Merge pull request #40616 from reduz/refactor-light-clustering

Refactor light clustering
This commit is contained in:
Rémi Verschelde 2020-07-23 08:25:59 +02:00 committed by GitHub
commit e38ad5d3de
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 842 additions and 793 deletions

View File

@ -33,69 +33,6 @@
#include "servers/rendering/rendering_device.h"
#include "servers/rendering/rendering_server_raster.h"
static _FORCE_INLINE_ void store_transform(const Transform &p_mtx, float *p_array) {
p_array[0] = p_mtx.basis.elements[0][0];
p_array[1] = p_mtx.basis.elements[1][0];
p_array[2] = p_mtx.basis.elements[2][0];
p_array[3] = 0;
p_array[4] = p_mtx.basis.elements[0][1];
p_array[5] = p_mtx.basis.elements[1][1];
p_array[6] = p_mtx.basis.elements[2][1];
p_array[7] = 0;
p_array[8] = p_mtx.basis.elements[0][2];
p_array[9] = p_mtx.basis.elements[1][2];
p_array[10] = p_mtx.basis.elements[2][2];
p_array[11] = 0;
p_array[12] = p_mtx.origin.x;
p_array[13] = p_mtx.origin.y;
p_array[14] = p_mtx.origin.z;
p_array[15] = 1;
}
static _FORCE_INLINE_ void store_basis_3x4(const Basis &p_mtx, float *p_array) {
p_array[0] = p_mtx.elements[0][0];
p_array[1] = p_mtx.elements[1][0];
p_array[2] = p_mtx.elements[2][0];
p_array[3] = 0;
p_array[4] = p_mtx.elements[0][1];
p_array[5] = p_mtx.elements[1][1];
p_array[6] = p_mtx.elements[2][1];
p_array[7] = 0;
p_array[8] = p_mtx.elements[0][2];
p_array[9] = p_mtx.elements[1][2];
p_array[10] = p_mtx.elements[2][2];
p_array[11] = 0;
}
static _FORCE_INLINE_ void store_transform_3x3(const Basis &p_mtx, float *p_array) {
p_array[0] = p_mtx.elements[0][0];
p_array[1] = p_mtx.elements[1][0];
p_array[2] = p_mtx.elements[2][0];
p_array[3] = 0;
p_array[4] = p_mtx.elements[0][1];
p_array[5] = p_mtx.elements[1][1];
p_array[6] = p_mtx.elements[2][1];
p_array[7] = 0;
p_array[8] = p_mtx.elements[0][2];
p_array[9] = p_mtx.elements[1][2];
p_array[10] = p_mtx.elements[2][2];
p_array[11] = 0;
}
static _FORCE_INLINE_ void store_camera(const CameraMatrix &p_mtx, float *p_array) {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
p_array[i * 4 + j] = p_mtx.matrix[i][j];
}
}
}
static _FORCE_INLINE_ void store_soft_shadow_kernel(const float *p_kernel, float *p_array) {
for (int i = 0; i < 128; i++) {
p_array[i] = p_kernel[i];
}
}
/* SCENE SHADER */
void RasterizerSceneHighEndRD::ShaderData::set_code(const String &p_code) {
//compile
@ -845,8 +782,8 @@ void RasterizerSceneHighEndRD::_fill_instances(RenderList::Element **p_elements,
for (int i = 0; i < p_element_count; i++) {
const RenderList::Element *e = p_elements[i];
InstanceData &id = scene_state.instances[i];
store_transform(e->instance->transform, id.transform);
store_transform(Transform(e->instance->transform.basis.inverse().transposed()), id.normal_transform);
RasterizerStorageRD::store_transform(e->instance->transform, id.transform);
RasterizerStorageRD::store_transform(Transform(e->instance->transform.basis.inverse().transposed()), id.normal_transform);
id.flags = 0;
id.mask = e->instance->layer_mask;
id.instance_uniforms_ofs = e->instance->instance_allocated_shader_parameters_offset >= 0 ? e->instance->instance_allocated_shader_parameters_offset : 0;
@ -1171,20 +1108,20 @@ void RasterizerSceneHighEndRD::_setup_environment(RID p_environment, RID p_rende
CameraMatrix projection = correction * p_cam_projection;
//store camera into ubo
store_camera(projection, scene_state.ubo.projection_matrix);
store_camera(projection.inverse(), scene_state.ubo.inv_projection_matrix);
store_transform(p_cam_transform, scene_state.ubo.camera_matrix);
store_transform(p_cam_transform.affine_inverse(), scene_state.ubo.inv_camera_matrix);
RasterizerStorageRD::store_camera(projection, scene_state.ubo.projection_matrix);
RasterizerStorageRD::store_camera(projection.inverse(), scene_state.ubo.inv_projection_matrix);
RasterizerStorageRD::store_transform(p_cam_transform, scene_state.ubo.camera_matrix);
RasterizerStorageRD::store_transform(p_cam_transform.affine_inverse(), scene_state.ubo.inv_camera_matrix);
scene_state.ubo.z_far = p_zfar;
scene_state.ubo.z_near = p_znear;
scene_state.ubo.pancake_shadows = p_pancake_shadows;
store_soft_shadow_kernel(directional_penumbra_shadow_kernel_get(), scene_state.ubo.directional_penumbra_shadow_kernel);
store_soft_shadow_kernel(directional_soft_shadow_kernel_get(), scene_state.ubo.directional_soft_shadow_kernel);
store_soft_shadow_kernel(penumbra_shadow_kernel_get(), scene_state.ubo.penumbra_shadow_kernel);
store_soft_shadow_kernel(soft_shadow_kernel_get(), scene_state.ubo.soft_shadow_kernel);
RasterizerStorageRD::store_soft_shadow_kernel(directional_penumbra_shadow_kernel_get(), scene_state.ubo.directional_penumbra_shadow_kernel);
RasterizerStorageRD::store_soft_shadow_kernel(directional_soft_shadow_kernel_get(), scene_state.ubo.directional_soft_shadow_kernel);
RasterizerStorageRD::store_soft_shadow_kernel(penumbra_shadow_kernel_get(), scene_state.ubo.penumbra_shadow_kernel);
RasterizerStorageRD::store_soft_shadow_kernel(soft_shadow_kernel_get(), scene_state.ubo.soft_shadow_kernel);
scene_state.ubo.directional_penumbra_shadow_samples = directional_penumbra_shadow_samples_get();
scene_state.ubo.directional_soft_shadow_samples = directional_soft_shadow_samples_get();
@ -1310,7 +1247,7 @@ void RasterizerSceneHighEndRD::_setup_environment(RID p_environment, RID p_rende
Basis sky_transform = environment_get_sky_orientation(p_environment);
sky_transform = sky_transform.inverse() * p_cam_transform.basis;
store_transform_3x3(sky_transform, scene_state.ubo.radiance_inverse_xform);
RasterizerStorageRD::store_transform_3x3(sky_transform, scene_state.ubo.radiance_inverse_xform);
scene_state.ubo.use_ambient_cubemap = (ambient_src == RS::ENV_AMBIENT_SOURCE_BG && env_bg == RS::ENV_BG_SKY) || ambient_src == RS::ENV_AMBIENT_SOURCE_SKY;
scene_state.ubo.use_ambient_light = scene_state.ubo.use_ambient_cubemap || ambient_src == RS::ENV_AMBIENT_SOURCE_COLOR;
@ -1582,66 +1519,6 @@ void RasterizerSceneHighEndRD::_fill_render_list(InstanceBase **p_cull_result, i
}
}
void RasterizerSceneHighEndRD::_setup_reflections(RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, const Transform &p_camera_inverse_transform, RID p_environment) {
for (int i = 0; i < p_reflection_probe_cull_count; i++) {
RID rpi = p_reflection_probe_cull_result[i];
if (i >= (int)scene_state.max_reflections) {
reflection_probe_instance_set_render_index(rpi, 0); //invalid, but something needs to be set
continue;
}
reflection_probe_instance_set_render_index(rpi, i);
RID base_probe = reflection_probe_instance_get_probe(rpi);
ReflectionData &reflection_ubo = scene_state.reflections[i];
Vector3 extents = storage->reflection_probe_get_extents(base_probe);
reflection_ubo.box_extents[0] = extents.x;
reflection_ubo.box_extents[1] = extents.y;
reflection_ubo.box_extents[2] = extents.z;
reflection_ubo.index = reflection_probe_instance_get_atlas_index(rpi);
Vector3 origin_offset = storage->reflection_probe_get_origin_offset(base_probe);
reflection_ubo.box_offset[0] = origin_offset.x;
reflection_ubo.box_offset[1] = origin_offset.y;
reflection_ubo.box_offset[2] = origin_offset.z;
reflection_ubo.mask = storage->reflection_probe_get_cull_mask(base_probe);
float intensity = storage->reflection_probe_get_intensity(base_probe);
bool interior = storage->reflection_probe_is_interior(base_probe);
bool box_projection = storage->reflection_probe_is_box_projection(base_probe);
reflection_ubo.params[0] = intensity;
reflection_ubo.params[1] = 0;
reflection_ubo.params[2] = interior ? 1.0 : 0.0;
reflection_ubo.params[3] = box_projection ? 1.0 : 0.0;
Color ambient_linear = storage->reflection_probe_get_ambient_color(base_probe).to_linear();
float interior_ambient_energy = storage->reflection_probe_get_ambient_color_energy(base_probe);
uint32_t ambient_mode = storage->reflection_probe_get_ambient_mode(base_probe);
reflection_ubo.ambient[0] = ambient_linear.r * interior_ambient_energy;
reflection_ubo.ambient[1] = ambient_linear.g * interior_ambient_energy;
reflection_ubo.ambient[2] = ambient_linear.b * interior_ambient_energy;
reflection_ubo.ambient_mode = ambient_mode;
Transform transform = reflection_probe_instance_get_transform(rpi);
Transform proj = (p_camera_inverse_transform * transform).inverse();
store_transform(proj, reflection_ubo.local_matrix);
cluster_builder.add_reflection_probe(transform, extents);
reflection_probe_instance_set_render_pass(rpi, render_pass);
}
if (p_reflection_probe_cull_count) {
RD::get_singleton()->buffer_update(scene_state.reflection_buffer, 0, MIN(scene_state.max_reflections, (unsigned int)p_reflection_probe_cull_count) * sizeof(ReflectionData), scene_state.reflections, true);
}
}
void RasterizerSceneHighEndRD::_setup_lightmaps(InstanceBase **p_lightmap_cull_result, int p_lightmap_cull_count, const Transform &p_cam_transform) {
uint32_t lightmaps_used = 0;
for (int i = 0; i < p_lightmap_cull_count; i++) {
