mirror of
https://github.com/godotengine/godot.git
synced 2024-11-27 09:16:35 +08:00
Merge pull request #10190 from tagcup/euler_yxz
Use YXZ convention for Euler angles.
This commit is contained in:
commit
5c6e41cc13
@ -338,7 +338,7 @@ void Basis::set_rotation_axis_angle(const Vector3 &p_axis, real_t p_angle) {
|
|||||||
rotate(p_axis, p_angle);
|
rotate(p_axis, p_angle);
|
||||||
}
|
}
|
||||||
|
|
||||||
// get_euler returns a vector containing the Euler angles in the format
|
// get_euler_xyz returns a vector containing the Euler angles in the format
|
||||||
// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last
|
// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last
|
||||||
// (following the convention they are commonly defined in the literature).
|
// (following the convention they are commonly defined in the literature).
|
||||||
//
|
//
|
||||||
@ -348,7 +348,7 @@ void Basis::set_rotation_axis_angle(const Vector3 &p_axis, real_t p_angle) {
|
|||||||
// And thus, assuming the matrix is a rotation matrix, this function returns
|
// And thus, assuming the matrix is a rotation matrix, this function returns
|
||||||
// the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates
|
// the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates
|
||||||
// around the z-axis by a and so on.
|
// around the z-axis by a and so on.
|
||||||
Vector3 Basis::get_euler() const {
|
Vector3 Basis::get_euler_xyz() const {
|
||||||
|
|
||||||
// Euler angles in XYZ convention.
|
// Euler angles in XYZ convention.
|
||||||
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
|
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
|
||||||
@ -366,6 +366,9 @@ Vector3 Basis::get_euler() const {
|
|||||||
if (euler.y > -Math_PI * 0.5) {
|
if (euler.y > -Math_PI * 0.5) {
|
||||||
//if rotation is Y-only, return a proper -pi,pi range like in x or z for the same case.
|
//if rotation is Y-only, return a proper -pi,pi range like in x or z for the same case.
|
||||||
if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[0][0] < 0.0) {
|
if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[0][0] < 0.0) {
|
||||||
|
euler.x = 0;
|
||||||
|
euler.z = 0;
|
||||||
|
|
||||||
if (euler.y > 0.0)
|
if (euler.y > 0.0)
|
||||||
euler.y = Math_PI - euler.y;
|
euler.y = Math_PI - euler.y;
|
||||||
else
|
else
|
||||||
@ -389,10 +392,11 @@ Vector3 Basis::get_euler() const {
|
|||||||
return euler;
|
return euler;
|
||||||
}
|
}
|
||||||
|
|
||||||
// set_euler expects a vector containing the Euler angles in the format
|
// set_euler_xyz expects a vector containing the Euler angles in the format
|
||||||
// (c,b,a), where a is the angle of the first rotation, and c is the last.
|
// (ax,ay,az), where ax is the angle of rotation around x axis,
|
||||||
|
// and similar for other axes.
|
||||||
// The current implementation uses XYZ convention (Z is the first rotation).
|
// The current implementation uses XYZ convention (Z is the first rotation).
|
||||||
void Basis::set_euler(const Vector3 &p_euler) {
|
void Basis::set_euler_xyz(const Vector3 &p_euler) {
|
||||||
|
|
||||||
real_t c, s;
|
real_t c, s;
|
||||||
|
|
||||||
@ -412,6 +416,78 @@ void Basis::set_euler(const Vector3 &p_euler) {
|
|||||||
*this = xmat * (ymat * zmat);
|
*this = xmat * (ymat * zmat);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// get_euler_yxz returns a vector containing the Euler angles in the YXZ convention,
|
||||||
|
// as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned
|
||||||
|
// as the x, y, and z components of a Vector3 respectively.
|
||||||
|
Vector3 Basis::get_euler_yxz() const {
|
||||||
|
|
||||||
|
// Euler angles in YXZ convention.
