Implement shadowmasks for LightmapGI

Co-authored-by: dearthdev <nathandearthdev@gmail.com>
This commit is contained in:
BlueCube3310 2023-11-30 17:14:45 +01:00
parent a40fc2354a
commit 189c8eb671
27 changed files with 1098 additions and 451 deletions

View File

@ -69,6 +69,11 @@
The quality preset to use when baking lightmaps. This affects bake times, but output file sizes remain mostly identical across quality levels.
To further speed up bake times, decrease [member bounces], disable [member use_denoiser] and increase the lightmap texel size on 3D scenes in the Import dock.
</member>
<member name="shadowmask_mode" type="int" setter="set_shadowmask_mode" getter="get_shadowmask_mode" enum="LightmapGIData.ShadowmaskMode" default="0" experimental="">
The shadowmasking policy to use for directional shadows on static objects that are baked with this [LightmapGI] instance.
Shadowmasking allows [DirectionalLight3D] nodes to cast shadows even outside the range defined by their [member DirectionalLight3D.directional_shadow_max_distance] property. This is done by baking a texture that contains a shadowmap for the directional light, then using this texture according to the current shadowmask mode.
[b]Note:[/b] The shadowmask texture is only created if [member shadowmask_mode] is not [constant LightmapGIData.SHADOWMASK_MODE_NONE]. To see a difference, you need to bake lightmaps again after switching from [constant LightmapGIData.SHADOWMASK_MODE_NONE] to any other mode.
</member>
<member name="texel_scale" type="float" setter="set_texel_scale" getter="get_texel_scale" default="1.0">
Scales the lightmap texel density of all meshes for the current bake. This is a multiplier that builds upon the existing lightmap texel size defined in each imported 3D scene, along with the per-mesh density multiplier (which is designed to be used when the same mesh is used at different scales). Lower values will result in faster bake times.
For example, doubling [member texel_scale] doubles the lightmap texture resolution for all objects [i]on each axis[/i], so it will [i]quadruple[/i] the texel count.

View File

@ -60,5 +60,19 @@
<member name="lightmap_textures" type="TextureLayered[]" setter="set_lightmap_textures" getter="get_lightmap_textures" default="[]">
The lightmap atlas textures generated by the lightmapper.
</member>
<member name="shadowmask_textures" type="TextureLayered[]" setter="set_shadowmask_textures" getter="get_shadowmask_textures" default="[]">
The shadowmask atlas textures generated by the lightmapper.
</member>
</members>
<constants>
<constant name="SHADOWMASK_MODE_NONE" value="0" enum="ShadowmaskMode">
Shadowmasking is disabled. No shadowmask texture will be created when baking lightmaps. Existing shadowmask textures will be removed during baking.
</constant>
<constant name="SHADOWMASK_MODE_REPLACE" value="1" enum="ShadowmaskMode">
Shadowmasking is enabled. Directional shadows that are outside the [member DirectionalLight3D.directional_shadow_max_distance] will be rendered using the shadowmask texture. Shadows that are inside the range will be rendered using real-time shadows exclusively. This mode allows for more precise real-time shadows up close, without the potential "smearing" effect that can occur when using lightmaps with a high texel size. The downside is that when the camera moves fast, the transition between the real-time light and shadowmask can be obvious. Also, objects that only have shadows baked in the shadowmask (and no real-time shadows) won't display any shadows up close.
</constant>
<constant name="SHADOWMASK_MODE_OVERLAY" value="2" enum="ShadowmaskMode">
Shadowmasking is enabled. Directional shadows will be rendered with real-time shadows overlaid on top of the shadowmask texture. This mode makes for smoother shadow transitions when the camera moves fast, at the cost of a potential smearing effect for directional shadows that are up close (due to the real-time shadow being mixed with a low-resolution shadowmask). Objects that only have shadows baked in the shadowmask (and no real-time shadows) will keep their shadows up close.
</constant>
</constants>
</class>

View File

@ -2660,14 +2660,14 @@ void RasterizerSceneGLES3::render_scene(const Ref<RenderSceneBuffers> &p_render_
glBlitFramebuffer(0, 0, size.x, size.y,
0, 0, size.x, size.y,
GL_COLOR_BUFFER_BIT, GL_NEAREST);
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 5);
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 6);
glBindTexture(GL_TEXTURE_2D, backbuffer);
}
if (scene_state.used_depth_texture) {
glBlitFramebuffer(0, 0, size.x, size.y,
0, 0, size.x, size.y,
GL_DEPTH_BUFFER_BIT, GL_NEAREST);
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 6);
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 7);
glBindTexture(GL_TEXTURE_2D, backbuffer_depth);
}
}
@ -3245,8 +3245,28 @@ void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params,
spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_OMNI;
spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_SPOT;
spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL;
spec_constants |= SceneShaderGLES3::DISABLE_LIGHTMAP;
spec_constants |= SceneShaderGLES3::DISABLE_REFLECTION_PROBE;
bool disable_lightmaps = true;
// Additive directional passes may use shadowmasks, so enable lightmaps for them.
if (pass >= int32_t(inst->light_passes.size()) && inst->lightmap_instance.is_valid()) {
GLES3::LightmapInstance *li = GLES3::LightStorage::get_singleton()->get_lightmap_instance(inst->lightmap_instance);
GLES3::Lightmap *lm = GLES3::LightStorage::get_singleton()->get_lightmap(li->lightmap);
if (lm->shadowmask_mode != RS::SHADOWMASK_MODE_NONE) {
spec_constants |= SceneShaderGLES3::USE_LIGHTMAP;
disable_lightmaps = false;
if (lightmap_bicubic_upscale) {
spec_constants |= SceneShaderGLES3::LIGHTMAP_BICUBIC_FILTER;
}
}
}
if (disable_lightmaps) {
spec_constants |= SceneShaderGLES3::DISABLE_LIGHTMAP;
}
}
if (uses_additive_lighting) {
@ -3341,6 +3361,33 @@ void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params,
GLuint tex = GLES3::LightStorage::get_singleton()->directional_shadow_get_texture();
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 3);
glBindTexture(GL_TEXTURE_2D, tex);
if (inst->lightmap_instance.is_valid()) {
// Use shadowmasks for directional light passes.
GLES3::LightmapInstance *li = GLES3::LightStorage::get_singleton()->get_lightmap_instance(inst->lightmap_instance);
GLES3::Lightmap *lm = GLES3::LightStorage::get_singleton()->get_lightmap(li->lightmap);
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::LIGHTMAP_SLICE, inst->lightmap_slice_index, shader->version, instance_variant, spec_constants);
Vector4 uv_scale(inst->lightmap_uv_scale.position.x, inst->lightmap_uv_scale.position.y, inst->lightmap_uv_scale.size.x, inst->lightmap_uv_scale.size.y);
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::LIGHTMAP_UV_SCALE, uv_scale, shader->version, instance_variant, spec_constants);
if (lightmap_bicubic_upscale) {
Vector2 light_texture_size(lm->light_texture_size.x, lm->light_texture_size.y);
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::LIGHTMAP_TEXTURE_SIZE, light_texture_size, shader->version, instance_variant, spec_constants);
}
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::LIGHTMAP_SHADOWMASK_MODE, (uint32_t)lm->shadowmask_mode, shader->version, instance_variant, spec_constants);
if (lm->shadow_texture.is_valid()) {
tex = GLES3::TextureStorage::get_singleton()->texture_get_texid(lm->shadow_texture);
} else {
tex = GLES3::TextureStorage::get_singleton()->texture_get_texid(GLES3::TextureStorage::get_singleton()->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_2D_ARRAY_WHITE));
}
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 5);
glBindTexture(GL_TEXTURE_2D_ARRAY, tex);
}
}
}
@ -3399,6 +3446,7 @@ void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params,
};
glUniformMatrix3fv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::LIGHTMAP_NORMAL_XFORM, shader->version, instance_variant, spec_constants), 1, GL_FALSE, matrix);
}
} else if (inst->lightmap_sh) {
glUniform4fv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::LIGHTMAP_CAPTURES, shader->version, instance_variant, spec_constants), 9, reinterpret_cast<const GLfloat *>(inst->lightmap_sh->sh));
}
@ -3430,7 +3478,7 @@ void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params,
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE1_AMBIENT_COLOR, probe->ambient_color * probe->ambient_color_energy, shader->version, instance_variant, spec_constants);
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE1_LOCAL_MATRIX, inst->reflection_probes_local_transform_cache[0], shader->version, instance_variant, spec_constants);
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 7);
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 8);
glBindTexture(GL_TEXTURE_CUBE_MAP, light_storage->reflection_probe_instance_get_texture(inst->reflection_probe_rid_cache[0]));
}
@ -3448,7 +3496,7 @@ void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params,
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE2_AMBIENT_COLOR, probe->ambient_color * probe->ambient_color_energy, shader->version, instance_variant, spec_constants);
material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::REFPROBE2_LOCAL_MATRIX, inst->reflection_probes_local_transform_cache[1], shader->version, instance_variant, spec_constants);
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 8);
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 9);
glBindTexture(GL_TEXTURE_CUBE_MAP, light_storage->reflection_probe_instance_get_texture(inst->reflection_probe_rid_cache[1]));
spec_constants |= SceneShaderGLES3::SECOND_REFLECTION_PROBE;