@ -1652,7 +1529,7 @@ void RasterizerSceneHighEndRD::_setup_lightmaps(InstanceBase **p_lightmap_cull_r
InstanceBase *lm = p_lightmap_cull_result[i];
Basis to_lm = lm->transform.basis.inverse() * p_cam_transform.basis;
to_lm = to_lm.inverse().transposed(); //will transform normals
store_transform_3x3(to_lm, scene_state.lightmaps[i].normal_xform);
RasterizerStorageRD::store_transform_3x3(to_lm, scene_state.lightmaps[i].normal_xform);
lm->lightmap_cull_index = i;
lightmaps_used++;
}
@ -1661,480 +1538,7 @@ void RasterizerSceneHighEndRD::_setup_lightmaps(InstanceBase **p_lightmap_cull_r
}
}
void RasterizerSceneHighEndRD::_setup_lights(RID *p_light_cull_result, int p_light_cull_count, const Transform &p_camera_inverse_transform, RID p_shadow_atlas, bool p_using_shadows) {
uint32_t light_count = 0;
scene_state.ubo.directional_light_count = 0;
sky_scene_state.directional_light_count = 0;
for (int i = 0; i < p_light_cull_count; i++) {
RID li = p_light_cull_result[i];
RID base = light_instance_get_base_light(li);
ERR_CONTINUE(base.is_null());
RS::LightType type = storage->light_get_type(base);
switch (type) {
case RS::LIGHT_DIRECTIONAL: {
if (scene_state.ubo.directional_light_count >= scene_state.max_directional_lights) {
continue;
}
DirectionalLightData &light_data = scene_state.directional_lights[scene_state.ubo.directional_light_count];
Transform light_transform = light_instance_get_base_transform(li);
Vector3 direction = p_camera_inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized();
light_data.direction[0] = direction.x;
light_data.direction[1] = direction.y;
light_data.direction[2] = direction.z;
float sign = storage->light_is_negative(base) ? -1 : 1;
light_data.energy = sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI;
Color linear_col = storage->light_get_color(base).to_linear();
light_data.color[0] = linear_col.r;
light_data.color[1] = linear_col.g;
light_data.color[2] = linear_col.b;
light_data.specular = storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR);
light_data.mask = storage->light_get_cull_mask(base);
float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
light_data.size = 1.0 - Math::cos(Math::deg2rad(size)); //angle to cosine offset
Color shadow_col = storage->light_get_shadow_color(base).to_linear();
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_PSSM_SPLITS) {
light_data.shadow_color1[0] = 1.0;
light_data.shadow_color1[1] = 0.0;
light_data.shadow_color1[2] = 0.0;
light_data.shadow_color1[3] = 1.0;
light_data.shadow_color2[0] = 0.0;
light_data.shadow_color2[1] = 1.0;
light_data.shadow_color2[2] = 0.0;
light_data.shadow_color2[3] = 1.0;
light_data.shadow_color3[0] = 0.0;
light_data.shadow_color3[1] = 0.0;
light_data.shadow_color3[2] = 1.0;
light_data.shadow_color3[3] = 1.0;
light_data.shadow_color4[0] = 1.0;
light_data.shadow_color4[1] = 1.0;
light_data.shadow_color4[2] = 0.0;
light_data.shadow_color4[3] = 1.0;
} else {
light_data.shadow_color1[0] = shadow_col.r;
light_data.shadow_color1[1] = shadow_col.g;
light_data.shadow_color1[2] = shadow_col.b;
light_data.shadow_color1[3] = 1.0;
light_data.shadow_color2[0] = shadow_col.r;
light_data.shadow_color2[1] = shadow_col.g;
light_data.shadow_color2[2] = shadow_col.b;
light_data.shadow_color2[3] = 1.0;
light_data.shadow_color3[0] = shadow_col.r;
light_data.shadow_color3[1] = shadow_col.g;
light_data.shadow_color3[2] = shadow_col.b;
light_data.shadow_color3[3] = 1.0;
light_data.shadow_color4[0] = shadow_col.r;
light_data.shadow_color4[1] = shadow_col.g;
light_data.shadow_color4[2] = shadow_col.b;
light_data.shadow_color4[3] = 1.0;
}
light_data.shadow_enabled = p_using_shadows && storage->light_has_shadow(base);
float angular_diameter = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
if (angular_diameter > 0.0) {
// I know tan(0) is 0, but let's not risk it with numerical precision.
// technically this will keep expanding until reaching the sun, but all we care
// is expand until we reach the radius of the near plane (there can't be more occluders than that)
angular_diameter = Math::tan(Math::deg2rad(angular_diameter));
} else {
angular_diameter = 0.0;
}
if (light_data.shadow_enabled) {
RS::LightDirectionalShadowMode smode = storage->light_directional_get_shadow_mode(base);
int limit = smode == RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL ? 0 : (smode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS ? 1 : 3);
light_data.blend_splits = storage->light_directional_get_blend_splits(base);
for (int j = 0; j < 4; j++) {
Rect2 atlas_rect = light_instance_get_directional_shadow_atlas_rect(li, j);
CameraMatrix matrix = light_instance_get_shadow_camera(li, j);
float split = light_instance_get_directional_shadow_split(li, MIN(limit, j));
CameraMatrix bias;
bias.set_light_bias();
CameraMatrix rectm;
rectm.set_light_atlas_rect(atlas_rect);
Transform modelview = (p_camera_inverse_transform * light_instance_get_shadow_transform(li, j)).inverse();
CameraMatrix shadow_mtx = rectm * bias * matrix * modelview;
light_data.shadow_split_offsets[j] = split;
float bias_scale = light_instance_get_shadow_bias_scale(li, j);
light_data.shadow_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * bias_scale;
light_data.shadow_normal_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * light_instance_get_directional_shadow_texel_size(li, j);
light_data.shadow_transmittance_bias[j] = storage->light_get_transmittance_bias(base) * bias_scale;
light_data.shadow_transmittance_z_scale[j] = light_instance_get_shadow_range(li, j);
light_data.shadow_range_begin[j] = light_instance_get_shadow_range_begin(li, j);
store_camera(shadow_mtx, light_data.shadow_matrices[j]);
Vector2 uv_scale = light_instance_get_shadow_uv_scale(li, j);
uv_scale *= atlas_rect.size; //adapt to atlas size
switch (j) {
case 0: {
light_data.uv_scale1[0] = uv_scale.x;
light_data.uv_scale1[1] = uv_scale.y;
} break;
case 1: {
light_data.uv_scale2[0] = uv_scale.x;
light_data.uv_scale2[1] = uv_scale.y;
} break;
case 2: {
light_data.uv_scale3[0] = uv_scale.x;
light_data.uv_scale3[1] = uv_scale.y;
} break;
case 3: {
light_data.uv_scale4[0] = uv_scale.x;
light_data.uv_scale4[1] = uv_scale.y;
} break;
}
}
float fade_start = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_FADE_START);
light_data.fade_from = -light_data.shadow_split_offsets[3] * MIN(fade_start, 0.999); //using 1.0 would break smoothstep
light_data.fade_to = -light_data.shadow_split_offsets[3];
light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
light_data.softshadow_angle = angular_diameter;
if (angular_diameter <= 0.0) {
light_data.soft_shadow_scale *= directional_shadow_quality_radius_get(); // Only use quality radius for PCF
}
}
// Copy to SkyDirectionalLightData
if (sky_scene_state.directional_light_count < sky_scene_state.max_directional_lights) {
SkyDirectionalLightData &sky_light_data = sky_scene_state.directional_lights[sky_scene_state.directional_light_count];
Vector3 world_direction = light_transform.basis.xform(Vector3(0, 0, 1)).normalized();
sky_light_data.direction[0] = world_direction.x;
sky_light_data.direction[1] = world_direction.y;
sky_light_data.direction[2] = -world_direction.z;
sky_light_data.energy = light_data.energy / Math_PI;
sky_light_data.color[0] = light_data.color[0];
sky_light_data.color[1] = light_data.color[1];
sky_light_data.color[2] = light_data.color[2];
sky_light_data.enabled = true;
sky_light_data.size = angular_diameter;
sky_scene_state.directional_light_count++;
}
scene_state.ubo.directional_light_count++;
} break;
case RS::LIGHT_SPOT:
case RS::LIGHT_OMNI: {
if (light_count >= scene_state.max_lights) {
continue;
}
Transform light_transform = light_instance_get_base_transform(li);
LightData &light_data = scene_state.lights[light_count];
float sign = storage->light_is_negative(base) ? -1 : 1;
Color linear_col = storage->light_get_color(base).to_linear();
light_data.attenuation_energy[0] = Math::make_half_float(storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION));
light_data.attenuation_energy[1] = Math::make_half_float(sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI);
light_data.color_specular[0] = MIN(uint32_t(linear_col.r * 255), 255);
light_data.color_specular[1] = MIN(uint32_t(linear_col.g * 255), 255);
light_data.color_specular[2] = MIN(uint32_t(linear_col.b * 255), 255);
light_data.color_specular[3] = MIN(uint32_t(storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 255), 255);
float radius = MAX(0.001, storage->light_get_param(base, RS::LIGHT_PARAM_RANGE));
light_data.inv_radius = 1.0 / radius;
Vector3 pos = p_camera_inverse_transform.xform(light_transform.origin);
light_data.position[0] = pos.x;
light_data.position[1] = pos.y;
light_data.position[2] = pos.z;
Vector3 direction = p_camera_inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized();
light_data.direction[0] = direction.x;
light_data.direction[1] = direction.y;
