHOD("compress", "mode", "source", "astc_format"), &Image::compress, DEFVAL(COMPRESS_SOURCE_GENERIC), DEFVAL(ASTC_FORMAT_4x4)); ClassDB::bind_method(D_METHOD("compress_from_channels", "mode", "channels", "astc_format"), &Image::compress_from_channels, DEFVAL(ASTC_FORMAT_4x4)); ClassDB::bind_method(D_METHOD("decompress"), &Image::decompress); ClassDB::bind_method(D_METHOD("is_compressed"), &Image::is_compressed); ClassDB::bind_method(D_METHOD("rotate_90", "direction"), &Image::rotate_90); ClassDB::bind_method(D_METHOD("rotate_180"), &Image::rotate_180); ClassDB::bind_method(D_METHOD("fix_alpha_edges"), &Image::fix_alpha_edges); ClassDB::bind_method(D_METHOD("premultiply_alpha"), &Image::premultiply_alpha); ClassDB::bind_method(D_METHOD("srgb_to_linear"), &Image::srgb_to_linear); ClassDB::bind_method(D_METHOD("normal_map_to_xy"), &Image::normal_map_to_xy); ClassDB::bind_method(D_METHOD("rgbe_to_srgb"), &Image::rgbe_to_srgb); ClassDB::bind_method(D_METHOD("bump_map_to_normal_map", "bump_scale"), &Image::bump_map_to_normal_map, DEFVAL(1.0)); ClassDB::bind_method(D_METHOD("compute_image_metrics", "compared_image", "use_luma"), &Image::compute_image_metrics); ClassDB::bind_method(D_METHOD("blit_rect", "src", "src_rect", "dst"), &Image::blit_rect); ClassDB::bind_method(D_METHOD("blit_rect_mask", "src", "mask", "src_rect", "dst"), &Image::blit_rect_mask); ClassDB::bind_method(D_METHOD("blend_rect", "src", "src_rect", "dst"), &Image::blend_rect); ClassDB::bind_method(D_METHOD("blend_rect_mask", "src", "mask", "src_rect", "dst"), &Image::blend_rect_mask); ClassDB::bind_method(D_METHOD("fill", "color"), &Image::fill); ClassDB::bind_method(D_METHOD("fill_rect", "rect", "color"), &Image::fill_rect); ClassDB::bind_method(D_METHOD("get_used_rect"), &Image::get_used_rect); ClassDB::bind_method(D_METHOD("get_region", "region"), &Image::get_region); ClassDB::bind_method(D_METHOD("copy_from", "src"), &Image::copy_internals_from); ClassDB::bind_method(D_METHOD("_set_data", "data"), &Image::_set_data); ClassDB::bind_method(D_METHOD("_get_data"), &Image::_get_data); ClassDB::bind_method(D_METHOD("get_pixelv", "point"), &Image::get_pixelv); ClassDB::bind_method(D_METHOD("get_pixel", "x", "y"), &Image::get_pixel); ClassDB::bind_method(D_METHOD("set_pixelv", "point", "color"), &Image::set_pixelv); ClassDB::bind_method(D_METHOD("set_pixel", "x", "y", "color"), &Image::set_pixel); ClassDB::bind_method(D_METHOD("adjust_bcs", "brightness", "contrast", "saturation"), &Image::adjust_bcs); ClassDB::bind_method(D_METHOD("load_png_from_buffer", "buffer"), &Image::load_png_from_buffer); ClassDB::bind_method(D_METHOD("load_jpg_from_buffer", "buffer"), &Image::load_jpg_from_buffer); ClassDB::bind_method(D_METHOD("load_webp_from_buffer", "buffer"), &Image::load_webp_from_buffer); ClassDB::bind_method(D_METHOD("load_tga_from_buffer", "buffer"), &Image::load_tga_from_buffer); ClassDB::bind_method(D_METHOD("load_bmp_from_buffer", "buffer"), &Image::load_bmp_from_buffer); ClassDB::bind_method(D_METHOD("load_dds_from_buffer", "buffer"), &Image::load_dds_from_buffer); ClassDB::bind_method(D_METHOD("load_svg_from_buffer", "buffer", "scale"), &Image::load_svg_from_buffer, DEFVAL(1.0)); ClassDB::bind_method(D_METHOD("load_svg_from_string", "svg_str", "scale"), &Image::load_svg_from_string, DEFVAL(1.0)); ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_STORAGE), "_set_data", "_get_data"); BIND_CONSTANT(MAX_WIDTH); BIND_CONSTANT(MAX_HEIGHT); BIND_ENUM_CONSTANT(FORMAT_L8); //luminance BIND_ENUM_CONSTANT(FORMAT_LA8); //luminance-alpha BIND_ENUM_CONSTANT(FORMAT_R8); BIND_ENUM_CONSTANT(FORMAT_RG8); BIND_ENUM_CONSTANT(FORMAT_RGB8); BIND_ENUM_CONSTANT(FORMAT_RGBA8); BIND_ENUM_CONSTANT(FORMAT_RGBA4444); BIND_ENUM_CONSTANT(FORMAT_RGB565); BIND_ENUM_CONSTANT(FORMAT_RF); //float BIND_ENUM_CONSTANT(FORMAT_RGF); BIND_ENUM_CONSTANT(FORMAT_RGBF); BIND_ENUM_CONSTANT(FORMAT_RGBAF); BIND_ENUM_CONSTANT(FORMAT_RH); //half float BIND_ENUM_CONSTANT(FORMAT_RGH); BIND_ENUM_CONSTANT(FORMAT_RGBH); BIND_ENUM_CONSTANT(FORMAT_RGBAH); BIND_ENUM_CONSTANT(FORMAT_RGBE9995); BIND_ENUM_CONSTANT(FORMAT_DXT1); //s3tc bc1 BIND_ENUM_CONSTANT(FORMAT_DXT3); //bc2 BIND_ENUM_CONSTANT(FORMAT_DXT5); //bc3 BIND_ENUM_CONSTANT(FORMAT_RGTC_R); BIND_ENUM_CONSTANT(FORMAT_RGTC_RG); BIND_ENUM_CONSTANT(FORMAT_BPTC_RGBA); //btpc bc6h BIND_ENUM_CONSTANT(FORMAT_BPTC_RGBF); //float / BIND_ENUM_CONSTANT(FORMAT_BPTC_RGBFU); //unsigned float BIND_ENUM_CONSTANT(FORMAT_ETC); //etc1 BIND_ENUM_CONSTANT(FORMAT_ETC2_R11); //etc2 BIND_ENUM_CONSTANT(FORMAT_ETC2_R11S); //signed ); NOT srgb. BIND_ENUM_CONSTANT(FORMAT_ETC2_RG11); BIND_ENUM_CONSTANT(FORMAT_ETC2_RG11S); BIND_ENUM_CONSTANT(FORMAT_ETC2_RGB8); BIND_ENUM_CONSTANT(FORMAT_ETC2_RGBA8); BIND_ENUM_CONSTANT(FORMAT_ETC2_RGB8A1); BIND_ENUM_CONSTANT(FORMAT_ETC2_RA_AS_RG); BIND_ENUM_CONSTANT(FORMAT_DXT5_RA_AS_RG); BIND_ENUM_CONSTANT(FORMAT_ASTC_4x4); BIND_ENUM_CONSTANT(FORMAT_ASTC_4x4_HDR); BIND_ENUM_CONSTANT(FORMAT_ASTC_8x8); BIND_ENUM_CONSTANT(FORMAT_ASTC_8x8_HDR); BIND_ENUM_CONSTANT(FORMAT_MAX); BIND_ENUM_CONSTANT(INTERPOLATE_NEAREST); BIND_ENUM_CONSTANT(INTERPOLATE_BILINEAR); BIND_ENUM_CONSTANT(INTERPOLATE_CUBIC); BIND_ENUM_CONSTANT(INTERPOLATE_TRILINEAR); BIND_ENUM_CONSTANT(INTERPOLATE_LANCZOS); BIND_ENUM_CONSTANT(ALPHA_NONE); BIND_ENUM_CONSTANT(ALPHA_BIT); BIND_ENUM_CONSTANT(ALPHA_BLEND); BIND_ENUM_CONSTANT(COMPRESS_S3TC); BIND_ENUM_CONSTANT(COMPRESS_ETC); BIND_ENUM_CONSTANT(COMPRESS_ETC2); BIND_ENUM_CONSTANT(COMPRESS_BPTC); BIND_ENUM_CONSTANT(COMPRESS_ASTC); BIND_ENUM_CONSTANT(COMPRESS_MAX); BIND_ENUM_CONSTANT(USED_CHANNELS_L); BIND_ENUM_CONSTANT(USED_CHANNELS_LA); BIND_ENUM_CONSTANT(USED_CHANNELS_R); BIND_ENUM_CONSTANT(USED_CHANNELS_RG); BIND_ENUM_CONSTANT(USED_CHANNELS_RGB); BIND_ENUM_CONSTANT(USED_CHANNELS_RGBA); BIND_ENUM_CONSTANT(COMPRESS_SOURCE_GENERIC); BIND_ENUM_CONSTANT(COMPRESS_SOURCE_SRGB); BIND_ENUM_CONSTANT(COMPRESS_SOURCE_NORMAL); BIND_ENUM_CONSTANT(ASTC_FORMAT_4x4); BIND_ENUM_CONSTANT(ASTC_FORMAT_8x8); } void Image::set_compress_bc_func(void (*p_compress_func)(Image *, UsedChannels)) { _image_compress_bc_func = p_compress_func; } void Image::set_compress_bptc_func(void (*p_compress_func)(Image *, UsedChannels)) { _image_compress_bptc_func = p_compress_func; } void Image::normal_map_to_xy() { convert(Image::FORMAT_RGBA8); { int len = data.size() / 4; uint8_t *data_ptr = data.ptrw(); for (int i = 0; i < len; i++) { data_ptr[(i << 2) + 3] = data_ptr[(i << 2) + 0]; //x to w data_ptr[(i << 2) + 0] = data_ptr[(i << 2) + 1]; //y to xz data_ptr[(i << 2) + 2] = data_ptr[(i << 2) + 1]; } } convert(Image::FORMAT_LA8); } Ref Image::rgbe_to_srgb() { if (data.size() == 0) { return Ref(); } ERR_FAIL_COND_V(format != FORMAT_RGBE9995, Ref()); Ref new_image = create_empty(width, height, false, Image::FORMAT_RGB8); for (int row = 0; row < height; row++) { for (int col = 0; col < width; col++) { new_image->set_pixel(col, row, get_pixel(col, row).linear_to_srgb()); } } if (has_mipmaps()) { new_image->generate_mipmaps(); } return new_image; } Ref Image::get_image_from_mipmap(int p_mipamp) const { int ofs, size, w, h; get_mipmap_offset_size_and_dimensions(p_mipamp, ofs, size, w, h); Vector new_data; new_data.resize(size); { uint8_t *wr = new_data.ptrw(); const uint8_t *rd = data.ptr(); memcpy(wr, rd + ofs, size); } Ref image; image.instantiate(); image->width = w; image->height = h; image->format = format; image->data = new_data; image->mipmaps = false; return image; } void Image::bump_map_to_normal_map(float bump_scale) { ERR_FAIL_COND(!_can_modify(format)); clear_mipmaps(); convert(Image::FORMAT_RF); Vector result_image; //rgba output result_image.resize(width * height * 4); { const uint8_t *rp = data.ptr(); uint8_t *wp = result_image.ptrw(); ERR_FAIL_COND(!rp); unsigned char *write_ptr = wp; float *read_ptr = (float *)rp; for (int ty = 0; ty < height; ty++) { int py = ty + 1; if (py >= height) { py -= height; } for (int tx = 0; tx < width; tx++) { int px = tx + 1; if (px >= width) { px -= width; } float here = read_ptr[ty * width + tx]; float to_right = read_ptr[ty * width + px]; float above = read_ptr[py * width + tx]; Vector3 up = Vector3(0, 1, (here - above) * bump_scale); Vector3 across = Vector3(1, 0, (to_right - here) * bump_scale); Vector3 normal = across.cross(up); normal.normalize(); write_ptr[((ty * width + tx) << 2) + 0] = (127.5 + normal.x * 127.5); write_ptr[((ty * width + tx) << 2) + 1] = (127.5 + normal.y * 127.5); write_ptr[((ty * width + tx) << 2) + 2] = (127.5 + normal.z * 127.5); write_ptr[((ty * width + tx) << 2) + 3] = 255; } } } format = FORMAT_RGBA8; data = result_image; } void Image::srgb_to_linear() { if (data.size() == 0) { return; } static const uint8_t srgb2lin[256] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 24, 25, 26, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 47, 48, 49, 50, 51, 52, 53, 54, 55, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 112, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 139, 140, 142, 144, 145, 147, 148, 150, 152, 153, 155, 157, 159, 160, 162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 188, 190, 192, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 235, 237, 239, 241, 243, 245, 248, 250, 252, 255 }; ERR_FAIL_COND(format != FORMAT_RGB8 && format != FORMAT_RGBA8); if (format == FORMAT_RGBA8) { int len = data.size() / 4; uint8_t *data_ptr = data.ptrw(); for (int i = 0; i < len; i++) { data_ptr[(i << 2) + 0] = srgb2lin[data_ptr[(i << 2) + 0]]; data_ptr[(i << 2) + 1] = srgb2lin[data_ptr[(i << 