Merge pull request #48882 from aaronfranke/approx-use-double

Make is_equal_approx have explicit float and double versions
This commit is contained in:
Rémi Verschelde 2021-05-20 14:17:58 +02:00 committed by GitHub
commit 342f3efc7e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 72 additions and 46 deletions

View File

@ -109,7 +109,7 @@ bool Basis::is_diagonal() const {
}
bool Basis::is_rotation() const {
return Math::is_equal_approx(determinant(), 1, UNIT_EPSILON) && is_orthogonal();
return Math::is_equal_approx(determinant(), 1, (real_t)UNIT_EPSILON) && is_orthogonal();
}
#ifdef MATH_CHECKS

View File

@ -311,20 +311,20 @@ public:
static float random(float from, float to);
static int random(int from, int to);
static _ALWAYS_INLINE_ bool is_equal_approx(real_t a, real_t b) {
static _ALWAYS_INLINE_ bool is_equal_approx(float a, float b) {
// Check for exact equality first, required to handle "infinity" values.
if (a == b) {
return true;
}
// Then check for approximate equality.
real_t tolerance = CMP_EPSILON * abs(a);
float tolerance = CMP_EPSILON * abs(a);
if (tolerance < CMP_EPSILON) {
tolerance = CMP_EPSILON;
}
return abs(a - b) < tolerance;
}
static _ALWAYS_INLINE_ bool is_equal_approx(real_t a, real_t b, real_t tolerance) {
static _ALWAYS_INLINE_ bool is_equal_approx(float a, float b, float tolerance) {
// Check for exact equality first, required to handle "infinity" values.
if (a == b) {
return true;
@ -333,7 +333,33 @@ public:
return abs(a - b) < tolerance;
}
static _ALWAYS_INLINE_ bool is_zero_approx(real_t s) {
static _ALWAYS_INLINE_ bool is_zero_approx(float s) {
return abs(s) < CMP_EPSILON;
}
static _ALWAYS_INLINE_ bool is_equal_approx(double a, double b) {
// Check for exact equality first, required to handle "infinity" values.
if (a == b) {
return true;
}
// Then check for approximate equality.
double tolerance = CMP_EPSILON * abs(a);
if (tolerance < CMP_EPSILON) {
tolerance = CMP_EPSILON;
}
return abs(a - b) < tolerance;
}
static _ALWAYS_INLINE_ bool is_equal_approx(double a, double b, double tolerance) {
// Check for exact equality first, required to handle "infinity" values.
if (a == b) {
return true;
}
// Then check for approximate equality.
return abs(a - b) < tolerance;
}
static _ALWAYS_INLINE_ bool is_zero_approx(double s) {
return abs(s) < CMP_EPSILON;
}

View File

@ -87,7 +87,7 @@ Quat Quat::normalized() const {
}
bool Quat::is_normalized() const {
return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON); //use less epsilon
return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON); //use less epsilon
}
Quat Quat::inverse() const {

View File

@ -59,7 +59,7 @@ Vector2 Vector2::normalized() const {
bool Vector2::is_normalized() const {
// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON);
return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON);
}
real_t Vector2::distance_to(const Vector2 &p_vector2) const {

View File

@ -423,7 +423,7 @@ Vector3 Vector3::normalized() const {
bool Vector3::is_normalized() const {
// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON);
return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON);
}
Vector3 Vector3::inverse() const {

View File

@ -513,7 +513,7 @@ void SpriteFramesEditor::_animation_select() {
if (frames->has_animation(edited_anim)) {
double value = anim_speed->get_line_edit()->get_text().to_float();
if (!Math::is_equal_approx(value, frames->get_animation_speed(edited_anim))) {
if (!Math::is_equal_approx(value, (double)frames->get_animation_speed(edited_anim))) {
_animation_fps_changed(value);
}
}

View File

@ -987,7 +987,7 @@ Vector<Vector2> TextServer::shaped_text_get_selection(RID p_shaped, int p_start,
while (i < ranges.size()) {
int j = i + 1;
while (j < ranges.size()) {
if (Math::is_equal_approx(ranges[i].y, ranges[j].x, UNIT_EPSILON)) {
if (Math::is_equal_approx(ranges[i].y, ranges[j].x, (real_t)UNIT_EPSILON)) {
ranges.write[i].y = ranges[j].y;
ranges.remove(j);
continue;