light_data.direction[2] = direction.z;
float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
light_data.size = size;
light_data.cone_attenuation_angle[0] = Math::make_half_float(storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION));
float spot_angle = storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE);
light_data.cone_attenuation_angle[1] = Math::make_half_float(Math::cos(Math::deg2rad(spot_angle)));
light_data.mask = storage->light_get_cull_mask(base);
light_data.atlas_rect[0] = 0;
light_data.atlas_rect[1] = 0;
light_data.atlas_rect[2] = 0;
light_data.atlas_rect[3] = 0;
RID projector = storage->light_get_projector(base);
if (projector.is_valid()) {
Rect2 rect = storage->decal_atlas_get_texture_rect(projector);
if (type == RS::LIGHT_SPOT) {
light_data.projector_rect[0] = rect.position.x;
light_data.projector_rect[1] = rect.position.y + rect.size.height; //flip because shadow is flipped
light_data.projector_rect[2] = rect.size.width;
light_data.projector_rect[3] = -rect.size.height;
} else {
light_data.projector_rect[0] = rect.position.x;
light_data.projector_rect[1] = rect.position.y;
light_data.projector_rect[2] = rect.size.width;
light_data.projector_rect[3] = rect.size.height * 0.5; //used by dp, so needs to be half
}
} else {
light_data.projector_rect[0] = 0;
light_data.projector_rect[1] = 0;
light_data.projector_rect[2] = 0;
light_data.projector_rect[3] = 0;
}
if (p_using_shadows && p_shadow_atlas.is_valid() && shadow_atlas_owns_light_instance(p_shadow_atlas, li)) {
// fill in the shadow information
Color shadow_color = storage->light_get_shadow_color(base);
light_data.shadow_color_enabled[0] = MIN(uint32_t(shadow_color.r * 255), 255);
light_data.shadow_color_enabled[1] = MIN(uint32_t(shadow_color.g * 255), 255);
light_data.shadow_color_enabled[2] = MIN(uint32_t(shadow_color.b * 255), 255);
light_data.shadow_color_enabled[3] = 255;
if (type == RS::LIGHT_SPOT) {
light_data.shadow_bias = (storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0);
float shadow_texel_size = Math::tan(Math::deg2rad(spot_angle)) * radius * 2.0;
shadow_texel_size *= light_instance_get_shadow_texel_size(li, p_shadow_atlas);
light_data.shadow_normal_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size;
} else { //omni
light_data.shadow_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0;
float shadow_texel_size = light_instance_get_shadow_texel_size(li, p_shadow_atlas);
light_data.shadow_normal_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size * 2.0; // applied in -1 .. 1 space
}
light_data.transmittance_bias = storage->light_get_transmittance_bias(base);
Rect2 rect = light_instance_get_shadow_atlas_rect(li, p_shadow_atlas);
light_data.atlas_rect[0] = rect.position.x;
light_data.atlas_rect[1] = rect.position.y;
light_data.atlas_rect[2] = rect.size.width;
light_data.atlas_rect[3] = rect.size.height;
light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
if (type == RS::LIGHT_OMNI) {
light_data.atlas_rect[3] *= 0.5; //one paraboloid on top of another
Transform proj = (p_camera_inverse_transform * light_transform).inverse();
store_transform(proj, light_data.shadow_matrix);
if (size > 0.0) {
light_data.soft_shadow_size = size;
} else {
light_data.soft_shadow_size = 0.0;
light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
}
} else if (type == RS::LIGHT_SPOT) {
Transform modelview = (p_camera_inverse_transform * light_transform).inverse();
CameraMatrix bias;
bias.set_light_bias();
CameraMatrix shadow_mtx = bias * light_instance_get_shadow_camera(li, 0) * modelview;
store_camera(shadow_mtx, light_data.shadow_matrix);
if (size > 0.0) {
CameraMatrix cm = light_instance_get_shadow_camera(li, 0);
float half_np = cm.get_z_near() * Math::tan(Math::deg2rad(spot_angle));
light_data.soft_shadow_size = (size * 0.5 / radius) / (half_np / cm.get_z_near()) * rect.size.width;
} else {
light_data.soft_shadow_size = 0.0;
light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
}
}
} else {
light_data.shadow_color_enabled[3] = 0;
}
light_instance_set_index(li, light_count);
cluster_builder.add_light(type == RS::LIGHT_SPOT ? LightClusterBuilder::LIGHT_TYPE_SPOT : LightClusterBuilder::LIGHT_TYPE_OMNI, light_transform, radius, spot_angle);
light_count++;
} break;
}
light_instance_set_render_pass(li, render_pass);
//update UBO for forward rendering, blit to texture for clustered
}
if (light_count) {
RD::get_singleton()->buffer_update(scene_state.light_buffer, 0, sizeof(LightData) * light_count, scene_state.lights, true);
}
if (scene_state.ubo.directional_light_count) {
RD::get_singleton()->buffer_update(scene_state.directional_light_buffer, 0, sizeof(DirectionalLightData) * scene_state.ubo.directional_light_count, scene_state.directional_lights, true);
}
}
void RasterizerSceneHighEndRD::_setup_decals(const RID *p_decal_instances, int p_decal_count, const Transform &p_camera_inverse_xform) {
Transform uv_xform;
uv_xform.basis.scale(Vector3(2.0, 1.0, 2.0));
uv_xform.origin = Vector3(-1.0, 0.0, -1.0);
p_decal_count = MIN((uint32_t)p_decal_count, scene_state.max_decals);
int idx = 0;
for (int i = 0; i < p_decal_count; i++) {
RID di = p_decal_instances[i];
RID decal = decal_instance_get_base(di);
Transform xform = decal_instance_get_transform(di);
float fade = 1.0;
if (storage->decal_is_distance_fade_enabled(decal)) {
real_t distance = -p_camera_inverse_xform.xform(xform.origin).z;
float fade_begin = storage->decal_get_distance_fade_begin(decal);
float fade_length = storage->decal_get_distance_fade_length(decal);
if (distance > fade_begin) {
if (distance > fade_begin + fade_length) {
continue; // do not use this decal, its invisible
}
fade = 1.0 - (distance - fade_begin) / fade_length;
}
}
DecalData &dd = scene_state.decals[idx];
Vector3 decal_extents = storage->decal_get_extents(decal);
Transform scale_xform;
scale_xform.basis.scale(Vector3(decal_extents.x, decal_extents.y, decal_extents.z));
Transform to_decal_xform = (p_camera_inverse_xform * decal_instance_get_transform(di) * scale_xform * uv_xform).affine_inverse();
store_transform(to_decal_xform, dd.xform);
Vector3 normal = xform.basis.get_axis(Vector3::AXIS_Y).normalized();
normal = p_camera_inverse_xform.basis.xform(normal); //camera is normalized, so fine
dd.normal[0] = normal.x;
dd.normal[1] = normal.y;
dd.normal[2] = normal.z;
dd.normal_fade = storage->decal_get_normal_fade(decal);
RID albedo_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ALBEDO);
RID emission_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_EMISSION);
if (albedo_tex.is_valid()) {
Rect2 rect = storage->decal_atlas_get_texture_rect(albedo_tex);
dd.albedo_rect[0] = rect.position.x;
dd.albedo_rect[1] = rect.position.y;
dd.albedo_rect[2] = rect.size.x;
dd.albedo_rect[3] = rect.size.y;
} else {
if (!emission_tex.is_valid()) {
continue; //no albedo, no emission, no decal.
}
dd.albedo_rect[0] = 0;
dd.albedo_rect[1] = 0;
dd.albedo_rect[2] = 0;
dd.albedo_rect[3] = 0;
}
RID normal_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_NORMAL);
if (normal_tex.is_valid()) {
Rect2 rect = storage->decal_atlas_get_texture_rect(normal_tex);
dd.normal_rect[0] = rect.position.x;
dd.normal_rect[1] = rect.position.y;
dd.normal_rect[2] = rect.size.x;
dd.normal_rect[3] = rect.size.y;
Basis normal_xform = p_camera_inverse_xform.basis * xform.basis.orthonormalized();
store_basis_3x4(normal_xform, dd.normal_xform);
} else {
dd.normal_rect[0] = 0;
dd.normal_rect[1] = 0;
dd.normal_rect[2] = 0;
dd.normal_rect[3] = 0;
}
RID orm_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ORM);
if (orm_tex.is_valid()) {
Rect2 rect = storage->decal_atlas_get_texture_rect(orm_tex);
dd.orm_rect[0] = rect.position.x;
dd.orm_rect[1] = rect.position.y;
dd.orm_rect[2] = rect.size.x;
dd.orm_rect[3] = rect.size.y;
} else {
dd.orm_rect[0] = 0;
dd.orm_rect[1] = 0;
dd.orm_rect[2] = 0;
dd.orm_rect[3] = 0;
}
if (emission_tex.is_valid()) {
Rect2 rect = storage->decal_atlas_get_texture_rect(emission_tex);
dd.emission_rect[0] = rect.position.x;
dd.emission_rect[1] = rect.position.y;
dd.emission_rect[2] = rect.size.x;
dd.emission_rect[3] = rect.size.y;
} else {
dd.emission_rect[0] = 0;
dd.emission_rect[1] = 0;
dd.emission_rect[2] = 0;
dd.emission_rect[3] = 0;
}
Color modulate = storage->decal_get_modulate(decal);
dd.modulate[0] = modulate.r;
dd.modulate[1] = modulate.g;
dd.modulate[2] = modulate.b;
dd.modulate[3] = modulate.a * fade;
dd.emission_energy = storage->decal_get_emission_energy(decal) * fade;
dd.albedo_mix = storage->decal_get_albedo_mix(decal);
dd.mask = storage->decal_get_cull_mask(decal);
dd.upper_fade = storage->decal_get_upper_fade(decal);
dd.lower_fade = storage->decal_get_lower_fade(decal);
cluster_builder.add_decal(xform, decal_extents);
idx++;
}
if (idx > 0) {
RD::get_singleton()->buffer_update(scene_state.decal_buffer, 0, sizeof(DecalData) * idx, scene_state.decals, true);
}
}