View File

@ -809,10 +809,11 @@ void main() {
2-radiance
3-shadow
4-lightmap textures
5-screen
6-depth
7-reflection probe 1
8-reflection probe 2
5-shadowmask textures
6-screen
7-depth
8-reflection probe 1
9-reflection probe 2
*/
@ -887,7 +888,7 @@ uniform float refprobe1_intensity;
uniform int refprobe1_ambient_mode;
uniform vec4 refprobe1_ambient_color;
uniform samplerCube refprobe1_texture; // texunit:-7
uniform samplerCube refprobe1_texture; // texunit:-8
#ifdef SECOND_REFLECTION_PROBE
@ -900,7 +901,7 @@ uniform float refprobe2_intensity;
uniform int refprobe2_ambient_mode;
uniform vec4 refprobe2_ambient_color;
uniform samplerCube refprobe2_texture; // texunit:-8
uniform samplerCube refprobe2_texture; // texunit:-9
#endif // SECOND_REFLECTION_PROBE
@ -1170,9 +1171,16 @@ float sample_shadow(highp sampler2DShadow shadow, float shadow_pixel_size, vec4
#ifndef DISABLE_LIGHTMAP
#ifdef USE_LIGHTMAP
uniform mediump sampler2DArray lightmap_textures; //texunit:-4
uniform lowp sampler2DArray shadowmask_textures; //texunit:-5
uniform lowp uint lightmap_slice;
uniform highp vec4 lightmap_uv_scale;
uniform float lightmap_exposure_normalization;
uniform uint lightmap_shadowmask_mode;
#define SHADOWMASK_MODE_NONE uint(0)
#define SHADOWMASK_MODE_REPLACE uint(1)
#define SHADOWMASK_MODE_OVERLAY uint(2)
#define SHADOWMASK_MODE_ONLY uint(3)
#ifdef LIGHTMAP_BICUBIC_FILTER
uniform highp vec2 lightmap_texture_size;
@ -1189,8 +1197,8 @@ uniform mediump vec4[9] lightmap_captures;
#endif // !DISABLE_LIGHTMAP
#ifdef USE_MULTIVIEW
uniform highp sampler2DArray depth_buffer; // texunit:-6
uniform highp sampler2DArray color_buffer; // texunit:-5
uniform highp sampler2DArray depth_buffer; // texunit:-7
uniform highp sampler2DArray color_buffer; // texunit:-6
vec3 multiview_uv(vec2 uv) {
return vec3(uv, ViewIndex);
}
@ -1198,8 +1206,8 @@ ivec3 multiview_uv(ivec2 uv) {
return ivec3(uv, int(ViewIndex));
}
#else
uniform highp sampler2D depth_buffer; // texunit:-6
uniform highp sampler2D color_buffer; // texunit:-5
uniform highp sampler2D depth_buffer; // texunit:-7
uniform highp sampler2D color_buffer; // texunit:-6
vec2 multiview_uv(vec2 uv) {
return uv;
}
@ -2278,111 +2286,146 @@ void main() {
#if !defined(ADDITIVE_OMNI) && !defined(ADDITIVE_SPOT)
#ifndef SHADOWS_DISABLED
// Baked shadowmasks
#ifdef USE_LIGHTMAP
float shadowmask = 1.0f;
if (lightmap_shadowmask_mode != SHADOWMASK_MODE_NONE) {
vec3 uvw;
uvw.xy = uv2 * lightmap_uv_scale.zw + lightmap_uv_scale.xy;
uvw.z = float(lightmap_slice);
#ifdef LIGHTMAP_BICUBIC_FILTER
shadowmask = textureArray_bicubic(shadowmask_textures, uvw, lightmap_texture_size).x;
#else
shadowmask = textureLod(shadowmask_textures, uvw, 0.0).x;
#endif
}
#endif //USE_LIGHTMAP
float directional_shadow = 1.0;
#ifdef USE_LIGHTMAP
if (lightmap_shadowmask_mode != SHADOWMASK_MODE_ONLY) {
#endif
// Orthogonal shadows
#if !defined(LIGHT_USE_PSSM2) && !defined(LIGHT_USE_PSSM4)
float directional_shadow = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord);
directional_shadow = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord);
#endif // !defined(LIGHT_USE_PSSM2) && !defined(LIGHT_USE_PSSM4)
// PSSM2 shadows
#ifdef LIGHT_USE_PSSM2
float depth_z = -vertex.z;
vec4 light_split_offsets = directional_shadows[directional_shadow_index].shadow_split_offsets;
//take advantage of prefetch
float shadow1 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord);
float shadow2 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord2);
float directional_shadow = 1.0;
float depth_z = -vertex.z;
vec4 light_split_offsets = directional_shadows[directional_shadow_index].shadow_split_offsets;
//take advantage of prefetch
float shadow1 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord);
float shadow2 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord2);
if (depth_z < light_split_offsets.y) {
#ifdef LIGHT_USE_PSSM_BLEND
float directional_shadow2 = 1.0;
float pssm_blend = 0.0;
bool use_blend = true;
#endif
if (depth_z < light_split_offsets.x) {
directional_shadow = shadow1;
#ifdef LIGHT_USE_PSSM_BLEND
directional_shadow2 = shadow2;
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
} else {
directional_shadow = shadow2;
#ifdef LIGHT_USE_PSSM_BLEND
use_blend = false;
#endif
}
#ifdef LIGHT_USE_PSSM_BLEND
if (use_blend) {
directional_shadow = mix(directional_shadow, directional_shadow2, pssm_blend);
}
#endif
}
#endif //LIGHT_USE_PSSM2
// PSSM4 shadows
#ifdef LIGHT_USE_PSSM4
float depth_z = -vertex.z;
vec4 light_split_offsets = directional_shadows[directional_shadow_index].shadow_split_offsets;
float shadow1 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord);
float shadow2 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord2);
float shadow3 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord3);
float shadow4 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord4);
float directional_shadow = 1.0;
if (depth_z < light_split_offsets.w) {
#ifdef LIGHT_USE_PSSM_BLEND
float directional_shadow2 = 1.0;
float pssm_blend = 0.0;
bool use_blend = true;
#endif
if (depth_z < light_split_offsets.y) {
#ifdef LIGHT_USE_PSSM_BLEND
float directional_shadow2 = 1.0;
float pssm_blend = 0.0;
bool use_blend = true;
#endif
if (depth_z < light_split_offsets.x) {
directional_shadow = shadow1;
#ifdef LIGHT_USE_PSSM_BLEND
directional_shadow2 = shadow2;
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
} else {
directional_shadow = shadow2;
#ifdef LIGHT_USE_PSSM_BLEND
directional_shadow2 = shadow3;
pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
#endif
}
} else {
if (depth_z < light_split_offsets.z) {
directional_shadow = shadow3;
#if defined(LIGHT_USE_PSSM_BLEND)
directional_shadow2 = shadow4;
pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
#endif
} else {
directional_shadow = shadow4;
#if defined(LIGHT_USE_PSSM_BLEND)
use_blend = false;
#endif
}
}
#if defined(LIGHT_USE_PSSM_BLEND)
if (use_blend) {
directional_shadow = mix(directional_shadow, directional_shadow2, pssm_blend);
}
#ifdef LIGHT_USE_PSSM_BLEND
if (use_blend) {
directional_shadow = mix(directional_shadow, directional_shadow2, pssm_blend);
}
#endif
}
}
#endif //LIGHT_USE_PSSM2
// PSSM4 shadows
#ifdef LIGHT_USE_PSSM4
float depth_z = -vertex.z;
vec4 light_split_offsets = directional_shadows[directional_shadow_index].shadow_split_offsets;
float shadow1 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord);
float shadow2 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord2);
float shadow3 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord3);
float shadow4 = sample_shadow(directional_shadow_atlas, directional_shadows[directional_shadow_index].shadow_atlas_pixel_size, shadow_coord4);
if (depth_z < light_split_offsets.w) {
#ifdef LIGHT_USE_PSSM_BLEND
float directional_shadow2 = 1.0;
float pssm_blend = 0.0;
bool use_blend = true;
#endif
if (depth_z < light_split_offsets.y) {
if (depth_z < light_split_offsets.x) {
directional_shadow = shadow1;
#ifdef LIGHT_USE_PSSM_BLEND
directional_shadow2 = shadow2;
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
} else {
directional_shadow = shadow2;
#ifdef LIGHT_USE_PSSM_BLEND
directional_shadow2 = shadow3;
pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
#endif
}
} else {
if (depth_z < light_split_offsets.z) {
directional_shadow = shadow3;
#if defined(LIGHT_USE_PSSM_BLEND)
directional_shadow2 = shadow4;
pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
#endif
} else {
directional_shadow = shadow4;
#if defined(LIGHT_USE_PSSM_BLEND)
use_blend = false;
#endif
}
}
#if defined(LIGHT_USE_PSSM_BLEND)
if (use_blend) {
directional_shadow = mix(directional_shadow, directional_shadow2, pssm_blend);
}
#endif
}
#endif //LIGHT_USE_PSSM4
directional_shadow = mix(directional_shadow, 1.0, smoothstep(directional_shadows[directional_shadow_index].fade_from, directional_shadows[directional_shadow_index].fade_to, vertex.z));
#ifdef USE_LIGHTMAP
if (lightmap_shadowmask_mode == SHADOWMASK_MODE_REPLACE) {
directional_shadow = mix(directional_shadow, shadowmask, smoothstep(directional_shadows[directional_shadow_index].fade_from, directional_shadows[directional_shadow_index].fade_to, vertex.z));
} else if (lightmap_shadowmask_mode == SHADOWMASK_MODE_OVERLAY) {
directional_shadow = shadowmask * mix(directional_shadow, 1.0, smoothstep(directional_shadows[directional_shadow_index].fade_from, directional_shadows[directional_shadow_index].fade_to, vertex.z));
} else {
#endif
directional_shadow = mix(directional_shadow, 1.0, smoothstep(directional_shadows[directional_shadow_index].fade_from, directional_shadows[directional_shadow_index].fade_to, vertex.z));
#ifdef USE_LIGHTMAP
}
} else { // lightmap_shadowmask_mode == SHADOWMASK_MODE_ONLY
directional_shadow = shadowmask;
}
#endif
directional_shadow = mix(1.0, directional_shadow, directional_lights[directional_shadow_index].shadow_opacity);
#else