View File

@ -101,13 +101,13 @@ TEST_CASE("[Color] Reading methods") {
const Color dark_blue = Color(0, 0, 0.5, 0.4);
CHECK_MESSAGE(
Math::is_equal_approx(dark_blue.get_h(), 240 / 360.0),
Math::is_equal_approx(dark_blue.get_h(), 240.0f / 360.0f),
"The returned HSV hue should match the expected value.");
CHECK_MESSAGE(
Math::is_equal_approx(dark_blue.get_s(), 1),
Math::is_equal_approx(dark_blue.get_s(), 1.0f),
"The returned HSV saturation should match the expected value.");
CHECK_MESSAGE(
Math::is_equal_approx(dark_blue.get_v(), 0.5),
Math::is_equal_approx(dark_blue.get_v(), 0.5f),
"The returned HSV value should match the expected value.");
}

View File

@ -83,13 +83,13 @@ TEST_CASE("[Curve] Custom curve with free tangents") {
Math::is_equal_approx(curve->interpolate(-0.1), 0),
"Custom free curve should return the expected value at offset 0.1.");
CHECK_MESSAGE(
Math::is_equal_approx(curve->interpolate(0.1), 0.352),
Math::is_equal_approx(curve->interpolate(0.1), (real_t)0.352),
"Custom free curve should return the expected value at offset 0.1.");
CHECK_MESSAGE(
Math::is_equal_approx(curve->interpolate(0.4), 0.352),
Math::is_equal_approx(curve->interpolate(0.4), (real_t)0.352),
"Custom free curve should return the expected value at offset 0.1.");
CHECK_MESSAGE(
Math::is_equal_approx(curve->interpolate(0.7), 0.896),
Math::is_equal_approx(curve->interpolate(0.7), (real_t)0.896),
"Custom free curve should return the expected value at offset 0.1.");
CHECK_MESSAGE(
Math::is_equal_approx(curve->interpolate(1), 1),
@ -102,13 +102,13 @@ TEST_CASE("[Curve] Custom curve with free tangents") {
Math::is_equal_approx(curve->interpolate_baked(-0.1), 0),
"Custom free curve should return the expected baked value at offset 0.1.");
CHECK_MESSAGE(
Math::is_equal_approx(curve->interpolate_baked(0.1), 0.352),
Math::is_equal_approx(curve->interpolate_baked(0.1), (real_t)0.352),
"Custom free curve should return the expected baked value at offset 0.1.");
CHECK_MESSAGE(
Math::is_equal_approx(curve->interpolate_baked(0.4), 0.352),
Math::is_equal_approx(curve->interpolate_baked(0.4), (real_t)0.352),
"Custom free curve should return the expected baked value at offset 0.1.");
CHECK_MESSAGE(
Math::is_equal_approx(curve->interpolate_baked(0.7), 0.896),
Math::is_equal_approx(curve->interpolate_baked(0.7), (real_t)0.896),
"Custom free curve should return the expected baked value at offset 0.1.");
CHECK_MESSAGE(
Math::is_equal_approx(curve->interpolate_baked(1), 1),
@ -172,13 +172,13 @@ TEST_CASE("[Curve] Custom curve with linear tangents") {
Math::is_equal_approx(curve->interpolate(-0.1), 0),
"Custom linear curve should return the expected value at offset -0.1.");
CHECK_MESSAGE(
Math::is_equal_approx(curve->interpolate(0.1), 0.4),
Math::is_equal_approx(curve->interpolate(0.1), (real_t)0.4),
"Custom linear curve should return the expected value at offset 0.1.");
CHECK_MESSAGE(
Math::is_equal_approx(curve->interpolate(0.4), 0.4),
Math::is_equal_approx(curve->interpolate(0.4), (real_t)0.4),
"Custom linear curve should return the expected value at offset 0.4.");
CHECK_MESSAGE(
Math::is_equal_approx(curve->interpolate(0.7), 0.8),
Math::is_equal_approx(curve->interpolate(0.7), (real_t)0.8),
"Custom linear curve should return the expected value at offset 0.7.");
CHECK_MESSAGE(
Math::is_equal_approx(curve->interpolate(1), 1),
@ -191,13 +191,13 @@ TEST_CASE("[Curve] Custom curve with linear tangents") {
Math::is_equal_approx(curve->interpolate_baked(-0.1), 0),
"Custom linear curve should return the expected baked value at offset -0.1.");
CHECK_MESSAGE(
Math::is_equal_approx(curve->interpolate_baked(0.1), 0.4),
Math::is_equal_approx(curve->interpolate_baked(0.1), (real_t)0.4),
"Custom linear curve should return the expected baked value at offset 0.1.");
CHECK_MESSAGE(
Math::is_equal_approx(curve->interpolate_baked(0.4), 0.4),
Math::is_equal_approx(curve->interpolate_baked(0.4), (real_t)0.4),
"Custom linear curve should return the expected baked value at offset 0.4.");
CHECK_MESSAGE(
Math::is_equal_approx(curve->interpolate_baked(0.7), 0.8),
Math::is_equal_approx(curve->interpolate_baked(0.7), (real_t)0.8),
"Custom linear curve should return the expected baked value at offset 0.7.");
CHECK_MESSAGE(
Math::is_equal_approx(curve->interpolate_baked(1), 1),
@ -210,10 +210,10 @@ TEST_CASE("[Curve] Custom curve with linear tangents") {
curve->remove_point(10);
ERR_PRINT_ON;
CHECK_MESSAGE(
Math::is_equal_approx(curve->interpolate(0.7), 0.8),
Math::is_equal_approx(curve->interpolate(0.7), (real_t)0.8),
"Custom free curve should return the expected value at offset 0.7 after removing point at invalid index 10.");
CHECK_MESSAGE(
Math::is_equal_approx(curve->interpolate_baked(0.7), 0.8),
Math::is_equal_approx(curve->interpolate_baked(0.7), (real_t)0.8),
"Custom free curve should return the expected baked value at offset 0.7 after removing point at invalid index 10.");
}
} // namespace TestCurve