void RasterizerSceneHighEndRD::_render_scene(RID p_render_buffer, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID *p_decal_cull_result, int p_decal_cull_count, InstanceBase **p_lightmap_cull_result, int p_lightmap_cull_count, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, const Color &p_default_bg_color) {
void RasterizerSceneHighEndRD::_render_scene(RID p_render_buffer, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, int p_directional_light_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, InstanceBase **p_lightmap_cull_result, int p_lightmap_cull_count, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, const Color &p_default_bg_color) {
RenderBufferDataHighEnd *render_buffer = nullptr;
if (p_render_buffer.is_valid()) {
render_buffer = (RenderBufferDataHighEnd *)render_buffers_get_data(p_render_buffer);
@ -2147,19 +1551,8 @@ void RasterizerSceneHighEndRD::_render_scene(RID p_render_buffer, const Transfor
RENDER_TIMESTAMP("Setup 3D Scene");
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) {
p_light_cull_count = 0;
p_reflection_probe_cull_count = 0;
p_gi_probe_cull_count = 0;
}
bool using_shadows = true;
if (p_reflection_probe.is_valid()) {
scene_state.ubo.reflection_multiplier = 0.0;
if (!storage->reflection_probe_renders_shadows(reflection_probe_instance_get_probe(p_reflection_probe))) {
using_shadows = false;
}
} else {
scene_state.ubo.reflection_multiplier = 1.0;
}
@ -2169,6 +1562,7 @@ void RasterizerSceneHighEndRD::_render_scene(RID p_render_buffer, const Transfor
Vector2 vp_he = p_cam_projection.get_viewport_half_extents();
scene_state.ubo.viewport_size[0] = vp_he.x;
scene_state.ubo.viewport_size[1] = vp_he.y;
scene_state.ubo.directional_light_count = p_directional_light_count;
Size2 screen_pixel_size;
Size2i screen_size;
@ -2259,16 +1653,9 @@ void RasterizerSceneHighEndRD::_render_scene(RID p_render_buffer, const Transfor
ERR_FAIL(); //bug?
}
cluster_builder.begin(p_cam_transform.affine_inverse(), p_cam_projection); //prepare cluster
_setup_lights(p_light_cull_result, p_light_cull_count, p_cam_transform.affine_inverse(), p_shadow_atlas, using_shadows);
_setup_decals(p_decal_cull_result, p_decal_cull_count, p_cam_transform.affine_inverse());
_setup_reflections(p_reflection_probe_cull_result, p_reflection_probe_cull_count, p_cam_transform.affine_inverse(), p_environment);
_setup_lightmaps(p_lightmap_cull_result, p_lightmap_cull_count, p_cam_transform);
_setup_environment(p_environment, p_render_buffer, p_cam_projection, p_cam_transform, p_reflection_probe, p_reflection_probe.is_valid(), screen_pixel_size, p_shadow_atlas, !p_reflection_probe.is_valid(), p_default_bg_color, p_cam_projection.get_z_near(), p_cam_projection.get_z_far(), false);
cluster_builder.bake_cluster(); //bake to cluster
_update_render_base_uniform_set(); //may have changed due to the above (light buffer enlarged, as an example)
render_list.clear();
@ -2745,7 +2132,7 @@ void RasterizerSceneHighEndRD::_render_sdfgi(RID p_render_buffers, const Vector3
to_bounds.origin = p_bounds.position;
to_bounds.basis.scale(p_bounds.size);
store_transform(to_bounds.affine_inverse() * cam_xform, scene_state.ubo.sdf_to_bounds);
RasterizerStorageRD::store_transform(to_bounds.affine_inverse() * cam_xform, scene_state.ubo.sdf_to_bounds);
_setup_environment(RID(), RID(), camera_proj, cam_xform, RID(), true, Vector2(1, 1), RID(), false, Color(), 0, 0);
@ -2826,22 +2213,22 @@ void RasterizerSceneHighEndRD::_update_render_base_uniform_set() {
RD::Uniform u;
u.binding = 5;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.ids.push_back(scene_state.light_buffer);
u.ids.push_back(get_positional_light_buffer());
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 6;
u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.ids.push_back(scene_state.reflection_buffer);
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.ids.push_back(get_reflection_probe_buffer());
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 7;
u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.ids.push_back(scene_state.directional_light_buffer);
u.ids.push_back(get_directional_light_buffer());
uniforms.push_back(u);
}
{
@ -2885,7 +2272,7 @@ void RasterizerSceneHighEndRD::_update_render_base_uniform_set() {
RD::Uniform u;
u.binding = 15;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.ids.push_back(scene_state.decal_buffer);
u.ids.push_back(get_decal_buffer());
uniforms.push_back(u);
}
@ -2893,14 +2280,14 @@ void RasterizerSceneHighEndRD::_update_render_base_uniform_set() {
RD::Uniform u;
u.binding = 16;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.ids.push_back(cluster_builder.get_cluster_texture());
u.ids.push_back(get_cluster_builder_texture());
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 17;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.ids.push_back(cluster_builder.get_cluster_indices_buffer());
u.ids.push_back(get_cluster_builder_indices_buffer());
uniforms.push_back(u);
}
@ -3141,37 +2528,8 @@ RasterizerSceneHighEndRD::RasterizerSceneHighEndRD(RasterizerStorageRD *p_storag
defines += "\n#define USE_RADIANCE_CUBEMAP_ARRAY \n";
}
defines += "\n#define SDFGI_OCT_SIZE " + itos(sdfgi_get_lightprobe_octahedron_size()) + "\n";
defines += "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(get_max_directional_lights()) + "\n";
uint32_t uniform_max_size = RD::get_singleton()->limit_get(RD::LIMIT_MAX_UNIFORM_BUFFER_SIZE);
{ //reflections
uint32_t reflection_buffer_size;
if (uniform_max_size < 65536) {
//Yes, you guessed right, ARM again
reflection_buffer_size = uniform_max_size;
} else {
reflection_buffer_size = 65536;
}
scene_state.max_reflections = reflection_buffer_size / sizeof(ReflectionData);
scene_state.reflections = memnew_arr(ReflectionData, scene_state.max_reflections);
scene_state.reflection_buffer = RD::get_singleton()->uniform_buffer_create(reflection_buffer_size);
defines += "\n#define MAX_REFLECTION_DATA_STRUCTS " + itos(scene_state.max_reflections) + "\n";
}
{ //lights
scene_state.max_lights = MIN(1024 * 1024, uniform_max_size) / sizeof(LightData); //1mb of lights
uint32_t light_buffer_size = scene_state.max_lights * sizeof(LightData);
scene_state.lights = memnew_arr(LightData, scene_state.max_lights);
scene_state.light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size);
//defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(scene_state.max_lights) + "\n";
scene_state.max_directional_lights = 8;
uint32_t directional_light_buffer_size = scene_state.max_directional_lights * sizeof(DirectionalLightData);
scene_state.directional_lights = memnew_arr(DirectionalLightData, scene_state.max_directional_lights);
scene_state.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size);
defines += "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(scene_state.max_directional_lights) + "\n";
}
{
//lightmaps
scene_state.max_lightmaps = storage->lightmap_array_get_size();
@ -3187,13 +2545,6 @@ RasterizerSceneHighEndRD::RasterizerSceneHighEndRD(RasterizerStorageRD *p_storag
scene_state.lightmap_captures = memnew_arr(LightmapCaptureData, scene_state.max_lightmap_captures);
scene_state.lightmap_capture_buffer = RD::get_singleton()->storage_buffer_create(sizeof(LightmapCaptureData) * scene_state.max_lightmap_captures);
}
{ //decals
scene_state.max_decals = MIN(1024 * 1024, uniform_max_size) / sizeof(DecalData); //1mb of decals
uint32_t decal_buffer_size = scene_state.max_decals * sizeof(DecalData);
scene_state.decals = memnew_arr(DecalData, scene_state.max_decals);
scene_state.decal_buffer = RD::get_singleton()->storage_buffer_create(decal_buffer_size);
}
{
defines += "\n#define MATERIAL_UNIFORM_SET " + itos(MATERIAL_UNIFORM_SET) + "\n";
}
@ -3467,8 +2818,6 @@ RasterizerSceneHighEndRD::RasterizerSceneHighEndRD(RasterizerStorageRD *p_storag
default_render_buffers_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, default_shader_rd, RENDER_BUFFERS_UNIFORM_SET);
}
cluster_builder.setup(16, 8, 24);
}
RasterizerSceneHighEndRD::~RasterizerSceneHighEndRD() {
@ -3495,19 +2844,11 @@ RasterizerSceneHighEndRD::~RasterizerSceneHighEndRD() {
{
RD::get_singleton()->free(scene_state.uniform_buffer);
RD::get_singleton()->free(scene_state.instance_buffer);
RD::get_singleton()->free(scene_state.directional_light_buffer);
RD::get_singleton()->free(scene_state.light_buffer);
RD::get_singleton()->free(scene_state.lightmap_buffer);
RD::get_singleton()->free(scene_state.lightmap_capture_buffer);
RD::get_singleton()->free(scene_state.reflection_buffer);
RD::get_singleton()->free(scene_state.decal_buffer);
memdelete_arr(scene_state.instances);
memdelete_arr(scene_state.directional_lights);
memdelete_arr(scene_state.lights);
memdelete_arr(scene_state.lightmaps);
memdelete_arr(scene_state.lightmap_captures);
memdelete_arr(scene_state.reflections);
memdelete_arr(scene_state.decals);
}
while (sdfgi_framebuffer_size_cache.front()) {