|
||||||
|
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
|
||||||
|
//
|
||||||
|
// rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
|
||||||
|
// cx*sz cx*cz -sx
|
||||||
|
// cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx
|
||||||
|
|
||||||
|
Vector3 euler;
|
||||||
|
#ifdef MATH_CHECKS
|
||||||
|
ERR_FAIL_COND_V(is_rotation() == false, euler);
|
||||||
|
#endif
|
||||||
|
real_t m12 = elements[1][2];
|
||||||
|
|
||||||
|
if (m12 < 1) {
|
||||||
|
if (m12 > -1) {
|
||||||
|
if (elements[1][0] == 0 && elements[0][1] == 0 && elements[2][2] < 0) { // use pure x rotation
|
||||||
|
real_t x = asin(-m12);
|
||||||
|
euler.y = 0;
|
||||||
|
euler.z = 0;
|
||||||
|
|
||||||
|
if (x > 0.0)
|
||||||
|
euler.x = Math_PI - x;
|
||||||
|
else
|
||||||
|
euler.x = -(Math_PI + x);
|
||||||
|
} else {
|
||||||
|
euler.x = asin(-m12);
|
||||||
|
euler.y = atan2(elements[0][2], elements[2][2]);
|
||||||
|
euler.z = atan2(elements[1][0], elements[1][1]);
|
||||||
|
}
|
||||||
|
} else { // m12 == -1
|
||||||
|
euler.x = Math_PI * 0.5;
|
||||||
|
euler.y = -atan2(-elements[0][1], elements[0][0]);
|
||||||
|
euler.z = 0;
|
||||||
|
}
|
||||||
|
} else { // m12 == 1
|
||||||
|
euler.x = -Math_PI * 0.5;
|
||||||
|
euler.y = -atan2(-elements[0][1], elements[0][0]);
|
||||||
|
euler.z = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
return euler;
|
||||||
|
}
|
||||||
|
|
||||||
|
// set_euler_yxz expects a vector containing the Euler angles in the format
|
||||||
|
// (ax,ay,az), where ax is the angle of rotation around x axis,
|
||||||
|
// and similar for other axes.
|
||||||
|
// The current implementation uses YXZ convention (Z is the first rotation).
|
||||||
|
void Basis::set_euler_yxz(const Vector3 &p_euler) {
|
||||||
|
|
||||||
|
real_t c, s;
|
||||||
|
|
||||||
|
c = Math::cos(p_euler.x);
|
||||||
|
s = Math::sin(p_euler.x);
|
||||||
|
Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
|
||||||
|
|
||||||
|
c = Math::cos(p_euler.y);
|
||||||
|
s = Math::sin(p_euler.y);
|
||||||
|
Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
|
||||||
|
|
||||||
|
c = Math::cos(p_euler.z);
|
||||||
|
s = Math::sin(p_euler.z);
|
||||||
|
Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
|
||||||
|
|
||||||
|
//optimizer will optimize away all this anyway
|
||||||
|
*this = ymat * xmat * zmat;
|
||||||
|
}
|
||||||
|
|
||||||
bool Basis::is_equal_approx(const Basis &a, const Basis &b) const {
|
bool Basis::is_equal_approx(const Basis &a, const Basis &b) const {
|
||||||
|
|
||||||
for (int i = 0; i < 3; i++) {
|
for (int i = 0; i < 3; i++) {
|
||||||
|
@ -84,8 +84,13 @@ public:
|
|||||||
void set_rotation_euler(const Vector3 &p_euler);
|
void set_rotation_euler(const Vector3 &p_euler);
|
||||||
void set_rotation_axis_angle(const Vector3 &p_axis, real_t p_angle);
|
void set_rotation_axis_angle(const Vector3 &p_axis, real_t p_angle);
|
||||||
|
|
||||||
Vector3 get_euler() const;
|
Vector3 get_euler_xyz() const;
|
||||||
void set_euler(const Vector3 &p_euler);
|
void set_euler_xyz(const Vector3 &p_euler);
|
||||||
|
Vector3 get_euler_yxz() const;
|
||||||
|
void set_euler_yxz(const Vector3 &p_euler);
|
||||||
|
|
||||||
|
Vector3 get_euler() const { return get_euler_yxz(); };
|
||||||
|
void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); };
|
||||||
|
|
||||||
void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const;
|
void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const;
|
||||||
void set_axis_angle(const Vector3 &p_axis, real_t p_phi);
|
void set_axis_angle(const Vector3 &p_axis, real_t p_phi);
|
||||||
|
@ -31,10 +31,11 @@
|
|||||||
#include "matrix3.h"
|
#include "matrix3.h"
|
||||||
#include "print_string.h"
|
#include "print_string.h"
|
||||||
|
|
||||||
// set_euler expects a vector containing the Euler angles in the format
|
// set_euler_xyz expects a vector containing the Euler angles in the format
|
||||||
// (c,b,a), where a is the angle of the first rotation, and c is the last.