View File

@ -1204,6 +1204,33 @@ float LightStorage::lightmap_get_probe_capture_update_speed() const {
return lightmap_probe_capture_update_speed;
}
void LightStorage::lightmap_set_shadowmask_textures(RID p_lightmap, RID p_shadow) {
Lightmap *lightmap = lightmap_owner.get_or_null(p_lightmap);
ERR_FAIL_NULL(lightmap);
lightmap->shadow_texture = p_shadow;
GLuint tex = GLES3::TextureStorage::get_singleton()->texture_get_texid(lightmap->shadow_texture);
glBindTexture(GL_TEXTURE_2D_ARRAY, tex);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glBindTexture(GL_TEXTURE_2D_ARRAY, 0);
}
RS::ShadowmaskMode LightStorage::lightmap_get_shadowmask_mode(RID p_lightmap) {
Lightmap *lightmap = lightmap_owner.get_or_null(p_lightmap);
ERR_FAIL_NULL_V(lightmap, RS::SHADOWMASK_MODE_NONE);
return lightmap->shadowmask_mode;
}
void LightStorage::lightmap_set_shadowmask_mode(RID p_lightmap, RS::ShadowmaskMode p_mode) {
Lightmap *lightmap = lightmap_owner.get_or_null(p_lightmap);
ERR_FAIL_NULL(lightmap);
lightmap->shadowmask_mode = p_mode;
}
/* LIGHTMAP INSTANCE */
RID LightStorage::lightmap_instance_create(RID p_lightmap) {

View File

@ -177,12 +177,14 @@ struct ReflectionProbeInstance {
struct Lightmap {
RID light_texture;
RID shadow_texture;
bool uses_spherical_harmonics = false;
bool interior = false;
AABB bounds = AABB(Vector3(), Vector3(1, 1, 1));
float baked_exposure = 1.0;
Vector2i light_texture_size;
int32_t array_index = -1; //unassigned
RS::ShadowmaskMode shadowmask_mode = RS::SHADOWMASK_MODE_NONE;
PackedVector3Array points;
PackedColorArray point_sh;
PackedInt32Array tetrahedra;
@ -231,8 +233,6 @@ private:
mutable RID_Owner<ReflectionProbeInstance> reflection_probe_instance_owner;
/* LIGHTMAP */
Vector<RID> lightmap_textures;
float lightmap_probe_capture_update_speed = 4;
mutable RID_Owner<Lightmap, true> lightmap_owner;
@ -737,6 +737,10 @@ public:
virtual void lightmap_set_probe_capture_update_speed(float p_speed) override;
virtual float lightmap_get_probe_capture_update_speed() const override;
virtual void lightmap_set_shadowmask_textures(RID p_lightmap, RID p_shadow) override;
virtual RS::ShadowmaskMode lightmap_get_shadowmask_mode(RID p_lightmap) override;
virtual void lightmap_set_shadowmask_mode(RID p_lightmap, RS::ShadowmaskMode p_mode) override;
/* LIGHTMAP INSTANCE */
LightmapInstance *get_lightmap_instance(RID p_rid) { return lightmap_instance_owner.get_or_null(p_rid); }