2) + 1]]; data_ptr[(i << 2) + 2] = srgb2lin[data_ptr[(i << 2) + 2]]; } } else if (format == FORMAT_RGB8) { int len = data.size() / 3; uint8_t *data_ptr = data.ptrw(); for (int i = 0; i < len; i++) { data_ptr[(i * 3) + 0] = srgb2lin[data_ptr[(i * 3) + 0]]; data_ptr[(i * 3) + 1] = srgb2lin[data_ptr[(i * 3) + 1]]; data_ptr[(i * 3) + 2] = srgb2lin[data_ptr[(i * 3) + 2]]; } } } void Image::premultiply_alpha() { if (data.size() == 0) { return; } if (format != FORMAT_RGBA8) { return; //not needed } uint8_t *data_ptr = data.ptrw(); for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { uint8_t *ptr = &data_ptr[(i * width + j) * 4]; ptr[0] = (uint16_t(ptr[0]) * uint16_t(ptr[3]) + 255U) >> 8; ptr[1] = (uint16_t(ptr[1]) * uint16_t(ptr[3]) + 255U) >> 8; ptr[2] = (uint16_t(ptr[2]) * uint16_t(ptr[3]) + 255U) >> 8; } } } void Image::fix_alpha_edges() { if (data.size() == 0) { return; } if (format != FORMAT_RGBA8) { return; //not needed } Vector dcopy = data; const uint8_t *srcptr = dcopy.ptr(); uint8_t *data_ptr = data.ptrw(); const int max_radius = 4; const int alpha_threshold = 20; const int max_dist = 0x7FFFFFFF; for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { const uint8_t *rptr = &srcptr[(i * width + j) * 4]; uint8_t *wptr = &data_ptr[(i * width + j) * 4]; if (rptr[3] >= alpha_threshold) { continue; } int closest_dist = max_dist; uint8_t closest_color[3]; int from_x = MAX(0, j - max_radius); int to_x = MIN(width - 1, j + max_radius); int from_y = MAX(0, i - max_radius); int to_y = MIN(height - 1, i + max_radius); for (int k = from_y; k <= to_y; k++) { for (int l = from_x; l <= to_x; l++) { int dy = i - k; int dx = j - l; int dist = dy * dy + dx * dx; if (dist >= closest_dist) { continue; } const uint8_t *rp2 = &srcptr[(k * width + l) << 2]; if (rp2[3] < alpha_threshold) { continue; } closest_dist = dist; closest_color[0] = rp2[0]; closest_color[1] = rp2[1]; closest_color[2] = rp2[2]; } } if (closest_dist != max_dist) { wptr[0] = closest_color[0]; wptr[1] = closest_color[1]; wptr[2] = closest_color[2]; } } } } String Image::get_format_name(Format p_format) { ERR_FAIL_INDEX_V(p_format, FORMAT_MAX, String()); return format_names[p_format]; } Error Image::load_png_from_buffer(const Vector &p_array) { return _load_from_buffer(p_array, _png_mem_loader_func); } Error Image::load_jpg_from_buffer(const Vector &p_array) { return _load_from_buffer(p_array, _jpg_mem_loader_func); } Error Image::load_webp_from_buffer(const Vector &p_array) { return _load_from_buffer(p_array, _webp_mem_loader_func); } Error Image::load_tga_from_buffer(const Vector &p_array) { ERR_FAIL_NULL_V_MSG( _tga_mem_loader_func, ERR_UNAVAILABLE, "The TGA module isn't enabled. Recompile the Godot editor or export template binary with the `module_tga_enabled=yes` SCons option."); return _load_from_buffer(p_array, _tga_mem_loader_func); } Error Image::load_bmp_from_buffer(const Vector &p_array) { ERR_FAIL_NULL_V_MSG( _bmp_mem_loader_func, ERR_UNAVAILABLE, "The BMP module isn't enabled. Recompile the Godot editor or export template binary with the `module_bmp_enabled=yes` SCons option."); return _load_from_buffer(p_array, _bmp_mem_loader_func); } Error