View File

@ -31,7 +31,6 @@
#ifndef RASTERIZER_SCENE_HIGHEND_RD_H
#define RASTERIZER_SCENE_HIGHEND_RD_H
#include "servers/rendering/rasterizer_rd/light_cluster_builder.h"
#include "servers/rendering/rasterizer_rd/rasterizer_scene_rd.h"
#include "servers/rendering/rasterizer_rd/rasterizer_storage_rd.h"
#include "servers/rendering/rasterizer_rd/render_pipeline_vertex_format_cache_rd.h"
@ -264,92 +263,10 @@ class RasterizerSceneHighEndRD : public RasterizerSceneRD {
void _setup_view_dependant_uniform_set(RID p_shadow_atlas, RID p_reflection_atlas, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count);
void _update_render_buffers_uniform_set(RID p_render_buffers);
/* Scene State UBO */
struct ReflectionData { //should always be 128 bytes
float box_extents[3];
float index;
float box_offset[3];
uint32_t mask;
float params[4]; // intensity, 0, interior , boxproject
float ambient[3]; // ambient color,
uint32_t ambient_mode;
float local_matrix[16]; // up to here for spot and omni, rest is for directional
};
struct LightData {
float position[3];
float inv_radius;
float direction[3];
float size;
uint16_t attenuation_energy[2]; //16 bits attenuation, then energy
uint8_t color_specular[4]; //rgb color, a specular (8 bit unorm)
uint16_t cone_attenuation_angle[2]; // attenuation and angle, (16bit float)
uint8_t shadow_color_enabled[4]; //shadow rgb color, a>0.5 enabled (8bit unorm)
float atlas_rect[4]; // in omni, used for atlas uv, in spot, used for projector uv
float shadow_matrix[16];
float shadow_bias;
float shadow_normal_bias;
float transmittance_bias;
float soft_shadow_size;
float soft_shadow_scale;
uint32_t mask;
uint32_t pad[2];
float projector_rect[4];
};
struct DirectionalLightData {
float direction[3];
float energy;
float color[3];
float size;
float specular;
uint32_t mask;
float softshadow_angle;
float soft_shadow_scale;
uint32_t blend_splits;
uint32_t shadow_enabled;
float fade_from;
float fade_to;
float shadow_bias[4];
float shadow_normal_bias[4];
float shadow_transmittance_bias[4];
float shadow_transmittance_z_scale[4];
float shadow_range_begin[4];
float shadow_split_offsets[4];
float shadow_matrices[4][16];
float shadow_color1[4];
float shadow_color2[4];
float shadow_color3[4];
float shadow_color4[4];
float uv_scale1[2];
float uv_scale2[2];
float uv_scale3[2];
float uv_scale4[2];
};
struct LightmapData {
float normal_xform[12];
};
struct DecalData {
float xform[16];
float inv_extents[3];
float albedo_mix;
float albedo_rect[4];
float normal_rect[4];
float orm_rect[4];
float emission_rect[4];
float modulate[4];
float emission_energy;
uint32_t mask;
float upper_fade;
float lower_fade;
float normal_xform[12];
float normal[3];
float normal_fade;
};
struct LightmapCaptureData {
float sh[9 * 4];
};
@ -448,27 +365,10 @@ class RasterizerSceneHighEndRD : public RasterizerSceneRD {
RID uniform_buffer;
ReflectionData *reflections;
uint32_t max_reflections;
RID reflection_buffer;
uint32_t max_reflection_probes_per_instance;
LightmapData *lightmaps;
uint32_t max_lightmaps;
RID lightmap_buffer;
DecalData *decals;
uint32_t max_decals;
RID decal_buffer;
LightData *lights;
uint32_t max_lights;
RID light_buffer;
DirectionalLightData *directional_lights;
uint32_t max_directional_lights;
RID directional_light_buffer;
LightmapCaptureData *lightmap_captures;
uint32_t max_lightmap_captures;
RID lightmap_capture_buffer;
@ -635,8 +535,6 @@ class RasterizerSceneHighEndRD : public RasterizerSceneRD {
RID default_vec4_xform_buffer;
RID default_vec4_xform_uniform_set;
LightClusterBuilder cluster_builder;
enum PassMode {
PASS_MODE_COLOR,
PASS_MODE_COLOR_SPECULAR,
@ -651,9 +549,6 @@ class RasterizerSceneHighEndRD : public RasterizerSceneRD {
};
void _setup_environment(RID p_environment, RID p_render_buffers, const CameraMatrix &p_cam_projection, const Transform &p_cam_transform, RID p_reflection_probe, bool p_no_fog, const Size2 &p_screen_pixel_size, RID p_shadow_atlas, bool p_flip_y, const Color &p_default_bg_color, float p_znear, float p_zfar, bool p_opaque_render_buffers = false, bool p_pancake_shadows = false);
void _setup_lights(RID *p_light_cull_result, int p_light_cull_count, const Transform &p_camera_inverse_transform, RID p_shadow_atlas, bool p_using_shadows);
void _setup_decals(const RID *p_decal_instances, int p_decal_count, const Transform &p_camera_inverse_xform);
void _setup_reflections(RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, const Transform &p_camera_inverse_transform, RID p_environment);
void _setup_lightmaps(InstanceBase **p_lightmap_cull_result, int p_lightmap_cull_count, const Transform &p_cam_transform);
void _fill_instances(RenderList::Element **p_elements, int p_element_count, bool p_for_depth, bool p_has_sdfgi = false, bool p_has_opaque_gi = false);
@ -666,7 +561,7 @@ class RasterizerSceneHighEndRD : public RasterizerSceneRD {
Map<Size2i, RID> sdfgi_framebuffer_size_cache;
protected:
virtual void _render_scene(RID p_render_buffer, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID *p_decal_cull_result, int p_decal_cull_count, InstanceBase **p_lightmap_cull_result, int p_lightmap_cull_count, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, const Color &p_default_bg_color);
virtual void _render_scene(RID p_render_buffer, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, int p_directional_light_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, InstanceBase **p_lightmap_cull_result, int p_lightmap_cull_count, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, const Color &p_default_bg_color);
virtual void _render_shadow(RID p_framebuffer, InstanceBase **p_cull_result, int p_cull_count, const CameraMatrix &p_projection, const Transform &p_transform, float p_zfar, float p_bias, float p_normal_bias, bool p_use_dp, bool p_use_dp_flip, bool p_use_pancake);
virtual void _render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region);
virtual void _render_uv2(InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region);