View File

@ -62,7 +62,7 @@ void LightmapperRD::add_mesh(const MeshData &p_mesh) {
mesh_instances.push_back(mi);
}
void LightmapperRD::add_directional_light(bool p_static, const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_energy, float p_angular_distance, float p_shadow_blur) {
void LightmapperRD::add_directional_light(const String &p_name, bool p_static, const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_energy, float p_angular_distance, float p_shadow_blur) {
Light l;
l.type = LIGHT_TYPE_DIRECTIONAL;
l.direction[0] = p_direction.x;
@ -77,9 +77,10 @@ void LightmapperRD::add_directional_light(bool p_static, const Vector3 &p_direct
l.size = Math::tan(Math::deg_to_rad(p_angular_distance));
l.shadow_blur = p_shadow_blur;
lights.push_back(l);
light_names.push_back(p_name);
}
void LightmapperRD::add_omni_light(bool p_static, const Vector3 &p_position, const Color &p_color, float p_energy, float p_indirect_energy, float p_range, float p_attenuation, float p_size, float p_shadow_blur) {
void LightmapperRD::add_omni_light(const String &p_name, bool p_static, const Vector3 &p_position, const Color &p_color, float p_energy, float p_indirect_energy, float p_range, float p_attenuation, float p_size, float p_shadow_blur) {
Light l;
l.type = LIGHT_TYPE_OMNI;
l.position[0] = p_position.x;
@ -96,9 +97,10 @@ void LightmapperRD::add_omni_light(bool p_static, const Vector3 &p_position, con
l.size = p_size;
l.shadow_blur = p_shadow_blur;
lights.push_back(l);
light_names.push_back(p_name);
}
void LightmapperRD::add_spot_light(bool p_static, const Vector3 &p_position, const Vector3 p_direction, const Color &p_color, float p_energy, float p_indirect_energy, float p_range, float p_attenuation, float p_spot_angle, float p_spot_attenuation, float p_size, float p_shadow_blur) {
void LightmapperRD::add_spot_light(const String &p_name, bool p_static, const Vector3 &p_position, const Vector3 p_direction, const Color &p_color, float p_energy, float p_indirect_energy, float p_range, float p_attenuation, float p_spot_angle, float p_spot_attenuation, float p_size, float p_shadow_blur) {
Light l;
l.type = LIGHT_TYPE_SPOT;
l.position[0] = p_position.x;
@ -120,6 +122,7 @@ void LightmapperRD::add_spot_light(bool p_static, const Vector3 &p_position, con
l.size = p_size;
l.shadow_blur = p_shadow_blur;
lights.push_back(l);
light_names.push_back(p_name);
}
void LightmapperRD::add_probe(const Vector3 &p_position) {
@ -826,9 +829,9 @@ LightmapperRD::BakeError LightmapperRD::_pack_l1(RenderingDevice *rd, Ref<RDShad
return BAKE_OK;
}
Error LightmapperRD::_store_pfm(RenderingDevice *p_rd, RID p_atlas_tex, int p_index, const Size2i &p_atlas_size, const String &p_name) {
Error LightmapperRD::_store_pfm(RenderingDevice *p_rd, RID p_atlas_tex, int p_index, const Size2i &p_atlas_size, const String &p_name, bool p_shadowmask) {
Vector<uint8_t> data = p_rd->texture_get_data(p_atlas_tex, p_index);
Ref<Image> img = Image::create_from_data(p_atlas_size.width, p_atlas_size.height, false, Image::FORMAT_RGBAH, data);
Ref<Image> img = Image::create_from_data(p_atlas_size.width, p_atlas_size.height, false, p_shadowmask ? Image::FORMAT_RGBA8 : Image::FORMAT_RGBAH, data);
img->convert(Image::FORMAT_RGBF);
Vector<uint8_t> data_float = img->get_data();
@ -848,7 +851,7 @@ Error LightmapperRD::_store_pfm(RenderingDevice *p_rd, RID p_atlas_tex, int p_in
return OK;
}
Ref<Image> LightmapperRD::_read_pfm(const String &p_name) {
Ref<Image> LightmapperRD::_read_pfm(const String &p_name, bool p_shadowmask) {
Error err = OK;
Ref<FileAccess> file = FileAccess::open(p_name, FileAccess::READ, &err);
ERR_FAIL_COND_V_MSG(err, Ref<Image>(), vformat("Can't load PFM at path: '%s'.", p_name));
@ -881,23 +884,23 @@ Ref<Image> LightmapperRD::_read_pfm(const String &p_name) {
}
#endif
Ref<Image> img = Image::create_from_data(new_width, new_height, false, Image::FORMAT_RGBF, new_data);
img->convert(Image::FORMAT_RGBAH);
img->convert(p_shadowmask ? Image::FORMAT_RGBA8 : Image::FORMAT_RGBAH);
return img;
}
LightmapperRD::BakeError LightmapperRD::_denoise_oidn(RenderingDevice *p_rd, RID p_source_light_tex, RID p_source_normal_tex, RID p_dest_light_tex, const Size2i &p_atlas_size, int p_atlas_slices, bool p_bake_sh, const String &p_exe) {
LightmapperRD::BakeError LightmapperRD::_denoise_oidn(RenderingDevice *p_rd, RID p_source_light_tex, RID p_source_normal_tex, RID p_dest_light_tex, const Size2i &p_atlas_size, int p_atlas_slices, bool p_bake_sh, bool p_shadowmask, const String &p_exe) {
Ref<DirAccess> da = DirAccess::create(DirAccess::ACCESS_FILESYSTEM);
for (int i = 0; i < p_atlas_slices; i++) {
String fname_norm_in = EditorPaths::get_singleton()->get_cache_dir().path_join(vformat("temp_norm_%d.pfm", i));
_store_pfm(p_rd, p_source_normal_tex, i, p_atlas_size, fname_norm_in);
_store_pfm(p_rd, p_source_normal_tex, i, p_atlas_size, fname_norm_in, false);
for (int j = 0; j < (p_bake_sh ? 4 : 1); j++) {
int index = i * (p_bake_sh ? 4 : 1) + j;
String fname_light_in = EditorPaths::get_singleton()->get_cache_dir().path_join(vformat("temp_light_%d.pfm", index));
String fname_out = EditorPaths::get_singleton()->get_cache_dir().path_join(vformat("temp_denoised_%d.pfm", index));
_store_pfm(p_rd, p_source_light_tex, index, p_atlas_size, fname_light_in);
_store_pfm(p_rd, p_source_light_tex, index, p_atlas_size, fname_light_in, p_shadowmask);
List<String> args;
args.push_back("--device");
@ -906,7 +909,7 @@ LightmapperRD::BakeError LightmapperRD::_denoise_oidn(RenderingDevice *p_rd, RID
args.push_back("--filter");
args.push_back("RTLightmap");
args.push_back("--hdr");
args.push_back(p_shadowmask ? "--ldr" : "--hdr");
args.push_back(fname_light_in);
args.push_back("--nrm");
@ -928,7 +931,7 @@ LightmapperRD::BakeError LightmapperRD::_denoise_oidn(RenderingDevice *p_rd, RID
ERR_FAIL_V_MSG(BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES, vformat("OIDN denoiser failed, return code: %d", exitcode));
}
Ref<Image> img = _read_pfm(fname_out);
Ref<Image> img = _read_pfm(fname_out, p_shadowmask);
da->remove(fname_out);
ERR_FAIL_COND_V(img.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES);
@ -1029,7 +1032,7 @@ LightmapperRD::BakeError LightmapperRD::_denoise(RenderingDevice *p_rd, Ref<RDSh
return BAKE_OK;
}
LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_denoiser, float p_denoiser_strength, int p_denoiser_range, int p_bounces, float p_bounce_indirect_energy, float p_bias, int p_max_texture_size, bool p_bake_sh, bool p_texture_for_bounces, GenerateProbes p_generate_probes, const Ref<Image> &p_environment_panorama, const Basis &p_environment_transform, BakeStepFunc p_step_function, void *p_bake_userdata, float p_exposure_normalization) {
LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_denoiser, float p_denoiser_strength, int p_denoiser_range, int p_bounces, float p_bounce_indirect_energy, float p_bias, int p_max_texture_size, bool p_bake_sh, bool p_bake_shadowmask, bool p_texture_for_bounces, GenerateProbes p_generate_probes, const Ref<Image> &p_environment_panorama, const Basis &p_environment_transform, BakeStepFunc p_step_function, void *p_bake_userdata, float p_exposure_normalization) {
int denoiser = GLOBAL_GET("rendering/lightmapping/denoising/denoiser");
String oidn_path = EDITOR_GET("filesystem/tools/oidn/oidn_denoise_path");
@ -1050,7 +1053,8 @@ LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_d
if (p_step_function) {
p_step_function(0.0, RTR("Begin Bake"), p_bake_userdata, true);
}
bake_textures.clear();
lightmap_textures.clear();
shadowmask_textures.clear();
int grid_size = 128;
/* STEP 1: Fetch material textures and compute the bounds */
@ -1066,6 +1070,35 @@ LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_d
return bake_error;
}
// The index of the directional light used for shadowmasking.
int shadowmask_light_idx = -1;
