/**************************************************************************/ /* image_compress_basisu.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "image_compress_basisu.h" #include "core/io/image.h" #include "core/os/os.h" #include "core/string/print_string.h" #include "servers/rendering_server.h" #include #ifdef TOOLS_ENABLED #include #endif void basis_universal_init() { #ifdef TOOLS_ENABLED basisu::basisu_encoder_init(); #endif basist::basisu_transcoder_init(); } #ifdef TOOLS_ENABLED template inline void _basisu_pad_mipmap(const uint8_t *p_image_mip_data, Vector &r_mip_data_padded, int p_next_width, int p_next_height, int p_width, int p_height, int64_t p_size) { // Source mip's data interpreted as 32-bit RGBA blocks to help with copying pixel data. const T *mip_src_data = reinterpret_cast(p_image_mip_data); // Reserve space in the padded buffer. r_mip_data_padded.resize(p_next_width * p_next_height * sizeof(T)); T *data_padded_ptr = reinterpret_cast(r_mip_data_padded.ptrw()); // Pad mipmap to the nearest block by smearing. int x = 0, y = 0; for (y = 0; y < p_height; y++) { for (x = 0; x < p_width; x++) { data_padded_ptr[p_next_width * y + x] = mip_src_data[p_width * y + x]; } // First, smear in x. for (; x < p_next_width; x++) { data_padded_ptr[p_next_width * y + x] = data_padded_ptr[p_next_width * y + x - 1]; } } // Then, smear in y. for (; y < p_next_height; y++) { for (x = 0; x < p_next_width; x++) { data_padded_ptr[p_next_width * y + x] = data_padded_ptr[p_next_width * y + x - p_next_width]; } } } Vector basis_universal_packer(const Ref &p_image, Image::UsedChannels p_channels) { uint64_t start_time = OS::get_singleton()->get_ticks_msec(); Ref image = p_image->duplicate(); bool is_hdr = false; if (image->get_format() <= Image::FORMAT_RGB565) { image->convert(Image::FORMAT_RGBA8); } else if (image->get_format() <= Image::FORMAT_RGBE9995) { image->convert(Image::FORMAT_RGBAF); is_hdr = true; } basisu::basis_compressor_params params; params.m_uastc = true; params.m_quality_level = basisu::BASISU_QUALITY_MIN; params.m_pack_uastc_flags &= ~basisu::cPackUASTCLevelMask; params.m_pack_uastc_flags |= basisu::cPackUASTCLevelFastest; params.m_rdo_uastc = 0.0f; params.m_rdo_uastc_quality_scalar = 0.0f; params.m_rdo_uastc_dict_size = 1024; params.m_mip_fast = true; params.m_multithreading = true; params.m_check_for_alpha = false; if (!OS::get_singleton()->is_stdout_verbose()) { params.m_print_stats = false; params.m_compute_stats = false; params.m_status_output = false; } basisu::job_pool job_pool(OS::get_singleton()->get_processor_count()); params.m_pJob_pool = &job_pool; BasisDecompressFormat decompress_format = BASIS_DECOMPRESS_MAX; if (is_hdr) { decompress_format = BASIS_DECOMPRESS_HDR_RGB; params.m_hdr = true; params.m_uastc_hdr_options.set_quality_level(0); } else { switch (p_channels) { case Image::USED_CHANNELS_L: { decompress_format = BASIS_DECOMPRESS_RGB; } break; case Image::USED_CHANNELS_LA: { params.m_force_alpha = true; decompress_format = BASIS_DECOMPRESS_RGBA; } break; case Image::USED_CHANNELS_R: { decompress_format = BASIS_DECOMPRESS_R; } break; case Image::USED_CHANNELS_RG: { params.m_force_alpha = true; image->convert_rg_to_ra_rgba8(); decompress_format = BASIS_DECOMPRESS_RG; } break; case Image::USED_CHANNELS_RGB: { decompress_format = BASIS_DECOMPRESS_RGB; } break; case Image::USED_CHANNELS_RGBA: { params.m_force_alpha = true; decompress_format = BASIS_DECOMPRESS_RGBA; } break; } } ERR_FAIL_COND_V(decompress_format == BASIS_DECOMPRESS_MAX, Vector()); // Copy the source image data with mipmaps into BasisU. { const int orig_width = image->get_width(); const int orig_height = image->get_height(); bool is_res_div_4 = (orig_width % 4 == 0) && (orig_height % 4 == 0); // Image's resolution rounded up to the nearest values divisible by 4. int next_width = orig_width <= 2 ? orig_width : (orig_width + 3) & ~3; int next_height = orig_height <= 2 ? orig_height : (orig_height + 3) & ~3; Vector image_data = image->get_data(); basisu::vector basisu_mipmaps; basisu::vector basisu_mipmaps_hdr; // Buffer for storing padded mipmap data. Vector mip_data_padded; for (int32_t i = 0; i <= image->get_mipmap_count(); i++) { int64_t ofs, size; int width, height; image->get_mipmap_offset_size_and_dimensions(i, ofs, size, width, height); const uint8_t *image_mip_data = image_data.ptr() + ofs; // Pad the mipmap's data if its resolution isn't divisible by 4. if (image->has_mipmaps() && !is_res_div_4 && (width > 2 && height > 2) && (width != next_width || height != next_height)) { if (is_hdr) { _basisu_pad_mipmap(image_mip_data, mip_data_padded, next_width, next_height, width, height, size); } else { _basisu_pad_mipmap(image_mip_data, mip_data_padded, next_width, next_height, width, height, size); } // Override the image_mip_data pointer with our temporary Vector. image_mip_data = reinterpret_cast(mip_data_padded.ptr()); // Override the mipmap's properties. width = next_width; height = next_height; size = mip_data_padded.size(); } // Get the next mipmap's resolution. next_width /= 2; next_height /= 2; // Copy the source mipmap's data to a BasisU image. if (is_hdr) { basisu::imagef basisu_image(width, height); memcpy(reinterpret_cast(basisu_image.get_ptr()), image_mip_data, size); if (i == 0) { params.m_source_images_hdr.push_back(basisu_image); } else { basisu_mipmaps_hdr.push_back(basisu_image); } } else { basisu::image basisu_image(width, height); memcpy(basisu_image.get_ptr(), image_mip_data, size); if (i == 0) { params.m_source_images.push_back(basisu_image); } else { basisu_mipmaps.push_back(basisu_image); } } } if (is_hdr) { params.m_source_mipmap_images_hdr.push_back(basisu_mipmaps_hdr); } else { params.m_source_mipmap_images.push_back(basisu_mipmaps); } } // Encode the image data. basisu::basis_compressor compressor; compressor.init(params); int basisu_err = compressor.process(); ERR_FAIL_COND_V(basisu_err != basisu::basis_compressor::cECSuccess, Vector()); const basisu::uint8_vec &basisu_encoded = compressor.get_output_basis_file(); Vector basisu_data; basisu_data.resize(basisu_encoded.size() + 4); uint8_t *basisu_data_ptr = basisu_data.ptrw(); // Copy the encoded BasisU data into the output buffer. *(uint32_t *)basisu_data_ptr = decompress_format; memcpy(basisu_data_ptr + 4, basisu_encoded.get_ptr(), basisu_encoded.size()); print_verbose(vformat("BasisU: Encoding a %dx%d image with %d mipmaps took %d ms.", p_image->get_width(), p_image->get_height(), p_image->get_mipmap_count(), OS::get_singleton()->get_ticks_msec() - start_time)); return basisu_data; } #endif // TOOLS_ENABLED Ref basis_universal_unpacker_ptr(const uint8_t *p_data, int p_size) { uint64_t start_time = OS::get_singleton()->get_ticks_msec(); Ref