|
// (ax,ay,az), where ax is the angle of rotation around x axis,
|
||||||
// The current implementation uses XYZ convention (Z is the first rotation).
|
// and similar for other axes.
|
||||||
void Quat::set_euler(const Vector3 &p_euler) {
|
// This implementation uses XYZ convention (Z is the first rotation).
|
||||||
|
void Quat::set_euler_xyz(const Vector3 &p_euler) {
|
||||||
real_t half_a1 = p_euler.x * 0.5;
|
real_t half_a1 = p_euler.x * 0.5;
|
||||||
real_t half_a2 = p_euler.y * 0.5;
|
real_t half_a2 = p_euler.y * 0.5;
|
||||||
real_t half_a3 = p_euler.z * 0.5;
|
real_t half_a3 = p_euler.z * 0.5;
|
||||||
@ -56,12 +57,48 @@ void Quat::set_euler(const Vector3 &p_euler) {
|
|||||||
-sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3);
|
-sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3);
|
||||||
}
|
}
|
||||||
|
|
||||||
// get_euler returns a vector containing the Euler angles in the format
|
// get_euler_xyz returns a vector containing the Euler angles in the format
|
||||||
// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last.
|
// (ax,ay,az), where ax is the angle of rotation around x axis,
|
||||||
// The current implementation uses XYZ convention (Z is the first rotation).
|
// and similar for other axes.
|
||||||
Vector3 Quat::get_euler() const {
|
// This implementation uses XYZ convention (Z is the first rotation).
|
||||||
|
Vector3 Quat::get_euler_xyz() const {
|
||||||
Basis m(*this);
|
Basis m(*this);
|
||||||
return m.get_euler();
|
return m.get_euler_xyz();
|
||||||
|
}
|
||||||
|
|
||||||
|
// set_euler_yxz expects a vector containing the Euler angles in the format
|
||||||
|
// (ax,ay,az), where ax is the angle of rotation around x axis,
|
||||||
|
// and similar for other axes.
|
||||||
|
// This implementation uses YXZ convention (Z is the first rotation).
|
||||||
|
void Quat::set_euler_yxz(const Vector3 &p_euler) {
|
||||||
|
real_t half_a1 = p_euler.y * 0.5;
|
||||||
|
real_t half_a2 = p_euler.x * 0.5;
|
||||||
|
real_t half_a3 = p_euler.z * 0.5;
|
||||||
|
|
||||||
|
// R = Y(a1).X(a2).Z(a3) convention for Euler angles.
|
||||||
|
// Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
|
||||||
|
// a3 is the angle of the first rotation, following the notation in this reference.
|
||||||
|
|
||||||
|
real_t cos_a1 = Math::cos(half_a1);
|
||||||
|
real_t sin_a1 = Math::sin(half_a1);
|
||||||
|
real_t cos_a2 = Math::cos(half_a2);
|
||||||
|
real_t sin_a2 = Math::sin(half_a2);
|
||||||
|
real_t cos_a3 = Math::cos(half_a3);
|
||||||
|
real_t sin_a3 = Math::sin(half_a3);
|
||||||
|
|
||||||
|
set(sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3,
|
||||||
|
sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3,
|
||||||
|
-sin_a1 * sin_a2 * cos_a3 + cos_a1 * sin_a2 * sin_a3,
|
||||||
|
sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3);
|
||||||
|
}
|
||||||
|
|
||||||
|
// get_euler_yxz returns a vector containing the Euler angles in the format
|
||||||
|
// (ax,ay,az), where ax is the angle of rotation around x axis,
|
||||||
|
// and similar for other axes.