// If there are no valid directional lights for shadowmasking, the entire
// scene would be shadowed and this saves baking time.
if (p_bake_shadowmask) {
int shadowmask_lights_count = 0;
for (int i = 0; i < lights.size(); i++) {
if (lights[i].type == LightType::LIGHT_TYPE_DIRECTIONAL && !lights[i].static_bake) {
if (shadowmask_light_idx < 0) {
shadowmask_light_idx = i;
}
shadowmask_lights_count += 1;
}
}
if (shadowmask_light_idx < 0) {
p_bake_shadowmask = false;
WARN_PRINT("Shadowmask disabled: no directional light with their bake mode set to dynamic exists.");
} else if (shadowmask_lights_count > 1) {
WARN_PRINT(
vformat("%d directional lights detected for shadowmask baking. Only %s will be used.",
shadowmask_lights_count, light_names[shadowmask_light_idx]));
}
}
#ifdef DEBUG_TEXTURES
for (int i = 0; i < atlas_slices; i++) {
albedo_images[i]->save_png("res://0_albedo_" + itos(i) + ".png");
@ -1119,17 +1152,23 @@ LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_d
RID light_accum_tex;
RID light_accum_tex2;
RID light_environment_tex;
RID shadowmask_tex;
RID shadowmask_tex2;
#define FREE_TEXTURES \
rd->free(albedo_array_tex); \
rd->free(emission_array_tex); \
rd->free(normal_tex); \
rd->free(position_tex); \
rd->free(unocclude_tex); \
rd->free(light_source_tex); \
rd->free(light_accum_tex2); \
rd->free(light_accum_tex); \
rd->free(light_environment_tex);
#define FREE_TEXTURES \
rd->free(albedo_array_tex); \
rd->free(emission_array_tex); \
rd->free(normal_tex); \
rd->free(position_tex); \
rd->free(unocclude_tex); \
rd->free(light_source_tex); \
rd->free(light_accum_tex2); \
rd->free(light_accum_tex); \
rd->free(light_environment_tex); \
if (p_bake_shadowmask) { \
rd->free(shadowmask_tex); \
rd->free(shadowmask_tex2); \
}
{ // create all textures
@ -1161,9 +1200,22 @@ LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_d
position_tex = rd->texture_create(tf, RD::TextureView());
unocclude_tex = rd->texture_create(tf, RD::TextureView());
tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT;
// shadowmask
if (p_bake_shadowmask) {
tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
shadowmask_tex = rd->texture_create(tf, RD::TextureView());
rd->texture_clear(shadowmask_tex, Color(0, 0, 0, 0), 0, 1, 0, atlas_slices);
shadowmask_tex2 = rd->texture_create(tf, RD::TextureView());
rd->texture_clear(shadowmask_tex2, Color(0, 0, 0, 0), 0, 1, 0, atlas_slices);
}
// lightmap
tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
light_source_tex = rd->texture_create(tf, RD::TextureView());
rd->texture_clear(light_source_tex, Color(0, 0, 0, 0), 0, 1, 0, atlas_slices);
@ -1266,6 +1318,7 @@ LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_d
bake_parameters.exposure_normalization = p_exposure_normalization;
bake_parameters.bounces = p_bounces;
bake_parameters.bounce_indirect_energy = p_bounce_indirect_energy;
bake_parameters.shadowmask_light_idx = shadowmask_light_idx;
bake_parameters_buffer = rd->uniform_buffer_create(sizeof(BakeParameters));
rd->buffer_update(bake_parameters_buffer, 0, sizeof(BakeParameters), &bake_parameters);
@ -1463,6 +1516,10 @@ LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_d
defines += "\n#define USE_LIGHT_TEXTURE_FOR_BOUNCES\n";
}
if (p_bake_shadowmask) {
defines += "\n#define USE_SHADOWMASK\n";
}
compute_shader.instantiate();
err = compute_shader->parse_versions_from_text(lm_compute_shader_glsl, defines);
if (err != OK) {
@ -1634,6 +1691,14 @@ LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_d
u.append_id(light_accum_tex);
uniforms.push_back(u);
}
if (p_bake_shadowmask) {
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 5;
u.append_id(shadowmask_tex);
uniforms.push_back(u);
}
}
RID light_uniform_set = rd->uniform_set_create(uniforms, compute_shader_primary, 1);
@ -1945,7 +2010,7 @@ LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_d
BakeError error;
if (denoiser == 1) {
// OIDN (external).
error = _denoise_oidn(rd, light_accum_tex, normal_tex, light_accum_tex, atlas_size, atlas_slices, p_bake_sh, oidn_path);
error = _denoise_oidn(rd, light_accum_tex, normal_tex, light_accum_tex, atlas_size, atlas_slices, p_bake_sh, false, oidn_path);
} else {
// JNLM (built-in).
SWAP(light_accum_tex, light_accum_tex2);
@ -1955,14 +2020,39 @@ LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_d
return error;
}
}
if (p_bake_shadowmask) {
BakeError error;
if (denoiser == 1) {
// OIDN (external).
error = _denoise_oidn(rd, shadowmask_tex, normal_tex, shadowmask_tex, atlas_size, atlas_slices, false, true, oidn_path);
} else {
// JNLM (built-in).
SWAP(shadowmask_tex, shadowmask_tex2);
error = _denoise(rd, compute_shader, compute_base_uniform_set, push_constant, shadowmask_tex2, normal_tex, shadowmask_tex, p_denoiser_strength, p_denoiser_range, atlas_size, atlas_slices, false, p_step_function, p_bake_userdata);
}
if (unlikely(error != BAKE_OK)) {
return error;
}
}
}
/* DILATE */
{
SWAP(light_accum_tex, light_accum_tex2);
BakeError error = _dilate(rd, compute_shader, compute_base_uniform_set, push_constant, light_accum_tex2, light_accum_tex, atlas_size, atlas_slices * (p_bake_sh ? 4 : 1));
if (unlikely(error != BAKE_OK)) {
return error;
}
if (p_bake_shadowmask) {
SWAP(shadowmask_tex, shadowmask_tex2);
error = _dilate(rd, compute_shader, compute_base_uniform_set, push_constant, shadowmask_tex2, shadowmask_tex, atlas_size, atlas_slices);
if (unlikely(error != BAKE_OK)) {
return error;
}
}
}
#ifdef DEBUG_TEXTURES
@ -2139,6 +2229,7 @@ LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_d
img->save_exr("res://5_blendseams" + itos(i) + ".exr", false);
}
#endif
if (p_step_function) {
p_step_function(0.9, RTR("Retrieving textures"), p_bake_userdata, true);
}
@ -2147,7 +2238,16 @@ LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_d
Vector<uint8_t> s = rd->texture_get_data(light_accum_tex, i);
Ref<Image> img = Image::create_from_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
img->convert(Image::FORMAT_RGBH); //remove alpha
bake_textures.push_back(img);
lightmap_textures.push_back(img);
}
if (p_bake_shadowmask) {
for (int i = 0; i < atlas_slices; i++) {
Vector<uint8_t> s = rd->texture_get_data(shadowmask_tex, i);
Ref<Image> img = Image::create_from_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBA8, s);
img->convert(Image::FORMAT_R8);
shadowmask_textures.push_back(img);
}
}
if (probe_positions.size() > 0) {
@ -2180,12 +2280,21 @@ LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_d
}
int LightmapperRD::get_bake_texture_count() const {
return bake_textures.size();
return lightmap_textures.size();
}
Ref<Image> LightmapperRD::get_bake_texture(int p_index) const {
ERR_FAIL_INDEX_V(p_index, bake_textures.size(), Ref<Image>());
return bake_textures[p_index];
ERR_FAIL_INDEX_V(p_index, lightmap_textures.size(), Ref<Image>());
return lightmap_textures[p_index];
}
int LightmapperRD::get_shadowmask_texture_count() const {
return shadowmask_textures.size();
}
Ref<Image> LightmapperRD::get_shadowmask_texture(int p_index) const {
ERR_FAIL_INDEX_V(p_index, shadowmask_textures.size(), Ref<Image>());
return shadowmask_textures[p_index];
}
int LightmapperRD::get_bake_mesh_count() const {
@ -2198,9 +2307,9 @@ Variant LightmapperRD::get_bake_mesh_userdata(int p_index) const {
}
Rect2 LightmapperRD::get_bake_mesh_uv_scale(int p_index) const {
ERR_FAIL_COND_V(bake_textures.is_empty(), Rect2());
ERR_FAIL_COND_V(lightmap_textures.is_empty(), Rect2());
Rect2 uv_ofs;
Vector2 atlas_size = Vector2(bake_textures[0]->get_width(), bake_textures[0]->get_height());
Vector2 atlas_size = Vector2(lightmap_textures[0]->get_width(), lightmap_textures[0]->get_height());
uv_ofs.position = Vector2(mesh_instances[p_index].offset) / atlas_size;
uv_ofs.size = Vector2(mesh_instances[p_index].data.albedo_on_uv2->get_width(), mesh_instances[p_index].data.albedo_on_uv2->get_height()) / atlas_size;
return uv_ofs;