View File

@ -5619,6 +5619,539 @@ RasterizerSceneRD::RenderBufferData *RasterizerSceneRD::render_buffers_get_data(
return rb->data;
}
void RasterizerSceneRD::_setup_reflections(RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, const Transform &p_camera_inverse_transform, RID p_environment) {
for (int i = 0; i < p_reflection_probe_cull_count; i++) {
RID rpi = p_reflection_probe_cull_result[i];
if (i >= (int)cluster.max_reflections) {
reflection_probe_instance_set_render_index(rpi, 0); //invalid, but something needs to be set
continue;
}
reflection_probe_instance_set_render_index(rpi, i);
RID base_probe = reflection_probe_instance_get_probe(rpi);
Cluster::ReflectionData &reflection_ubo = cluster.reflections[i];
Vector3 extents = storage->reflection_probe_get_extents(base_probe);
reflection_ubo.box_extents[0] = extents.x;
reflection_ubo.box_extents[1] = extents.y;
reflection_ubo.box_extents[2] = extents.z;
reflection_ubo.index = reflection_probe_instance_get_atlas_index(rpi);
Vector3 origin_offset = storage->reflection_probe_get_origin_offset(base_probe);
reflection_ubo.box_offset[0] = origin_offset.x;
reflection_ubo.box_offset[1] = origin_offset.y;
reflection_ubo.box_offset[2] = origin_offset.z;
reflection_ubo.mask = storage->reflection_probe_get_cull_mask(base_probe);
float intensity = storage->reflection_probe_get_intensity(base_probe);
bool interior = storage->reflection_probe_is_interior(base_probe);
bool box_projection = storage->reflection_probe_is_box_projection(base_probe);
reflection_ubo.params[0] = intensity;
reflection_ubo.params[1] = 0;
reflection_ubo.params[2] = interior ? 1.0 : 0.0;
reflection_ubo.params[3] = box_projection ? 1.0 : 0.0;
Color ambient_linear = storage->reflection_probe_get_ambient_color(base_probe).to_linear();
float interior_ambient_energy = storage->reflection_probe_get_ambient_color_energy(base_probe);
uint32_t ambient_mode = storage->reflection_probe_get_ambient_mode(base_probe);
reflection_ubo.ambient[0] = ambient_linear.r * interior_ambient_energy;
reflection_ubo.ambient[1] = ambient_linear.g * interior_ambient_energy;
reflection_ubo.ambient[2] = ambient_linear.b * interior_ambient_energy;
reflection_ubo.ambient_mode = ambient_mode;
Transform transform = reflection_probe_instance_get_transform(rpi);
Transform proj = (p_camera_inverse_transform * transform).inverse();
RasterizerStorageRD::store_transform(proj, reflection_ubo.local_matrix);
cluster.builder.add_reflection_probe(transform, extents);
reflection_probe_instance_set_render_pass(rpi, RSG::rasterizer->get_frame_number());
}
if (p_reflection_probe_cull_count) {
RD::get_singleton()->buffer_update(cluster.reflection_buffer, 0, MIN(cluster.max_reflections, (unsigned int)p_reflection_probe_cull_count) * sizeof(ReflectionData), cluster.reflections, true);
}
}
void RasterizerSceneRD::_setup_lights(RID *p_light_cull_result, int p_light_cull_count, const Transform &p_camera_inverse_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count) {
uint32_t light_count = 0;
r_directional_light_count = 0;
sky_scene_state.directional_light_count = 0;
for (int i = 0; i < p_light_cull_count; i++) {
RID li = p_light_cull_result[i];
RID base = light_instance_get_base_light(li);
ERR_CONTINUE(base.is_null());
RS::LightType type = storage->light_get_type(base);
switch (type) {
case RS::LIGHT_DIRECTIONAL: {
if (r_directional_light_count >= cluster.max_directional_lights) {
continue;
}
Cluster::DirectionalLightData &light_data = cluster.directional_lights[r_directional_light_count];
Transform light_transform = light_instance_get_base_transform(li);
Vector3 direction = p_camera_inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized();
light_data.direction[0] = direction.x;
light_data.direction[1] = direction.y;
light_data.direction[2] = direction.z;
float sign = storage->light_is_negative(base) ? -1 : 1;
light_data.energy = sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI;
Color linear_col = storage->light_get_color(base).to_linear();
light_data.color[0] = linear_col.r;
light_data.color[1] = linear_col.g;
light_data.color[2] = linear_col.b;
light_data.specular = storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR);
light_data.mask = storage->light_get_cull_mask(base);
float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
light_data.size = 1.0 - Math::cos(Math::deg2rad(size)); //angle to cosine offset
Color shadow_col = storage->light_get_shadow_color(base).to_linear();
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_PSSM_SPLITS) {
light_data.shadow_color1[0] = 1.0;
light_data.shadow_color1[1] = 0.0;
light_data.shadow_color1[2] = 0.0;
light_data.shadow_color1[3] = 1.0;
light_data.shadow_color2[0] = 0.0;
light_data.shadow_color2[1] = 1.0;
light_data.shadow_color2[2] = 0.0;
light_data.shadow_color2[3] = 1.0;
light_data.shadow_color3[0] = 0.0;
light_data.shadow_color3[1] = 0.0;
light_data.shadow_color3[2] = 1.0;
light_data.shadow_color3[3] = 1.0;
light_data.shadow_color4[0] = 1.0;
light_data.shadow_color4[1] = 1.0;
light_data.shadow_color4[2] = 0.0;
light_data.shadow_color4[3] = 1.0;
} else {
light_data.shadow_color1[0] = shadow_col.r;
light_data.shadow_color1[1] = shadow_col.g;
light_data.shadow_color1[2] = shadow_col.b;
light_data.shadow_color1[3] = 1.0;
light_data.shadow_color2[0] = shadow_col.r;
light_data.shadow_color2[1] = shadow_col.g;
light_data.shadow_color2[2] = shadow_col.b;
light_data.shadow_color2[3] = 1.0;
light_data.shadow_color3[0] = shadow_col.r;
light_data.shadow_color3[1] = shadow_col.g;
light_data.shadow_color3[2] = shadow_col.b;
light_data.shadow_color3[3] = 1.0;
light_data.shadow_color4[0] = shadow_col.r;
light_data.shadow_color4[1] = shadow_col.g;
light_data.shadow_color4[2] = shadow_col.b;
light_data.shadow_color4[3] = 1.0;
}
light_data.shadow_enabled = p_using_shadows && storage->light_has_shadow(base);
float angular_diameter = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
if (angular_diameter > 0.0) {
// I know tan(0) is 0, but let's not risk it with numerical precision.
// technically this will keep expanding until reaching the sun, but all we care
// is expand until we reach the radius of the near plane (there can't be more occluders than that)
angular_diameter = Math::tan(Math::deg2rad(angular_diameter));
} else {
angular_diameter = 0.0;
}
if (light_data.shadow_enabled) {
RS::LightDirectionalShadowMode smode = storage->light_directional_get_shadow_mode(base);
int limit = smode == RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL ? 0 : (smode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS ? 1 : 3);
light_data.blend_splits = storage->light_directional_get_blend_splits(base);
for (int j = 0; j < 4; j++) {
Rect2 atlas_rect = light_instance_get_directional_shadow_atlas_rect(li, j);
CameraMatrix matrix = light_instance_get_shadow_camera(li, j);
float split = light_instance_get_directional_shadow_split(li, MIN(limit, j));
CameraMatrix bias;
bias.set_light_bias();
CameraMatrix rectm;
rectm.set_light_atlas_rect(atlas_rect);
Transform modelview = (p_camera_inverse_transform * light_instance_get_shadow_transform(li, j)).inverse();
CameraMatrix shadow_mtx = rectm * bias * matrix * modelview;
light_data.shadow_split_offsets[j] = split;
float bias_scale = light_instance_get_shadow_bias_scale(li, j);
light_data.shadow_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * bias_scale;
light_data.shadow_normal_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * light_instance_get_directional_shadow_texel_size(li, j);
light_data.shadow_transmittance_bias[j] = storage->light_get_transmittance_bias(base) * bias_scale;
light_data.shadow_transmittance_z_scale[j] = light_instance_get_shadow_range(li, j);
light_data.shadow_range_begin[j] = light_instance_get_shadow_range_begin(li, j);
RasterizerStorageRD::store_camera(shadow_mtx, light_data.shadow_matrices[j]);
Vector2 uv_scale = light_instance_get_shadow_uv_scale(li, j);
uv_scale *= atlas_rect.size; //adapt to atlas size
switch (j) {
case 0: {
light_data.uv_scale1[0] = uv_scale.x;
light_data.uv_scale1[1] = uv_scale.y;
} break;
case 1: {
light_data.uv_scale2[0] = uv_scale.x;
light_data.uv_scale2[1] = uv_scale.y;
} break;
case 2: {
light_data.uv_scale3[0] = uv_scale.x;
light_data.uv_scale3[1] = uv_scale.y;
} break;
case 3: {
light_data.uv_scale4[0] = uv_scale.x;
light_data.uv_scale4[1] = uv_scale.y;
} break;
}
}
float fade_start = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_FADE_START);
light_data.fade_from = -light_data.shadow_split_offsets[3] * MIN(fade_start, 0.999); //using 1.0 would break smoothstep
light_data.fade_to = -light_data.shadow_split_offsets[3];
light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
light_data.softshadow_angle = angular_diameter;
if (angular_diameter <= 0.0) {
light_data.soft_shadow_scale *= directional_shadow_quality_radius_get(); // Only use quality radius for PCF
}
}
// Copy to SkyDirectionalLightData
if (r_directional_light_count < sky_scene_state.max_directional_lights) {
SkyDirectionalLightData &sky_light_data = sky_scene_state.directional_lights[r_directional_light_count];
Vector3 world_direction = light_transform.basis.xform(Vector3(0, 0, 1)).normalized();
sky_light_data.direction[0] = world_direction.x;
sky_light_data.direction[1] = world_direction.y;
sky_light_data.direction[2] = -world_direction.z;
sky_light_data.energy = light_data.energy / Math_PI;
sky_light_data.color[0] = light_data.color[0];
sky_light_data.color[1] = light_data.color[1];
sky_light_data.color[2] = light_data.color[2];
sky_light_data.enabled = true;
sky_light_data.size = angular_diameter;
sky_scene_state.directional_light_count++;
}
r_directional_light_count++;
} break;
case RS::LIGHT_SPOT:
case RS::LIGHT_OMNI: {
if (light_count >= cluster.max_lights) {
continue;
}
Transform light_transform = light_instance_get_base_transform(li);
Cluster::LightData &light_data = cluster.lights[light_count];
float sign = storage->light_is_negative(base) ? -1 : 1;
Color linear_col = storage->light_get_color(base).to_linear();
light_data.attenuation_energy[0] = Math::make_half_float(storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION));
light_data.attenuation_energy[1] = Math::make_half_float(sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI);
light_data.color_specular[0] = MIN(uint32_t(linear_col.r * 255), 255);
light_data.color_specular[1] = MIN(uint32_t(linear_col.g * 255), 255);
light_data.color_specular[2] = MIN(uint32_t(linear_col.b * 255), 255);
light_data.color_specular[3] = MIN(uint32_t(storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 255), 255);
float radius = MAX(0.001, storage->light_get_param(base, RS::LIGHT_PARAM_RANGE));
light_data.inv_radius = 1.0 / radius;
Vector3 pos = p_camera_inverse_transform.xform(light_transform.origin);
light_data.position[0] = pos.x;
light_data.position[1] = pos.y;
light_data.position[2] = pos.z;
Vector3 direction = p_camera_inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized();
light_data.direction[0] = direction.x;
light_data.direction[1] = direction.y;
light_data.direction[2] = direction.z;
float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
light_data.size = size;
light_data.cone_attenuation_angle[0] = Math::make_half_float(storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION));
float spot_angle = storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE);
light_data.cone_attenuation_angle[1] = Math::make_half_float(Math::cos(Math::deg2rad(spot_angle)));
light_data.mask = storage->light_get_cull_mask(base);
light_data.atlas_rect[0] = 0;
light_data.atlas_rect[1] = 0;
light_data.atlas_rect[2] = 0;
light_data.atlas_rect[3] = 0;
RID projector = storage->light_get_projector(base);
if (projector.is_valid()) {
Rect2 rect = storage->decal_atlas_get_texture_rect(projector);
if (type == RS::LIGHT_SPOT) {
light_data.projector_rect[0] = rect.position.x;
light_data.projector_rect[1] = rect.position.y + rect.size.height; //flip because shadow is flipped
light_data.projector_rect[2] = rect.size.width;
light_data.projector_rect[3] = -rect.size.height;
} else {
light_data.projector_rect[0] = rect.position.x;
light_data.projector_rect[1] = rect.position.y;
light_data.projector_rect[2] = rect.size.width;
light_data.projector_rect[3] = rect.size.height * 0.5; //used by dp, so needs to be half
}
} else {
light_data.projector_rect[0] = 0;
light_data.projector_rect[1] = 0;
light_data.projector_rect[2] = 0;
light_data.projector_rect[3] = 0;
}
if (p_using_shadows && p_shadow_atlas.is_valid() && shadow_atlas_owns_light_instance(p_shadow_atlas, li)) {
// fill in the shadow information
Color shadow_color = storage->light_get_shadow_color(base);
light_data.shadow_color_enabled[0] = MIN(uint32_t(shadow_color.r * 255), 255);
light_data.shadow_color_enabled[1] = MIN(uint32_t(shadow_color.g * 255), 255);