|
||||||
|
// This implementation uses YXZ convention (Z is the first rotation).
|
||||||
|
Vector3 Quat::get_euler_yxz() const {
|
||||||
|
Basis m(*this);
|
||||||
|
return m.get_euler_yxz();
|
||||||
}
|
}
|
||||||
|
|
||||||
void Quat::operator*=(const Quat &q) {
|
void Quat::operator*=(const Quat &q) {
|
||||||
|
@ -51,8 +51,15 @@ public:
|
|||||||
bool is_normalized() const;
|
bool is_normalized() const;
|
||||||
Quat inverse() const;
|
Quat inverse() const;
|
||||||
_FORCE_INLINE_ real_t dot(const Quat &q) const;
|
_FORCE_INLINE_ real_t dot(const Quat &q) const;
|
||||||
void set_euler(const Vector3 &p_euler);
|
|
||||||
Vector3 get_euler() const;
|
void set_euler_xyz(const Vector3 &p_euler);
|
||||||
|
Vector3 get_euler_xyz() const;
|
||||||
|
void set_euler_yxz(const Vector3 &p_euler);
|
||||||
|
Vector3 get_euler_yxz() const;
|
||||||
|
|
||||||
|
void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); };
|
||||||
|
Vector3 get_euler() const { return get_euler_yxz(); };
|
||||||
|
|
||||||
Quat slerp(const Quat &q, const real_t &t) const;
|
Quat slerp(const Quat &q, const real_t &t) const;
|
||||||
Quat slerpni(const Quat &q, const real_t &t) const;
|
Quat slerpni(const Quat &q, const real_t &t) const;
|
||||||
Quat cubic_slerp(const Quat &q, const Quat &prep, const Quat &postq, const real_t &t) const;
|
Quat cubic_slerp(const Quat &q, const Quat &prep, const Quat &postq, const real_t &t) const;
|
||||||
|
@ -7652,7 +7652,7 @@
|
|||||||
<argument index="0" name="euler" type="Vector3">
|
<argument index="0" name="euler" type="Vector3">
|
||||||
</argument>
|
</argument>
|
||||||
<description>
|
<description>
|
||||||
Create a rotation matrix (in the XYZ convention: first Z, then Y, and X last) from the specified Euler angles, given in the vector format as (third, second, first).
|
Create a rotation matrix (in the YXZ convention: first Z, then X, and Y last) from the specified Euler angles, given in the vector format as (X-angle, Y-angle, Z-angle).
|
||||||
</description>
|
</description>
|
||||||
</method>
|
</method>
|
||||||
<method name="Basis">
|
<method name="Basis">
|
||||||
@ -7690,7 +7690,7 @@
|
|||||||
<return type="Vector3">
|
<return type="Vector3">
|
||||||
</return>
|
</return>
|
||||||
<description>
|
<description>
|
||||||
Assuming that the matrix is a proper rotation matrix (orthonormal matrix with determinant +1), return Euler angles (in the XYZ convention: first Z, then Y, and X last). Returned vector contains the rotation angles in the format (third,second,first).
|
Assuming that the matrix is a proper rotation matrix (orthonormal matrix with determinant +1), return Euler angles (in the YXZ convention: first Z, then X, and Y last). Returned vector contains the rotation angles in the format (X-angle, Y-angle, Z-angle).
|
||||||
</description>
|
</description>
|
||||||
</method>
|
</method>
|
||||||
<method name="get_orthogonal_index">
|
<method name="get_orthogonal_index">
|
||||||
|
Loading…
Reference in New Issue
Block a user