Configured for a max line length of 120 characters.
psf/black is very opinionated and purposely doesn't leave much room for
configuration. The output is mostly OK so that should be fine for us,
but some things worth noting:
- Manually wrapped strings will be reflowed, so by using a line length
of 120 for the sake of preserving readability for our long command
calls, it also means that some manually wrapped strings are back on
the same line and should be manually merged again.
- Code generators using string concatenation extensively look awful,
since black puts each operand on a single line. We need to refactor
these generators to use more pythonic string formatting, for which
many options are available (`%`, `format` or f-strings).
- CI checks and a pre-commit hook will be added to ensure that future
buildsystem changes are well-formatted.
EngineDebugger is the new interface to access the debugger.
It tries to be as agnostic as possible on the data that various
subsystems can expose.
It allows 2 types of interactions:
- Profilers:
A subsystem can register a profiler, assigning it a unique name.
That name can be used to activate the profiler or add data to it.
The registered profiler can be composed of up to 3 functions:
- Toggle: called when the profiler is activated/deactivated.
- Add: called whenever data is added to the debugger
(via `EngineDebugger::profiler_add_frame_data`)
- Tick: called every frame (during idle), receives frame times.
- Captures: (Only relevant in remote debugger for now)
A subsystem can register a capture, assigning it a unique name.
When receiving a message, the remote debugger will check if it starts
with `[prefix]:` and call the associated capture with name `prefix`.
Port MultiplayerAPI, Servers, Scripts, Visual, Performance to the new
profiler system.
Port SceneDebugger and RemoteDebugger to the new capture system.
The LocalDebugger also uses the new profiler system for scripts
profiling.
It's the recommended way to set those, and is more portable
(automatically prepends -D for GCC/Clang and /D for MSVC).
We still use CPPFLAGS for some pre-processor flags which are not
defines.
Godot core needs MD5/SHA256/AES/Base64 which used to be provided by
separate libraries.
Since we bundle mbedtls in most cases, and we can easily only include
the needed sources if we so desire, let's use it.
To simplify library changes in the future, and better isolate header
dependencies all functions have been wrapped around inside a class in
`core/math/crypto_base.h`.
If the mbedtls module is disabled, we only bundle the needed source
files independently of the `builtin_mbedtls` option.
If the module is enabled, the `builtin_mbedtls` option works as usual.
Also remove some unused headers from StreamPeerMbedTLS which were
causing build issues.
Reverts "Build polygon clipper only in tools builds" (see #17319)
which allows to build Clipper with tools disabled (release) and because
of that, Clipper has to be patched to optionally disable exceptions in
order to be built on some platforms.
Patched Clipper 6.4.2 to be compiled with exceptions enabled/disabled.
and ensure that Clipper-specific exception macros are defined: don't use
exceptions by default unless exception handling is detected.
Compilation with exceptions will be determined by various
C++ exceptions defines:
* ` __cpp_exceptions` is part of C++ feature testing macros (since C++98);
* `__EXCEPTIONS` is used by some GNU compilers;
* `_CPPUNWIND` is used by MSVC.
The user can override specific exceptions behavior via corresponding
`*_USER` macros (i.e. compiling for embedded systems).
Include paths are processed from left to right, so we use Prepend to
ensure that paths to bundled thirdparty files will have precedence over
system paths (e.g. `/usr/include` should have lowest priority).
Many contributors (me included) did not fully understand what CCFLAGS,
CXXFLAGS and CPPFLAGS refer to exactly, and were thus not using them
in the way they are intended to be.
As per the SCons manual: https://www.scons.org/doc/HTML/scons-user/apa.html
- CCFLAGS: General options that are passed to the C and C++ compilers.
- CFLAGS: General options that are passed to the C compiler (C only;
not C++).
- CXXFLAGS: General options that are passed to the C++ compiler. By
default, this includes the value of $CCFLAGS, so that setting
$CCFLAGS affects both C and C++ compilation.
- CPPFLAGS: User-specified C preprocessor options. These will be
included in any command that uses the C preprocessor, including not
just compilation of C and C++ source files [...], but also [...]
Fortran [...] and [...] assembly language source file[s].
TL;DR: Compiler options go to CCFLAGS, unless they must be restricted
to either C (CFLAGS) or C++ (CXXFLAGS). Preprocessor defines go to
CPPFLAGS.
Note, it will only used by the Editor, not when running the game.
This allows package maintainer to compile Godot to use system installed
certificates when accessing the AssetLib.
If this is undesired it can be avoided by specifying builtin_certs=no .
Bundled SSL certs will be used unless you specify an override in:
Project Settings -> SSL -> Certificates .
This allows more consistency in the manner we include core headers,
where previously there would be a mix of absolute, relative and
include path-dependent includes.
- Refactored all builder (make_*) functions into separate Python modules along to the build tree
- Introduced utility function to wrap all invocations on Windows, but does not change it elsewhere
- Introduced stub to use the builders module as a stand alone script and invoke a selected function
There is a problem with file handles related to writing generated content (*.gen.h and *.gen.cpp)
on Windows, which randomly causes a SHARING VIOLATION error to the compiler resulting in flaky
builds. Running all such content generators in a new subprocess instead of directly inside the
build script works around the issue.
Yes, I tried the multiprocessing module. It did not work due to conflict with SCons on cPickle.
Suggested workaround did not fully work either.
Using the run_in_subprocess wrapper on osx and x11 platforms as well for consistency. In case of
running a cross-compilation on Windows they would still be used, but likely it will not happen
in practice. What counts is that the build itself is running on which platform, not the target
platform.
Some generated files are written directly in an SConstruct or SCsub file, before the parallel build starts. They don't need to be written in a subprocess, apparently, so I left them as is.
Adds following functions to the Engine singleton:
get_author_info - names of Godot authors
get_copyright_info - detailed source copyright get_license_info
get_donor_info - donor names
get_license_info - full text of licenses used, indexed by license names
get_license_text - the text of the Godot Expat license
- The Windows, UWP, Android (on Windows) and Linux builds are
tested with Scons 3.0 alpha using Python 3.
- OSX and iOS should hopefully work but are not tested since
I don't have a Mac.
- Builds using SCons 2.5 and Python 2 should not be impacted.
zstd has much better compression speed and ratio, and better decompression speed than currently available methods.
Also set zstd as the default compression method for Compression as well as FileAccessCompressed functions.
-Changed SectionedPropertyEditor to support this
-Renamed Globals singleton to GlobalConfig, makes more sense.
-Changed the logic behind persisten global settings, instead of the persist checkbox, a revert button is now available
Done with `autopep8 --select=E7`, fixes:
- E701 - Put colon-separated compound statement on separate lines.
- E702 - Put semicolon-separated compound statement on separate lines.
- E703 - Put semicolon-separated compound statement on separate lines.
- E711 - Fix comparison with None.
- E712 - Fix (trivial case of) comparison with boolean.
- E713 - Fix (trivial case of) non-membership check.
- E721 - Fix various deprecated code (via lib2to3).