View File

@ -83,42 +83,42 @@ TEST_CASE("[Expression] Floating-point arithmetic") {
expression.parse("-123.456") == OK,
"Float identity should parse successfully.");
CHECK_MESSAGE(
Math::is_equal_approx(float(expression.execute()), -123.456),
Math::is_equal_approx(double(expression.execute()), -123.456),
"Float identity should return the expected result.");
CHECK_MESSAGE(
expression.parse("2.0 + 3.0") == OK,
"Float addition should parse successfully.");
CHECK_MESSAGE(
Math::is_equal_approx(float(expression.execute()), 5),
Math::is_equal_approx(double(expression.execute()), 5),
"Float addition should return the expected result.");
CHECK_MESSAGE(
expression.parse("3.0 / 10") == OK,
"Float / integer division should parse successfully.");
CHECK_MESSAGE(
Math::is_equal_approx(float(expression.execute()), 0.3),
Math::is_equal_approx(double(expression.execute()), 0.3),
"Float / integer division should return the expected result.");
CHECK_MESSAGE(
expression.parse("3 / 10.0") == OK,
"Basic integer / float division should parse successfully.");
CHECK_MESSAGE(
Math::is_equal_approx(float(expression.execute()), 0.3),
Math::is_equal_approx(double(expression.execute()), 0.3),
"Basic integer / float division should return the expected result.");
CHECK_MESSAGE(
expression.parse("3.0 / 10.0") == OK,
"Float / float division should parse successfully.");
CHECK_MESSAGE(
Math::is_equal_approx(float(expression.execute()), 0.3),
Math::is_equal_approx(double(expression.execute()), 0.3),
"Float / float division should return the expected result.");
CHECK_MESSAGE(
expression.parse("2.5 * (6.0 + 14.25) / 2.0 - 5.12345") == OK,
"Float multiplication-addition-subtraction-division should parse successfully.");
CHECK_MESSAGE(
Math::is_equal_approx(float(expression.execute()), 20.18905),
Math::is_equal_approx(double(expression.execute()), 20.18905),
"Float multiplication-addition-subtraction-division should return the expected result.");
}
@ -129,7 +129,7 @@ TEST_CASE("[Expression] Scientific notation") {
expression.parse("2.e5") == OK,
"The expression should parse successfully.");
CHECK_MESSAGE(
Math::is_equal_approx(float(expression.execute()), 200'000),
Math::is_equal_approx(double(expression.execute()), 200'000),
"The expression should return the expected result.");
// The middle "e" is ignored here.
@ -137,14 +137,14 @@ TEST_CASE("[Expression] Scientific notation") {
expression.parse("2e5") == OK,
"The expression should parse successfully.");
CHECK_MESSAGE(
Math::is_equal_approx(float(expression.execute()), 25),
Math::is_equal_approx(double(expression.execute()), 25),
"The expression should return the expected result.");
CHECK_MESSAGE(
expression.parse("2e.5") == OK,
"The expression should parse successfully.");
CHECK_MESSAGE(
Math::is_equal_approx(float(expression.execute()), 2),
Math::is_equal_approx(double(expression.execute()), 2),
"The expression should return the expected result.");
}
@ -176,14 +176,14 @@ TEST_CASE("[Expression] Built-in functions") {
expression.parse("snapped(sin(0.5), 0.01)") == OK,
"The expression should parse successfully.");
CHECK_MESSAGE(
Math::is_equal_approx(float(expression.execute()), 0.48),
Math::is_equal_approx(double(expression.execute()), 0.48),
"`snapped(sin(0.5), 0.01)` should return the expected result.");
CHECK_MESSAGE(
expression.parse("pow(2.0, -2500)") == OK,
"The expression should parse successfully.");
CHECK_MESSAGE(
Math::is_zero_approx(float(expression.execute())),
Math::is_zero_approx(double(expression.execute())),
"`pow(2.0, -2500)` should return the expected result (asymptotically zero).");
}
@ -410,7 +410,7 @@ TEST_CASE("[Expression] Unusual expressions") {
"The expression should parse successfully.");
ERR_PRINT_OFF;
CHECK_MESSAGE(
Math::is_inf(float(expression.execute())),
Math::is_inf(double(expression.execute())),
"`-25.4 / 0` should return inf.");
ERR_PRINT_ON;