Image::load_svg_from_buffer(const Vector &p_array, float scale) { ERR_FAIL_NULL_V_MSG( _svg_scalable_mem_loader_func, ERR_UNAVAILABLE, "The SVG module isn't enabled. Recompile the Godot editor or export template binary with the `module_svg_enabled=yes` SCons option."); int buffer_size = p_array.size(); ERR_FAIL_COND_V(buffer_size == 0, ERR_INVALID_PARAMETER); Ref image = _svg_scalable_mem_loader_func(p_array.ptr(), buffer_size, scale); ERR_FAIL_COND_V(!image.is_valid(), ERR_PARSE_ERROR); copy_internals_from(image); return OK; } Error Image::load_svg_from_string(const String &p_svg_str, float scale) { return load_svg_from_buffer(p_svg_str.to_utf8_buffer(), scale); } Error Image::load_dds_from_buffer(const Vector &p_array) { ERR_FAIL_NULL_V_MSG( _dds_mem_loader_func, ERR_UNAVAILABLE, "The DDS module isn't enabled. Recompile the Godot editor or export template binary with the `module_dds_enabled=yes` SCons option."); return _load_from_buffer(p_array, _dds_mem_loader_func); } void Image::convert_rg_to_ra_rgba8() { ERR_FAIL_COND(format != FORMAT_RGBA8); ERR_FAIL_COND(!data.size()); int s = data.size(); uint8_t *w = data.ptrw(); for (int i = 0; i < s; i += 4) { w[i + 3] = w[i + 1]; w[i + 1] = 0; w[i + 2] = 0; } } void Image::convert_ra_rgba8_to_rg() { ERR_FAIL_COND(format != FORMAT_RGBA8); ERR_FAIL_COND(!data.size()); int s = data.size(); uint8_t *w = data.ptrw(); for (int i = 0; i < s; i += 4) { w[i + 1] = w[i + 3]; w[i + 2] = 0; w[i + 3] = 255; } } void Image::convert_rgba8_to_bgra8() { ERR_FAIL_COND(format != FORMAT_RGBA8); ERR_FAIL_COND(!data.size()); int s = data.size(); uint8_t *w = data.ptrw(); for (int i = 0; i < s; i += 4) { uint8_t r = w[i]; w[i] = w[i + 2]; // Swap R to B w[i + 2] = r; // Swap B to R } } Error Image::_load_from_buffer(const Vector &p_array, ImageMemLoadFunc p_loader) { int buffer_size = p_array.size(); ERR_FAIL_COND_V(buffer_size == 0, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V(!p_loader, ERR_INVALID_PARAMETER); const uint8_t *r = p_array.ptr(); Ref image = p_loader(r, buffer_size); ERR_FAIL_COND_V(!image.is_valid(), ERR_PARSE_ERROR); copy_internals_from(image); return OK; } void Image::average_4_uint8(uint8_t &p_out, const uint8_t &p_a, const uint8_t &p_b, const uint8_t &p_c, const uint8_t &p_d) { p_out = static_cast((p_a + p_b + p_c + p_d + 2) >> 2); } void Image::average_4_float(float &p_out, const float &p_a, const float &p_b, const float &p_c, const float &p_d) { p_out = (p_a + p_b + p_c + p_d) * 0.25f; } void Image::average_4_half(uint16_t &p_out, const uint16_t &p_a, const uint16_t &p_b, const uint16_t &p_c, const uint16_t &p_d) { p_out = Math::make_half_float((Math::half_to_float(p_a) + Math::half_to_float(p_b) + Math::half_to_float(p_c) + Math::half_to_float(p_d)) * 0.25f); } void Image::average_4_rgbe9995(uint32_t &p_out, const uint32_t &p_a, const uint32_t &p_b, const uint32_t &p_c, const uint32_t &p_d) { p_out = ((Color::from_rgbe9995(p_a) + Color::from_rgbe9995(p_b) + Color::from_rgbe9995(p_c) + Color::from_rgbe9995(p_d)) * 0.25f).to_rgbe9995(); } void Image::renormalize_uint8(uint8_t *p_rgb) { Vector3 n(p_rgb[0] / 255.0, p_rgb[1] / 255.0, p_rgb[2] / 255.0); n *= 2.0; n -= Vector3(1, 1, 1); n.normalize(); n += Vector3(1, 1, 1); n *= 0.5; n *= 255; p_rgb[0] = CLAMP(int(n.x), 0, 255); p_rgb[1] = CLAMP(int(n.y), 0, 255); p_rgb[2] = CLAMP(int(n.z), 0, 255); } void Image::renormalize_float(float *p_rgb) { Vector3 n(p_rgb[0], p_rgb[1], p_rgb[2]); n.normalize(); p_rgb[0] = n.x; p_rgb[1] = n.y; p_rgb[2] = n.z; } void Image::renormalize_half(uint16_t *p_rgb) { Vector3 n(Math::half_to_float(p_rgb[0]), Math::half_to_float(p_rgb[1]), Math::half_to_float(p_rgb[2])); n.normalize(); p_rgb[0] = Math::make_half_float(n.x); p_rgb[1] = Math::make_half_float(n.y); p_rgb[2] = Math::make_half_float(n.z); } void Image::renormalize_rgbe9995(uint32_t *p_rgb) { // Never used } Image::Image(const uint8_t *p_mem_png_jpg, int p_len) { width = 0; height = 0; mipmaps = false; format = FORMAT_L8; if (_png_mem_loader_func) { copy_internals_from(_png_mem_loader_func(p_mem_png_jpg, p_len)); } if (is_empty() && _jpg_mem_loader_func) { copy_internals_from(_jpg_mem_loader_func(p_mem_png_jpg, p_len)); } if (is_empty() && _webp_mem_loader_func) { copy_internals_from(_webp_mem_loader_func(p_mem_png_jpg, p_len)); } } Ref Image::duplicate(bool p_subresources) const { Ref copy; copy.instantiate(); copy->_copy_internals_from(*this); return copy; } void Image::set_as_black() { memset(data.ptrw(), 0, data.size()); } Dictionary Image::compute_image_metrics(const Ref p_compared_image, bool p_luma_metric) { // https://github.com/richgel999/bc7enc_rdo/blob/master/LICENSE // // This is free and unencumbered software released into the public domain. // Anyone is free to copy, modify, publish, use, compile, sell, or distribute this // software, either in source code form or as a compiled binary, for any purpose, // commercial or non - commercial, and by any means. // In jurisdictions that recognize copyright laws, the author or authors of this // software dedicate any and all copyright interest in the software to the public // domain. We make this dedication for the benefit of the public at large and to // the detriment of our heirs and successors. We intend this dedication to be an // overt act of relinquishment in perpetuity of all present and future rights to // this software under copyright law. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE // AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN // ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Dictionary result; result["max"] = INFINITY; result["mean"] = INFINITY; result["mean_squared"] = INFINITY; result["root_mean_squared"] = INFINITY; result["peak_snr"] = 0.0f; ERR_FAIL_NULL_V(p_compared_image, result); Error err = OK; Ref compared_image = duplicate(true); if (compared_image->is_compressed()) { err = compared_image->decompress(); } ERR_FAIL_COND_V(err != OK, result); Ref source_image = p_compared_image->duplicate(true); if (source_image->is_compressed()) { err = source_image->decompress(); } ERR_FAIL_COND_V(err != OK, result); ERR_FAIL_COND_V(err != OK, result); ERR_FAIL_COND_V_MSG((compared_image->get_format() >= Image::FORMAT_RH) && (compared_image->get_format() <= Image::FORMAT_RGBE9995), result, "Metrics on HDR images are not