View File

@ -57,7 +57,8 @@ class LightmapperRD : public Lightmapper {
uint32_t bounces = 0;
float bounce_indirect_energy = 0.0f;
uint32_t pad[3] = {};
int shadowmask_light_idx = 0;
uint32_t pad[2] = {};
};
struct MeshInstance {
@ -202,6 +203,7 @@ class LightmapperRD : public Lightmapper {
Vector<MeshInstance> mesh_instances;
Vector<Light> lights;
Vector<String> light_names;
struct TriangleSort {
uint32_t cell_index = 0;
@ -253,7 +255,8 @@ class LightmapperRD : public Lightmapper {
uint32_t pad = 0;
};
Vector<Ref<Image>> bake_textures;
Vector<Ref<Image>> lightmap_textures;
Vector<Ref<Image>> shadowmask_textures;
Vector<Color> probe_values;
struct DenoiseParams {
@ -275,20 +278,22 @@ class LightmapperRD : public Lightmapper {
BakeError _denoise(RenderingDevice *p_rd, Ref<RDShaderFile> &p_compute_shader, const RID &p_compute_base_uniform_set, PushConstant &p_push_constant, RID p_source_light_tex, RID p_source_normal_tex, RID p_dest_light_tex, float p_denoiser_strength, int p_denoiser_range, const Size2i &p_atlas_size, int p_atlas_slices, bool p_bake_sh, BakeStepFunc p_step_function, void *p_bake_userdata);
BakeError _pack_l1(RenderingDevice *rd, Ref<RDShaderFile> &compute_shader, RID &compute_base_uniform_set, PushConstant &push_constant, RID &source_light_tex, RID &dest_light_tex, const Size2i &atlas_size, int atlas_slices);
Error _store_pfm(RenderingDevice *p_rd, RID p_atlas_tex, int p_index, const Size2i &p_atlas_size, const String &p_name);
Ref<Image> _read_pfm(const String &p_name);
BakeError _denoise_oidn(RenderingDevice *p_rd, RID p_source_light_tex, RID p_source_normal_tex, RID p_dest_light_tex, const Size2i &p_atlas_size, int p_atlas_slices, bool p_bake_sh, const String &p_exe);
Error _store_pfm(RenderingDevice *p_rd, RID p_atlas_tex, int p_index, const Size2i &p_atlas_size, const String &p_name, bool p_shadowmask);
Ref<Image> _read_pfm(const String &p_name, bool p_shadowmask);
BakeError _denoise_oidn(RenderingDevice *p_rd, RID p_source_light_tex, RID p_source_normal_tex, RID p_dest_light_tex, const Size2i &p_atlas_size, int p_atlas_slices, bool p_bake_sh, bool p_shadowmask, const String &p_exe);
public:
virtual void add_mesh(const MeshData &p_mesh) override;
virtual void add_directional_light(bool p_static, const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_energy, float p_angular_distance, float p_shadow_blur) override;
virtual void add_omni_light(bool p_static, const Vector3 &p_position, const Color &p_color, float p_energy, float p_indirect_energy, float p_range, float p_attenuation, float p_size, float p_shadow_blur) override;
virtual void add_spot_light(bool p_static, const Vector3 &p_position, const Vector3 p_direction, const Color &p_color, float p_energy, float p_indirect_energy, float p_range, float p_attenuation, float p_spot_angle, float p_spot_attenuation, float p_size, float p_shadow_blur) override;
virtual void add_directional_light(const String &p_name, bool p_static, const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_energy, float p_angular_distance, float p_shadow_blur) override;
virtual void add_omni_light(const String &p_name, bool p_static, const Vector3 &p_position, const Color &p_color, float p_energy, float p_indirect_energy, float p_range, float p_attenuation, float p_size, float p_shadow_blur) override;
virtual void add_spot_light(const String &p_name, bool p_static, const Vector3 &p_position, const Vector3 p_direction, const Color &p_color, float p_energy, float p_indirect_energy, float p_range, float p_attenuation, float p_spot_angle, float p_spot_attenuation, float p_size, float p_shadow_blur) override;
virtual void add_probe(const Vector3 &p_position) override;
virtual BakeError bake(BakeQuality p_quality, bool p_use_denoiser, float p_denoiser_strength, int p_denoiser_range, int p_bounces, float p_bounce_indirect_energy, float p_bias, int p_max_texture_size, bool p_bake_sh, bool p_texture_for_bounces, GenerateProbes p_generate_probes, const Ref<Image> &p_environment_panorama, const Basis &p_environment_transform, BakeStepFunc p_step_function = nullptr, void *p_bake_userdata = nullptr, float p_exposure_normalization = 1.0) override;
virtual BakeError bake(BakeQuality p_quality, bool p_use_denoiser, float p_denoiser_strength, int p_denoiser_range, int p_bounces, float p_bounce_indirect_energy, float p_bias, int p_max_texture_size, bool p_bake_sh, bool p_bake_shadowmask, bool p_texture_for_bounces, GenerateProbes p_generate_probes, const Ref<Image> &p_environment_panorama, const Basis &p_environment_transform, BakeStepFunc p_step_function = nullptr, void *p_bake_userdata = nullptr, float p_exposure_normalization = 1.0) override;
int get_bake_texture_count() const override;
Ref<Image> get_bake_texture(int p_index) const override;
int get_shadowmask_texture_count() const override;
Ref<Image> get_shadowmask_texture(int p_index) const override;
int get_bake_mesh_count() const override;
Variant get_bake_mesh_userdata(int p_index) const override;
Rect2 get_bake_mesh_uv_scale(int p_index) const override;

View File

@ -17,6 +17,9 @@ layout(set = 0, binding = 0) uniform BakeParameters {
uint bounces;
float bounce_indirect_energy;
int shadowmask_light_idx;
uint pad0;
uint pad1;
}
bake_params;