View File

@ -80,7 +80,7 @@ TEST_CASE("[JSON] Parsing single data types") {
err_line == 0,
"Parsing an integer number as JSON should parse successfully.");
CHECK_MESSAGE(
Math::is_equal_approx(result, 123'456),
(int)result == 123'456,
"Parsing an integer number as JSON should return the expected value.");
json.parse("0.123456", result, err_str, err_line);
@ -155,7 +155,7 @@ TEST_CASE("[JSON] Parsing objects (dictionaries)") {
dictionary["bugs"] == Variant(),
"The parsed JSON should contain the expected values.");
CHECK_MESSAGE(
Math::is_equal_approx(Dictionary(dictionary["apples"])["blue"], -20),
(int)Dictionary(dictionary["apples"])["blue"] == -20,
"The parsed JSON should contain the expected values.");
CHECK_MESSAGE(
dictionary["empty_object"].hash() == Dictionary().hash(),

View File

@ -312,19 +312,19 @@ TEST_CASE("[Rect2i] Basic setters") {
TEST_CASE("[Rect2i] Area getters") {
CHECK_MESSAGE(
Math::is_equal_approx(Rect2i(0, 100, 1280, 720).get_area(), 921'600),
Rect2i(0, 100, 1280, 720).get_area() == 921'600,
"get_area() should return the expected value.");
CHECK_MESSAGE(
Math::is_equal_approx(Rect2i(0, 100, -1280, -720).get_area(), 921'600),
Rect2i(0, 100, -1280, -720).get_area() == 921'600,
"get_area() should return the expected value.");
CHECK_MESSAGE(
Math::is_equal_approx(Rect2i(0, 100, 1280, -720).get_area(), -921'600),
Rect2i(0, 100, 1280, -720).get_area() == -921'600,
"get_area() should return the expected value.");
CHECK_MESSAGE(
Math::is_equal_approx(Rect2i(0, 100, -1280, 720).get_area(), -921'600),
Rect2i(0, 100, -1280, 720).get_area() == -921'600,
"get_area() should return the expected value.");
CHECK_MESSAGE(
Math::is_zero_approx(Rect2i(0, 100, 0, 720).get_area()),
Rect2i(0, 100, 0, 720).get_area() == 0,
"get_area() should return the expected value.");
CHECK_MESSAGE(