supported."); ERR_FAIL_COND_V_MSG((source_image->get_format() >= Image::FORMAT_RH) && (source_image->get_format() <= Image::FORMAT_RGBE9995), result, "Metrics on HDR images are not supported."); double image_metric_max, image_metric_mean, image_metric_mean_squared, image_metric_root_mean_squared, image_metric_peak_snr = 0.0; const bool average_component_error = true; const uint32_t w = MIN(compared_image->get_width(), source_image->get_width()); const uint32_t h = MIN(compared_image->get_height(), source_image->get_height()); // Histogram approach originally due to Charles Bloom. double hist[256]; memset(hist, 0, sizeof(hist)); for (uint32_t y = 0; y < h; y++) { for (uint32_t x = 0; x < w; x++) { const Color color_a = compared_image->get_pixel(x, y); const Color color_b = source_image->get_pixel(x, y); if (!p_luma_metric) { ERR_FAIL_COND_V_MSG(color_a.r > 1.0f, Dictionary(), "Can't compare HDR colors."); ERR_FAIL_COND_V_MSG(color_b.r > 1.0f, Dictionary(), "Can't compare HDR colors."); hist[Math::abs(color_a.get_r8() - color_b.get_r8())]++; ERR_FAIL_COND_V_MSG(color_a.g > 1.0f, Dictionary(), "Can't compare HDR colors."); ERR_FAIL_COND_V_MSG(color_b.g > 1.0f, Dictionary(), "Can't compare HDR colors."); hist[Math::abs(color_a.get_g8() - color_b.get_g8())]++; ERR_FAIL_COND_V_MSG(color_a.b > 1.0f, Dictionary(), "Can't compare HDR colors."); ERR_FAIL_COND_V_MSG(color_b.b > 1.0f, Dictionary(), "Can't compare HDR colors."); hist[Math::abs(color_a.get_b8() - color_b.get_b8())]++; ERR_FAIL_COND_V_MSG(color_a.a > 1.0f, Dictionary(), "Can't compare HDR colors."); ERR_FAIL_COND_V_MSG(color_b.a > 1.0f, Dictionary(), "Can't compare HDR colors."); hist[Math::abs(color_a.get_a8() - color_b.get_a8())]++; } else { ERR_FAIL_COND_V_MSG(color_a.r > 1.0f, Dictionary(), "Can't compare HDR colors."); ERR_FAIL_COND_V_MSG(color_b.r > 1.0f, Dictionary(), "Can't compare HDR colors."); // REC709 weightings int luma_a = (13938U * color_a.get_r8() + 46869U * color_a.get_g8() + 4729U * color_a.get_b8() + 32768U) >> 16U; int luma_b = (13938U * color_b.get_r8() + 46869U * color_b.get_g8() + 4729U * color_b.get_b8() + 32768U) >> 16U; hist[Math::abs(luma_a - luma_b)]++; } } } image_metric_max = 0; double sum = 0.0f, sum2 = 0.0f; for (uint32_t i = 0; i < 256; i++) { if (!hist[i]) { continue; } image_metric_max = MAX(image_metric_max, i); double x = i * hist[i]; sum += x; sum2 += i * x; } // See http://richg42.blogspot.com/2016/09/how-to-compute-psnr-from-old-berkeley.html double total_values = w * h; if (average_component_error) { total_values *= 4; } image_metric_mean = CLAMP(sum / total_values, 0.0f, 255.0f); image_metric_mean_squared = CLAMP(sum2 / total_values, 0.0f, 255.0f * 255.0f); image_metric_root_mean_squared = sqrt(image_metric_mean_squared); if (!image_metric_root_mean_squared) { image_metric_peak_snr = 1e+10f; } else { image_metric_peak_snr = CLAMP(log10(255.0f / image_metric_root_mean_squared) * 20.0f, 0.0f, 500.0f); } result["max"] = image_metric_max; result["mean"] = image_metric_mean; result["mean_squared"] = image_metric_mean_squared; result["root_mean_squared"] = image_metric_root_mean_squared; result["peak_snr"] = image_metric_peak_snr; return result; }