View File

@ -60,7 +60,9 @@ layout(rgba16f, set = 1, binding = 4) uniform restrict image2DArray accum_light;
#endif
#ifdef MODE_BOUNCE_LIGHT
#if defined(MODE_DIRECT_LIGHT) && defined(USE_SHADOWMASK)
layout(rgba8, set = 1, binding = 5) uniform restrict writeonly image2DArray shadowmask;
#elif defined(MODE_BOUNCE_LIGHT)
layout(set = 1, binding = 5) uniform texture2D environment;
#endif
@ -389,8 +391,9 @@ vec2 get_vogel_disk(float p_i, float p_rotation, float p_sample_count_sqrt) {
return vec2(cos(theta), sin(theta)) * r;
}
void trace_direct_light(vec3 p_position, vec3 p_normal, uint p_light_index, bool p_soft_shadowing, out vec3 r_light, out vec3 r_light_dir, inout uint r_noise, float p_texel_size) {
void trace_direct_light(vec3 p_position, vec3 p_normal, uint p_light_index, bool p_soft_shadowing, out vec3 r_light, out vec3 r_light_dir, inout uint r_noise, float p_texel_size, out float r_shadow) {
r_light = vec3(0.0f);
r_shadow = 0.0f;
vec3 light_pos;
float dist;
@ -507,6 +510,7 @@ void trace_direct_light(vec3 p_position, vec3 p_normal, uint p_light_index, bool
}
}
r_shadow = penumbra;
r_light = light_data.color * light_data.energy * attenuation * penumbra;
}
@ -556,7 +560,8 @@ vec3 trace_indirect_light(vec3 p_position, vec3 p_ray_dir, inout uint r_noise, f
for (uint i = 0; i < bake_params.light_count; i++) {
vec3 light;
vec3 light_dir;
trace_direct_light(position, normal, i, false, light, light_dir, r_noise, p_texel_size);
float shadow;
trace_direct_light(position, normal, i, false, light, light_dir, r_noise, p_texel_size, shadow);
direct_light += light * lights.data[i].indirect_energy;
}
@ -614,7 +619,6 @@ void main() {
#endif
#ifdef MODE_DIRECT_LIGHT
vec3 normal = texelFetch(sampler2DArray(source_normal, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz;
if (length(normal) < 0.5) {
return; //empty texel, no process
@ -631,6 +635,10 @@ void main() {
vec3 light_for_texture = vec3(0.0);
vec3 light_for_bounces = vec3(0.0);
#ifdef USE_SHADOWMASK
float shadowmask_value = 0.0f;
#endif
#ifdef USE_SH_LIGHTMAPS
vec4 sh_accum[4] = vec4[](
vec4(0.0, 0.0, 0.0, 1.0),
@ -644,7 +652,8 @@ void main() {
for (uint i = 0; i < bake_params.light_count; i++) {
vec3 light;
vec3 light_dir;
trace_direct_light(position, normal, i, true, light, light_dir, noise, texel_size_world_space);
float shadow;
trace_direct_light(position, normal, i, true, light, light_dir, noise, texel_size_world_space, shadow);
if (lights.data[i].static_bake) {
light_for_texture += light;
@ -669,6 +678,12 @@ void main() {
}
light_for_bounces += light * lights.data[i].indirect_energy;
#ifdef USE_SHADOWMASK
if (lights.data[i].type == LIGHT_TYPE_DIRECTIONAL && i == bake_params.shadowmask_light_idx) {
shadowmask_value = max(shadowmask_value, shadow);
}
#endif
}
light_for_bounces *= bake_params.exposure_normalization;
@ -685,6 +700,10 @@ void main() {
imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice), vec4(light_for_texture, 1.0));
#endif
#ifdef USE_SHADOWMASK
imageStore(shadowmask, ivec3(atlas_pos, params.atlas_slice), vec4(shadowmask_value, shadowmask_value, shadowmask_value, 1.0));
#endif
#endif
#ifdef MODE_BOUNCE_LIGHT
@ -850,7 +869,7 @@ void main() {
#endif
#ifdef MODE_DILATE
#if defined(MODE_DILATE)
vec4 c = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0);
//sides first, as they are closer