light_data.shadow_color_enabled[2] = MIN(uint32_t(shadow_color.b * 255), 255);
light_data.shadow_color_enabled[3] = 255;
if (type == RS::LIGHT_SPOT) {
light_data.shadow_bias = (storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0);
float shadow_texel_size = Math::tan(Math::deg2rad(spot_angle)) * radius * 2.0;
shadow_texel_size *= light_instance_get_shadow_texel_size(li, p_shadow_atlas);
light_data.shadow_normal_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size;
} else { //omni
light_data.shadow_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0;
float shadow_texel_size = light_instance_get_shadow_texel_size(li, p_shadow_atlas);
light_data.shadow_normal_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size * 2.0; // applied in -1 .. 1 space
}
light_data.transmittance_bias = storage->light_get_transmittance_bias(base);
Rect2 rect = light_instance_get_shadow_atlas_rect(li, p_shadow_atlas);
light_data.atlas_rect[0] = rect.position.x;
light_data.atlas_rect[1] = rect.position.y;
light_data.atlas_rect[2] = rect.size.width;
light_data.atlas_rect[3] = rect.size.height;
light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
if (type == RS::LIGHT_OMNI) {
light_data.atlas_rect[3] *= 0.5; //one paraboloid on top of another
Transform proj = (p_camera_inverse_transform * light_transform).inverse();
RasterizerStorageRD::store_transform(proj, light_data.shadow_matrix);
if (size > 0.0) {
light_data.soft_shadow_size = size;
} else {
light_data.soft_shadow_size = 0.0;
light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
}
} else if (type == RS::LIGHT_SPOT) {
Transform modelview = (p_camera_inverse_transform * light_transform).inverse();
CameraMatrix bias;
bias.set_light_bias();
CameraMatrix shadow_mtx = bias * light_instance_get_shadow_camera(li, 0) * modelview;
RasterizerStorageRD::store_camera(shadow_mtx, light_data.shadow_matrix);
if (size > 0.0) {
CameraMatrix cm = light_instance_get_shadow_camera(li, 0);
float half_np = cm.get_z_near() * Math::tan(Math::deg2rad(spot_angle));
light_data.soft_shadow_size = (size * 0.5 / radius) / (half_np / cm.get_z_near()) * rect.size.width;
} else {
light_data.soft_shadow_size = 0.0;
light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
}
}
} else {
light_data.shadow_color_enabled[3] = 0;
}
light_instance_set_index(li, light_count);
cluster.builder.add_light(type == RS::LIGHT_SPOT ? LightClusterBuilder::LIGHT_TYPE_SPOT : LightClusterBuilder::LIGHT_TYPE_OMNI, light_transform, radius, spot_angle);
light_count++;
} break;
}
light_instance_set_render_pass(li, RSG::rasterizer->get_frame_number());
//update UBO for forward rendering, blit to texture for clustered
}
if (light_count) {
RD::get_singleton()->buffer_update(cluster.light_buffer, 0, sizeof(Cluster::LightData) * light_count, cluster.lights, true);
}
if (r_directional_light_count) {
RD::get_singleton()->buffer_update(cluster.directional_light_buffer, 0, sizeof(Cluster::DirectionalLightData) * r_directional_light_count, cluster.directional_lights, true);
}
}
void RasterizerSceneRD::_setup_decals(const RID *p_decal_instances, int p_decal_count, const Transform &p_camera_inverse_xform) {
Transform uv_xform;
uv_xform.basis.scale(Vector3(2.0, 1.0, 2.0));
uv_xform.origin = Vector3(-1.0, 0.0, -1.0);
p_decal_count = MIN((uint32_t)p_decal_count, cluster.max_decals);
int idx = 0;
for (int i = 0; i < p_decal_count; i++) {
RID di = p_decal_instances[i];
RID decal = decal_instance_get_base(di);
Transform xform = decal_instance_get_transform(di);
float fade = 1.0;
if (storage->decal_is_distance_fade_enabled(decal)) {
real_t distance = -p_camera_inverse_xform.xform(xform.origin).z;
float fade_begin = storage->decal_get_distance_fade_begin(decal);
float fade_length = storage->decal_get_distance_fade_length(decal);
if (distance > fade_begin) {
if (distance > fade_begin + fade_length) {
continue; // do not use this decal, its invisible
}
fade = 1.0 - (distance - fade_begin) / fade_length;
}
}
Cluster::DecalData &dd = cluster.decals[idx];
Vector3 decal_extents = storage->decal_get_extents(decal);
Transform scale_xform;
scale_xform.basis.scale(Vector3(decal_extents.x, decal_extents.y, decal_extents.z));
Transform to_decal_xform = (p_camera_inverse_xform * decal_instance_get_transform(di) * scale_xform * uv_xform).affine_inverse();
RasterizerStorageRD::store_transform(to_decal_xform, dd.xform);
Vector3 normal = xform.basis.get_axis(Vector3::AXIS_Y).normalized();
normal = p_camera_inverse_xform.basis.xform(normal); //camera is normalized, so fine
dd.normal[0] = normal.x;
dd.normal[1] = normal.y;
dd.normal[2] = normal.z;
dd.normal_fade = storage->decal_get_normal_fade(decal);
RID albedo_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ALBEDO);
RID emission_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_EMISSION);
if (albedo_tex.is_valid()) {
Rect2 rect = storage->decal_atlas_get_texture_rect(albedo_tex);
dd.albedo_rect[0] = rect.position.x;
dd.albedo_rect[1] = rect.position.y;
dd.albedo_rect[2] = rect.size.x;
dd.albedo_rect[3] = rect.size.y;
} else {
if (!emission_tex.is_valid()) {
continue; //no albedo, no emission, no decal.
}
dd.albedo_rect[0] = 0;
dd.albedo_rect[1] = 0;
dd.albedo_rect[2] = 0;
dd.albedo_rect[3] = 0;
}
RID normal_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_NORMAL);
if (normal_tex.is_valid()) {
Rect2 rect = storage->decal_atlas_get_texture_rect(normal_tex);
dd.normal_rect[0] = rect.position.x;
dd.normal_rect[1] = rect.position.y;
dd.normal_rect[2] = rect.size.x;
dd.normal_rect[3] = rect.size.y;
Basis normal_xform = p_camera_inverse_xform.basis * xform.basis.orthonormalized();
RasterizerStorageRD::store_basis_3x4(normal_xform, dd.normal_xform);
} else {
dd.normal_rect[0] = 0;
dd.normal_rect[1] = 0;
dd.normal_rect[2] = 0;
dd.normal_rect[3] = 0;
}
RID orm_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ORM);
if (orm_tex.is_valid()) {
Rect2 rect = storage->decal_atlas_get_texture_rect(orm_tex);
dd.orm_rect[0] = rect.position.x;
dd.orm_rect[1] = rect.position.y;
dd.orm_rect[2] = rect.size.x;
dd.orm_rect[3] = rect.size.y;
} else {
dd.orm_rect[0] = 0;
dd.orm_rect[1] = 0;
dd.orm_rect[2] = 0;
dd.orm_rect[3] = 0;
}
if (emission_tex.is_valid()) {
Rect2 rect = storage->decal_atlas_get_texture_rect(emission_tex);
dd.emission_rect[0] = rect.position.x;
dd.emission_rect[1] = rect.position.y;
dd.emission_rect[2] = rect.size.x;
dd.emission_rect[3] = rect.size.y;
} else {
dd.emission_rect[0] = 0;
dd.emission_rect[1] = 0;
dd.emission_rect[2] = 0;
dd.emission_rect[3] = 0;
}
Color modulate = storage->decal_get_modulate(decal);
dd.modulate[0] = modulate.r;
dd.modulate[1] = modulate.g;
dd.modulate[2] = modulate.b;
dd.modulate[3] = modulate.a * fade;
dd.emission_energy = storage->decal_get_emission_energy(decal) * fade;
dd.albedo_mix = storage->decal_get_albedo_mix(decal);
dd.mask = storage->decal_get_cull_mask(decal);
dd.upper_fade = storage->decal_get_upper_fade(decal);
dd.lower_fade = storage->decal_get_lower_fade(decal);
cluster.builder.add_decal(xform, decal_extents);
idx++;
}
if (idx > 0) {
RD::get_singleton()->buffer_update(cluster.decal_buffer, 0, sizeof(Cluster::DecalData) * idx, cluster.decals, true);
}
}
void RasterizerSceneRD::render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID *p_decal_cull_result, int p_decal_cull_count, InstanceBase **p_lightmap_cull_result, int p_lightmap_cull_count, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) {
Color clear_color;
if (p_render_buffers.is_valid()) {
@ -5637,7 +6170,31 @@ void RasterizerSceneRD::render_scene(RID p_render_buffers, const Transform &p_ca
}
}
_render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, p_light_cull_result, p_light_cull_count, p_reflection_probe_cull_result, p_reflection_probe_cull_count, p_gi_probe_cull_result, p_gi_probe_cull_count, p_decal_cull_result, p_decal_cull_count, p_lightmap_cull_result, p_lightmap_cull_count, p_environment, p_camera_effects, p_shadow_atlas, p_reflection_atlas, p_reflection_probe, p_reflection_probe_pass, clear_color);
if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) {
p_light_cull_count = 0;
p_reflection_probe_cull_count = 0;
p_gi_probe_cull_count = 0;
}
cluster.builder.begin(p_cam_transform.affine_inverse(), p_cam_projection); //prepare cluster
bool using_shadows = true;
if (p_reflection_probe.is_valid()) {
if (!storage->reflection_probe_renders_shadows(reflection_probe_instance_get_probe(p_reflection_probe))) {
using_shadows = false;
}
} else {
//do not render reflections when rendering a reflection probe
_setup_reflections(p_reflection_probe_cull_result, p_reflection_probe_cull_count, p_cam_transform.affine_inverse(), p_environment);
}
uint32_t directional_light_count = 0;
_setup_lights(p_light_cull_result, p_light_cull_count, p_cam_transform.affine_inverse(), p_shadow_atlas, using_shadows, directional_light_count);
_setup_decals(p_decal_cull_result, p_decal_cull_count, p_cam_transform.affine_inverse());
cluster.builder.bake_cluster(); //bake to cluster
_render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, directional_light_count, p_gi_probe_cull_result, p_gi_probe_cull_count, p_lightmap_cull_result, p_lightmap_cull_count, p_environment, p_camera_effects, p_shadow_atlas, p_reflection_atlas, p_reflection_probe, p_reflection_probe_pass, clear_color);
if (p_render_buffers.is_valid()) {
RENDER_TIMESTAMP("Tonemap");
@ -6496,6 +7053,30 @@ void RasterizerSceneRD::sdfgi_set_debug_probe_select(const Vector3 &p_position,
RasterizerSceneRD *RasterizerSceneRD::singleton = nullptr;
RID RasterizerSceneRD::get_cluster_builder_texture() {
return cluster.builder.get_cluster_texture();
}
RID RasterizerSceneRD::get_cluster_builder_indices_buffer() {
return cluster.builder.get_cluster_indices_buffer();
}
RID RasterizerSceneRD::get_reflection_probe_buffer() {
return cluster.reflection_buffer;
}
RID RasterizerSceneRD::get_positional_light_buffer() {
return cluster.light_buffer;
}
RID RasterizerSceneRD::get_directional_light_buffer() {
return cluster.directional_light_buffer;
}
RID RasterizerSceneRD::get_decal_buffer() {
return cluster.decal_buffer;
}
int RasterizerSceneRD::get_max_directional_lights() const {
return cluster.max_directional_lights;
}
RasterizerSceneRD::RasterizerSceneRD(RasterizerStorageRD *p_storage) {
storage = p_storage;
singleton = this;
@ -6802,6 +7383,45 @@ RasterizerSceneRD::RasterizerSceneRD(RasterizerStorageRD *p_storage) {
}
}
//cluster setup
uint32_t uniform_max_size = RD::get_singleton()->limit_get(RD::LIMIT_MAX_UNIFORM_BUFFER_SIZE);
{ //reflections
uint32_t reflection_buffer_size;
if (uniform_max_size < 65536) {
//Yes, you guessed right, ARM again
reflection_buffer_size = uniform_max_size;
} else {
reflection_buffer_size = 65536;
}
cluster.max_reflections = reflection_buffer_size / sizeof(Cluster::ReflectionData);
cluster.reflections = memnew_arr(Cluster::ReflectionData, cluster.max_reflections);
cluster.reflection_buffer = RD::get_singleton()->storage_buffer_create(reflection_buffer_size);
}
{ //lights
cluster.max_lights = MIN(1024 * 1024, uniform_max_size) / sizeof(Cluster::LightData); //1mb of lights
uint32_t light_buffer_size = cluster.max_lights * sizeof(Cluster::LightData);
cluster.lights = memnew_arr(Cluster::LightData, cluster.max_lights);
cluster.light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size);
//defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(cluster.max_lights) + "\n";
cluster.max_directional_lights = 8;
uint32_t directional_light_buffer_size = cluster.max_directional_lights * sizeof(Cluster::DirectionalLightData);
cluster.directional_lights = memnew_arr(Cluster::DirectionalLightData, cluster.max_directional_lights);
cluster.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size);
}
{ //decals
cluster.max_decals = MIN(1024 * 1024, uniform_max_size) / sizeof(Cluster::DecalData); //1mb of decals
uint32_t decal_buffer_size = cluster.max_decals * sizeof(Cluster::DecalData);
cluster.decals = memnew_arr(Cluster::DecalData, cluster.max_decals);
cluster.decal_buffer = RD::get_singleton()->storage_buffer_create(decal_buffer_size);
}
cluster.builder.setup(16, 8, 24);
default_giprobe_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(GI::GIProbeData) * RenderBuffers::MAX_GIPROBES);
camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/quality/depth_of_field/depth_of_field_bokeh_shape"))));
@ -6863,4 +7483,15 @@ RasterizerSceneRD::~RasterizerSceneRD() {
memdelete_arr(directional_soft_shadow_kernel);
memdelete_arr(penumbra_shadow_kernel);
memdelete_arr(soft_shadow_kernel);
{
RD::get_singleton()->free(cluster.directional_light_buffer);
RD::get_singleton()->free(cluster.light_buffer);
RD::get_singleton()->free(cluster.reflection_buffer);
RD::get_singleton()->free(cluster.decal_buffer);
memdelete_arr(cluster.directional_lights);
memdelete_arr(cluster.lights);
memdelete_arr(cluster.reflections);
memdelete_arr(cluster.decals);
}
}