image; ERR_FAIL_NULL_V_MSG(p_data, image, "Cannot unpack invalid BasisUniversal data."); const uint8_t *src_ptr = p_data; int src_size = p_size; basist::transcoder_texture_format basisu_format = basist::transcoder_texture_format::cTFTotalTextureFormats; Image::Format image_format = Image::FORMAT_MAX; // Get supported compression formats. bool bptc_supported = RS::get_singleton()->has_os_feature("bptc"); bool astc_supported = RS::get_singleton()->has_os_feature("astc"); bool rgtc_supported = RS::get_singleton()->has_os_feature("rgtc"); bool s3tc_supported = RS::get_singleton()->has_os_feature("s3tc"); bool etc2_supported = RS::get_singleton()->has_os_feature("etc2"); bool needs_ra_rg_swap = false; bool needs_rg_trim = false; BasisDecompressFormat decompress_format = (BasisDecompressFormat)(*(uint32_t *)(src_ptr)); switch (decompress_format) { case BASIS_DECOMPRESS_R: { if (rgtc_supported) { basisu_format = basist::transcoder_texture_format::cTFBC4_R; image_format = Image::FORMAT_RGTC_R; } else if (s3tc_supported) { basisu_format = basist::transcoder_texture_format::cTFBC1; image_format = Image::FORMAT_DXT1; } else if (etc2_supported) { basisu_format = basist::transcoder_texture_format::cTFETC2_EAC_R11; image_format = Image::FORMAT_ETC2_R11; } else { // No supported VRAM compression formats, decompress. basisu_format = basist::transcoder_texture_format::cTFRGBA32; image_format = Image::FORMAT_RGBA8; needs_rg_trim = true; } } break; case BASIS_DECOMPRESS_RG: { if (rgtc_supported) { basisu_format = basist::transcoder_texture_format::cTFBC5_RG; image_format = Image::FORMAT_RGTC_RG; } else if (s3tc_supported) { basisu_format = basist::transcoder_texture_format::cTFBC3; image_format = Image::FORMAT_DXT5_RA_AS_RG; } else if (etc2_supported) { basisu_format = basist::transcoder_texture_format::cTFETC2_EAC_RG11; image_format = Image::FORMAT_ETC2_RG11; } else { // No supported VRAM compression formats, decompress. basisu_format = basist::transcoder_texture_format::cTFRGBA32; image_format = Image::FORMAT_RGBA8; needs_ra_rg_swap = true; needs_rg_trim = true; } } break; case BASIS_DECOMPRESS_RG_AS_RA: { if (s3tc_supported) { basisu_format = basist::transcoder_texture_format::cTFBC3; image_format = Image::FORMAT_DXT5_RA_AS_RG; } else if (etc2_supported) { basisu_format = basist::transcoder_texture_format::cTFETC2; image_format = Image::FORMAT_ETC2_RA_AS_RG; } else { // No supported VRAM compression formats, decompress. basisu_format = basist::transcoder_texture_format::cTFRGBA32; image_format = Image::FORMAT_RGBA8; needs_ra_rg_swap = true; needs_rg_trim = true; } } break; case BASIS_DECOMPRESS_RGB: { if (bptc_supported) { basisu_format = basist::transcoder_texture_format::cTFBC7_M6_OPAQUE_ONLY; image_format = Image::FORMAT_BPTC_RGBA; } else if (astc_supported) { basisu_format = basist::transcoder_texture_format::cTFASTC_4x4_RGBA; image_format = Image::FORMAT_ASTC_4x4; } else if (s3tc_supported) { basisu_format = basist::transcoder_texture_format::cTFBC1; image_format = Image::FORMAT_DXT1; } else if (etc2_supported) { basisu_format = basist::transcoder_texture_format::cTFETC1; image_format = Image::FORMAT_ETC2_RGB8; } else { // No supported VRAM compression formats, decompress. basisu_format = basist::transcoder_texture_format::cTFRGBA32; image_format = Image::FORMAT_RGBA8; } } break; case BASIS_DECOMPRESS_RGBA: { if (bptc_supported) { basisu_format = basist::transcoder_texture_format::cTFBC7_M5; image_format = Image::FORMAT_BPTC_RGBA; } else if (astc_supported) { basisu_format = basist::transcoder_texture_format::cTFASTC_4x4_RGBA; image_format = Image::FORMAT_ASTC_4x4; } else if (s3tc_supported) { basisu_format = basist::transcoder_texture_format::cTFBC3; image_format = Image::FORMAT_DXT5; } else if (etc2_supported) { basisu_format = basist::transcoder_texture_format::cTFETC2; image_format = Image::FORMAT_ETC2_RGBA8; } else { // No supported VRAM compression formats, decompress. basisu_format = basist::transcoder_texture_format::cTFRGBA32; image_format = Image::FORMAT_RGBA8; } } break; case BASIS_DECOMPRESS_HDR_RGB: { if (bptc_supported) { basisu_format = basist::transcoder_texture_format::cTFBC6H; image_format = Image::FORMAT_BPTC_RGBFU; } else if (astc_supported) { basisu_format = basist::transcoder_texture_format::cTFASTC_HDR_4x4_RGBA; image_format = Image::FORMAT_ASTC_4x4_HDR; } else { // No supported VRAM compression formats, decompress. basisu_format = basist::transcoder_texture_format::cTFRGB_9E5; image_format = Image::FORMAT_RGBE9995; } } break; default: { ERR_FAIL_V(image); } break; } src_ptr += 4; src_size -= 4; basist::basisu_transcoder transcoder; ERR_FAIL_COND_V(!transcoder.validate_header(src_ptr, src_size), image); transcoder.start_transcoding(src_ptr, src_size); basist::basisu_image_info basisu_info; transcoder.get_image_info(src_ptr, src_size, basisu_info, 0); // Create the buffer for transcoded/decompressed data. Vector out_data; out_data.resize(Image::get_image_data_size(basisu_info.m_width, basisu_info.m_height, image_format, basisu_info.m_total_levels > 1)); uint8_t *dst = out_data.ptrw(); memset(dst, 0, out_data.size()); for (uint32_t i = 0; i < basisu_info.m_total_levels; i++) { basist::basisu_image_level_info basisu_level; transcoder.get_image_level_info(src_ptr, src_size, basisu_level, 0, i); uint32_t mip_block_or_pixel_count = Image::is_format_compressed(image_format) ? basisu_level.m_total_blocks : basisu_level.m_orig_width * basisu_level.m_orig_height; int64_t ofs = Image::get_image_mipmap_offset(basisu_info.m_width, basisu_info.m_height, image_format, i); bool result = transcoder.transcode_image_level(src_ptr, src_size, 0, i, dst + ofs, mip_block_or_pixel_count, basisu_format); if (!result) { print_line(vformat("BasisUniversal cannot unpack level %d.", i)); break; } } image = Image::create_from_data(basisu_info.m_width, basisu_info.m_height, basisu_info.m_total_levels > 1, image_format, out_data); if (needs_ra_rg_swap) { // Swap uncompressed RA-as-RG texture's color channels. image->convert_ra_rgba8_to_rg(); } if (needs_rg_trim) { // Remove unnecessary color channels from uncompressed textures. if (decompress_format == BASIS_DECOMPRESS_R) { image->convert(Image::FORMAT_R8); } else if (decompress_format == BASIS_DECOMPRESS_RG || decompress_format == BASIS_DECOMPRESS_RG_AS_RA) { image->convert(Image::FORMAT_RG8); } } print_verbose(vformat("BasisU: Transcoding a %dx%d image with %d mipmaps into %s took %d ms.", image->get_width(), image->get_height(), image->get_mipmap_count(), Image::get_format_name(image_format), OS::get_singleton()->get_ticks_msec() - start_time)); return image; } Ref basis_universal_unpacker(const Vector &p_buffer) { return basis_universal_unpacker_ptr(p_buffer.ptr(), p_buffer.size()); }