View File

@ -34,6 +34,7 @@
#include "core/local_vector.h"
#include "core/rid_owner.h"
#include "servers/rendering/rasterizer.h"
#include "servers/rendering/rasterizer_rd/light_cluster_builder.h"
#include "servers/rendering/rasterizer_rd/rasterizer_storage_rd.h"
#include "servers/rendering/rasterizer_rd/shaders/gi.glsl.gen.h"
#include "servers/rendering/rasterizer_rd/shaders/giprobe.glsl.gen.h"
@ -77,7 +78,11 @@ protected:
};
virtual RenderBufferData *_create_render_buffer_data() = 0;
virtual void _render_scene(RID p_render_buffer, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID *p_decal_cull_result, int p_decal_cull_count, InstanceBase **p_lightmap_cull_result, int p_lightmap_cull_count, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, const Color &p_default_color) = 0;
void _setup_lights(RID *p_light_cull_result, int p_light_cull_count, const Transform &p_camera_inverse_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count);
void _setup_decals(const RID *p_decal_instances, int p_decal_count, const Transform &p_camera_inverse_xform);
void _setup_reflections(RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, const Transform &p_camera_inverse_transform, RID p_environment);
virtual void _render_scene(RID p_render_buffer, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, int p_directional_light_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, InstanceBase **p_lightmap_cull_result, int p_lightmap_cull_count, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, const Color &p_default_color) = 0;
virtual void _render_shadow(RID p_framebuffer, InstanceBase **p_cull_result, int p_cull_count, const CameraMatrix &p_projection, const Transform &p_transform, float p_zfar, float p_bias, float p_normal_bias, bool p_use_dp, bool use_dp_flip, bool p_use_pancake) = 0;
virtual void _render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region) = 0;
virtual void _render_uv2(InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region) = 0;
@ -1181,6 +1186,112 @@ private:
void _render_buffers_post_process_and_tonemap(RID p_render_buffers, RID p_environment, RID p_camera_effects, const CameraMatrix &p_projection);
void _sdfgi_debug_draw(RID p_render_buffers, const CameraMatrix &p_projection, const Transform &p_transform);
/* Cluster */
struct Cluster {
/* Scene State UBO */
struct ReflectionData { //should always be 128 bytes
float box_extents[3];
float index;
float box_offset[3];
uint32_t mask;
float params[4]; // intensity, 0, interior , boxproject
float ambient[3]; // ambient color,
uint32_t ambient_mode;
float local_matrix[16]; // up to here for spot and omni, rest is for directional
};
struct LightData {
float position[3];
float inv_radius;
float direction[3];
float size;
uint16_t attenuation_energy[2]; //16 bits attenuation, then energy
uint8_t color_specular[4]; //rgb color, a specular (8 bit unorm)
uint16_t cone_attenuation_angle[2]; // attenuation and angle, (16bit float)
uint8_t shadow_color_enabled[4]; //shadow rgb color, a>0.5 enabled (8bit unorm)
float atlas_rect[4]; // in omni, used for atlas uv, in spot, used for projector uv
float shadow_matrix[16];
float shadow_bias;
float shadow_normal_bias;
float transmittance_bias;
float soft_shadow_size;
float soft_shadow_scale;
uint32_t mask;
uint32_t pad[2];
float projector_rect[4];
};
struct DirectionalLightData {
float direction[3];
float energy;
float color[3];
float size;
float specular;
uint32_t mask;
float softshadow_angle;
float soft_shadow_scale;
uint32_t blend_splits;
uint32_t shadow_enabled;
float fade_from;
float fade_to;
float shadow_bias[4];
float shadow_normal_bias[4];
float shadow_transmittance_bias[4];
float shadow_transmittance_z_scale[4];
float shadow_range_begin[4];
float shadow_split_offsets[4];
float shadow_matrices[4][16];
float shadow_color1[4];
float shadow_color2[4];
float shadow_color3[4];
float shadow_color4[4];
float uv_scale1[2];
float uv_scale2[2];
float uv_scale3[2];
float uv_scale4[2];
};
struct DecalData {
float xform[16];
float inv_extents[3];
float albedo_mix;
float albedo_rect[4];
float normal_rect[4];
float orm_rect[4];
float emission_rect[4];
float modulate[4];
float emission_energy;
uint32_t mask;
float upper_fade;
float lower_fade;
float normal_xform[12];
float normal[3];
float normal_fade;
};
ReflectionData *reflections;
uint32_t max_reflections;
RID reflection_buffer;
uint32_t max_reflection_probes_per_instance;
DecalData *decals;
uint32_t max_decals;
RID decal_buffer;
LightData *lights;
uint32_t max_lights;
RID light_buffer;
DirectionalLightData *directional_lights;
uint32_t max_directional_lights;
RID directional_light_buffer;
LightClusterBuilder builder;
} cluster;
uint64_t scene_pass = 0;
uint64_t shadow_atlas_realloc_tolerance_msec = 500;
@ -1655,6 +1766,14 @@ public:
virtual void set_time(double p_time, double p_step);
RID get_cluster_builder_texture();
RID get_cluster_builder_indices_buffer();
RID get_reflection_probe_buffer();
RID get_positional_light_buffer();
RID get_directional_light_buffer();
RID get_decal_buffer();
int get_max_directional_lights() const;
void sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir);
RasterizerSceneRD(RasterizerStorageRD *p_storage);

View File

@ -40,6 +40,69 @@
class RasterizerStorageRD : public RasterizerStorage {
public:
static _FORCE_INLINE_ void store_transform(const Transform &p_mtx, float *p_array) {
p_array[0] = p_mtx.basis.elements[0][0];
p_array[1] = p_mtx.basis.elements[1][0];
p_array[2] = p_mtx.basis.elements[2][0];
p_array[3] = 0;
p_array[4] = p_mtx.basis.elements[0][1];
p_array[5] = p_mtx.basis.elements[1][1];
p_array[6] = p_mtx.basis.elements[2][1];
p_array[7] = 0;
p_array[8] = p_mtx.basis.elements[0][2];
p_array[9] = p_mtx.basis.elements[1][2];
p_array[10] = p_mtx.basis.elements[2][2];
p_array[11] = 0;
p_array[12] = p_mtx.origin.x;
p_array[13] = p_mtx.origin.y;
p_array[14] = p_mtx.origin.z;
p_array[15] = 1;
}
static _FORCE_INLINE_ void store_basis_3x4(const Basis &p_mtx, float *p_array) {
p_array[0] = p_mtx.elements[0][0];
p_array[1] = p_mtx.elements[1][0];
p_array[2] = p_mtx.elements[2][0];
p_array[3] = 0;
p_array[4] = p_mtx.elements[0][1];
p_array[5] = p_mtx.elements[1][1];
p_array[6] = p_mtx.elements[2][1];
p_array[7] = 0;
p_array[8] = p_mtx.elements[0][2];
p_array[9] = p_mtx.elements[1][2];
p_array[10] = p_mtx.elements[2][2];
p_array[11] = 0;
}
static _FORCE_INLINE_ void store_transform_3x3(const Basis &p_mtx, float *p_array) {
p_array[0] = p_mtx.elements[0][0];
p_array[1] = p_mtx.elements[1][0];
p_array[2] = p_mtx.elements[2][0];
p_array[3] = 0;
p_array[4] = p_mtx.elements[0][1];
p_array[5] = p_mtx.elements[1][1];
p_array[6] = p_mtx.elements[2][1];
p_array[7] = 0;
p_array[8] = p_mtx.elements[0][2];
p_array[9] = p_mtx.elements[1][2];
p_array[10] = p_mtx.elements[2][2];
p_array[11] = 0;
}
static _FORCE_INLINE_ void store_camera(const CameraMatrix &p_mtx, float *p_array) {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
p_array[i * 4 + j] = p_mtx.matrix[i][j];
}
}
}
static _FORCE_INLINE_ void store_soft_shadow_kernel(const float *p_kernel, float *p_array) {
for (int i = 0; i < 128; i++) {
p_array[i] = p_kernel[i];
}
}
enum ShaderType {
SHADER_TYPE_2D,
SHADER_TYPE_3D,

View File

@ -2685,7 +2685,7 @@ FRAGMENT_SHADER_CODE
frag_color = vec4(albedo, alpha);
#else
frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha);
//frag_color = vec4(1.0);
//frag_color = vec4(1.0);;;
#endif //USE_NO_SHADING

View File

@ -205,8 +205,8 @@ struct ReflectionData {
// notes: for ambientblend, use distance to edge to blend between already existing global environment
};
layout(set = 0, binding = 6, std140) uniform ReflectionProbeData {
ReflectionData data[MAX_REFLECTION_DATA_STRUCTS];
layout(set = 0, binding = 6) buffer restrict readonly ReflectionProbeData {
ReflectionData data[];
}
reflections;