View File

@ -130,6 +130,52 @@ TypedArray<TextureLayered> LightmapGIData::get_lightmap_textures() const {
return storage_light_textures;
}
void LightmapGIData::set_shadowmask_textures(const TypedArray<TextureLayered> &p_data) {
storage_shadowmask_textures = p_data;
if (p_data.is_empty()) {
combined_shadowmask_texture = Ref<TextureLayered>();
_reset_shadowmask_textures();
return;
}
if (p_data.size() == 1) {
combined_shadowmask_texture = p_data[0];
} else {
Vector<Ref<Image>> images;
for (int i = 0; i < p_data.size(); i++) {
Ref<TextureLayered> texture = p_data[i];
ERR_FAIL_COND_MSG(texture.is_null(), vformat("Invalid TextureLayered at index %d.", i));
for (int j = 0; j < texture->get_layers(); j++) {
images.push_back(texture->get_layer_data(j));
}
}
Ref<Texture2DArray> combined_texture;
combined_texture.instantiate();
combined_texture->create_from_images(images);
combined_shadowmask_texture = combined_texture;
}
_reset_shadowmask_textures();
}
TypedArray<TextureLayered> LightmapGIData::get_shadowmask_textures() const {
return storage_shadowmask_textures;
}
void LightmapGIData::clear_shadowmask_textures() {
RS::get_singleton()->lightmap_set_shadowmask_textures(lightmap, RID());
storage_shadowmask_textures.clear();
combined_shadowmask_texture.unref();
}
bool LightmapGIData::has_shadowmask_textures() {
return !storage_shadowmask_textures.is_empty() && combined_shadowmask_texture.is_valid();
}
RID LightmapGIData::get_rid() const {
return lightmap;
}
@ -142,6 +188,10 @@ void LightmapGIData::_reset_lightmap_textures() {
RS::get_singleton()->lightmap_set_textures(lightmap, combined_light_texture.is_valid() ? combined_light_texture->get_rid() : RID(), uses_spherical_harmonics);
}
void LightmapGIData::_reset_shadowmask_textures() {
RS::get_singleton()->lightmap_set_shadowmask_textures(lightmap, combined_shadowmask_texture.is_valid() ? combined_shadowmask_texture->get_rid() : RID());
}
void LightmapGIData::set_uses_spherical_harmonics(bool p_enable) {
uses_spherical_harmonics = p_enable;
_reset_lightmap_textures();
@ -159,6 +209,14 @@ bool LightmapGIData::_is_using_packed_directional() const {
return _uses_packed_directional;
}
void LightmapGIData::update_shadowmask_mode(ShadowmaskMode p_mode) {
RS::get_singleton()->lightmap_set_shadowmask_mode(lightmap, (RS::ShadowmaskMode)p_mode);
}
LightmapGIData::ShadowmaskMode LightmapGIData::get_shadowmask_mode() const {
return (ShadowmaskMode)RS::get_singleton()->lightmap_get_shadowmask_mode(lightmap);
}
void LightmapGIData::set_capture_data(const AABB &p_bounds, bool p_interior, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree, float p_baked_exposure) {
if (p_points.size()) {
int pc = p_points.size();
@ -260,6 +318,9 @@ void LightmapGIData::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_lightmap_textures", "light_textures"), &LightmapGIData::set_lightmap_textures);
ClassDB::bind_method(D_METHOD("get_lightmap_textures"), &LightmapGIData::get_lightmap_textures);
ClassDB::bind_method(D_METHOD("set_shadowmask_textures", "shadowmask_textures"), &LightmapGIData::set_shadowmask_textures);
ClassDB::bind_method(D_METHOD("get_shadowmask_textures"), &LightmapGIData::get_shadowmask_textures);
ClassDB::bind_method(D_METHOD("set_uses_spherical_harmonics", "uses_spherical_harmonics"), &LightmapGIData::set_uses_spherical_harmonics);
ClassDB::bind_method(D_METHOD("is_using_spherical_harmonics"), &LightmapGIData::is_using_spherical_harmonics);
@ -275,6 +336,7 @@ void LightmapGIData::_bind_methods() {
ClassDB::bind_method(D_METHOD("_get_probe_data"), &LightmapGIData::_get_probe_data);
ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "lightmap_textures", PROPERTY_HINT_ARRAY_TYPE, "TextureLayered", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_READ_ONLY), "set_lightmap_textures", "get_lightmap_textures");
ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "shadowmask_textures", PROPERTY_HINT_ARRAY_TYPE, "TextureLayered", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_READ_ONLY), "set_shadowmask_textures", "get_shadowmask_textures");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "uses_spherical_harmonics", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "set_uses_spherical_harmonics", "is_using_spherical_harmonics");
ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "user_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_user_data", "_get_user_data");
ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "probe_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_probe_data", "_get_probe_data");
@ -290,6 +352,10 @@ void LightmapGIData::_bind_methods() {
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "light_texture", PROPERTY_HINT_RESOURCE_TYPE, "TextureLayered", PROPERTY_USAGE_NONE), "set_light_texture", "get_light_texture");
ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "light_textures", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_INTERNAL), "_set_light_textures_data", "_get_light_textures_data");
#endif
BIND_ENUM_CONSTANT(SHADOWMASK_MODE_NONE);
BIND_ENUM_CONSTANT(SHADOWMASK_MODE_REPLACE);
BIND_ENUM_CONSTANT(SHADOWMASK_MODE_OVERLAY);
}
LightmapGIData::LightmapGIData() {
@ -738,12 +804,12 @@ void LightmapGI::_gen_new_positions_from_octree(const GenProbesOctree *p_cell, f
}
}
LightmapGI::BakeError LightmapGI::_save_and_reimport_atlas_textures(const Ref<Lightmapper> p_lightmapper, const String &p_base_name, TypedArray<TextureLayered> &r_textures, bool p_compress) const {
LightmapGI::BakeError LightmapGI::_save_and_reimport_atlas_textures(const Ref<Lightmapper> p_lightmapper, const String &p_base_name, TypedArray<TextureLayered> &r_textures, bool p_is_shadowmask, bool p_compress) const {
Vector<Ref<Image>> images;
images.resize(p_lightmapper->get_bake_texture_count());
images.resize(p_is_shadowmask ? p_lightmapper->get_shadowmask_texture_count() : p_lightmapper->get_bake_texture_count());
for (int i = 0; i < images.size(); i++) {
images.set(i, p_lightmapper->get_bake_texture(i));
images.set(i, p_is_shadowmask ? p_lightmapper->get_shadowmask_texture(i) : p_lightmapper->get_bake_texture(i));
}
const int slice_count = images.size();
@ -765,7 +831,7 @@ LightmapGI::BakeError LightmapGI::_save_and_reimport_atlas_textures(const Ref<Li
texture_image->blit_rect(images[i * slices_per_texture + j], Rect2i(0, 0, slice_width, slice_height), Point2i(0, slice_height * j));
}
const String atlas_path = (texture_count > 1 ? p_base_name + "_" + itos(i) : p_base_name) + ".exr";
const String atlas_path = (texture_count > 1 ? p_base_name + "_" + itos(i) : p_base_name) + (p_is_shadowmask ? ".png" : ".exr");
const String config_path = atlas_path + ".import";
Ref<ConfigFile> config;
@ -790,7 +856,12 @@ LightmapGI::BakeError LightmapGI::_save_and_reimport_atlas_textures(const Ref<Li
config->save(config_path);
// Save the file.
Error save_err = texture_image->save_exr(atlas_path, false);
Error save_err;
if (p_is_shadowmask) {
save_err = texture_image->save_png(atlas_path);
} else {
save_err = texture_image->save_exr(atlas_path, false);
}
ERR_FAIL_COND_V(save_err, LightmapGI::BAKE_ERROR_CANT_CREATE_IMAGE);
@ -1104,20 +1175,20 @@ LightmapGI::BakeError LightmapGI::bake(Node *p_from_node, String p_image_data_pa
if (Object::cast_to<DirectionalLight3D>(light)) {
DirectionalLight3D *l = Object::cast_to<DirectionalLight3D>(light);
if (l->get_sky_mode() != DirectionalLight3D::SKY_MODE_SKY_ONLY) {
lightmapper->add_directional_light(light->get_bake_mode() == Light3D::BAKE_STATIC, -xf.basis.get_column(Vector3::AXIS_Z).normalized(), linear_color, energy, indirect_energy, l->get_param(Light3D::PARAM_SIZE), l->get_param(Light3D::PARAM_SHADOW_BLUR));
lightmapper->add_directional_light(light->get_name(), light->get_bake_mode() == Light3D::BAKE_STATIC, -xf.basis.get_column(Vector3::AXIS_Z).normalized(), linear_color, energy, indirect_energy, l->get_param(Light3D::PARAM_SIZE), l->get_param(Light3D::PARAM_SHADOW_BLUR));
}
} else if (Object::cast_to<OmniLight3D>(light)) {
OmniLight3D *l = Object::cast_to<OmniLight3D>(light);
if (use_physical_light_units) {
energy *= (1.0 / (Math_PI * 4.0));
}
lightmapper->add_omni_light(light->get_bake_mode() == Light3D::BAKE_STATIC, xf.origin, linear_color, energy, indirect_energy, l->get_param(Light3D::PARAM_RANGE), l->get_param(Light3D::PARAM_ATTENUATION), l->get_param(Light3D::PARAM_SIZE), l->get_param(Light3D::PARAM_SHADOW_BLUR));
lightmapper->add_omni_light(light->get_name(), light->get_bake_mode() == Light3D::BAKE_STATIC, xf.origin, linear_color, energy, indirect_energy, l->get_param(Light3D::PARAM_RANGE), l->get_param(Light3D::PARAM_ATTENUATION), l->get_param(Light3D::PARAM_SIZE), l->get_param(Light3D::PARAM_SHADOW_BLUR));
} else if (Object::cast_to<SpotLight3D>(light)) {
SpotLight3D *l = Object::cast_to<SpotLight3D>(light);
if (use_physical_light_units) {
energy *= (1.0 / Math_PI);
}
lightmapper->add_spot_light(light->get_bake_mode() == Light3D::BAKE_STATIC, xf.origin, -xf.basis.get_column(Vector3::AXIS_Z).normalized(), linear_color, energy, indirect_energy, l->get_param(Light3D::PARAM_RANGE), l->get_param(Light3D::PARAM_ATTENUATION), l->get_param(Light3D::PARAM_SPOT_ANGLE), l->get_param(Light3D::PARAM_SPOT_ATTENUATION), l->get_param(Light3D::PARAM_SIZE), l->get_param(Light3D::PARAM_SHADOW_BLUR));
lightmapper->add_spot_light(light->get_name(), light->get_bake_mode() == Light3D::BAKE_STATIC, xf.origin, -xf.basis.get_column(Vector3::AXIS_Z).normalized(), linear_color, energy, indirect_energy, l->get_param(Light3D::PARAM_RANGE), l->get_param(Light3D::PARAM_ATTENUATION), l->get_param(Light3D::PARAM_SPOT_ANGLE), l->get_param(Light3D::PARAM_SPOT_ATTENUATION), l->get_param(Light3D::PARAM_SIZE), l->get_param(Light3D::PARAM_SHADOW_BLUR));
}
}
for (int i = 0; i < probes_found.size(); i++) {
@ -1181,7 +1252,7 @@ LightmapGI::BakeError LightmapGI::bake(Node *p_from_node, String p_image_data_pa
}
}
Lightmapper::BakeError bake_err = lightmapper->bake(Lightmapper::BakeQuality(bake_quality), use_denoiser, denoiser_strength, denoiser_range, bounces, bounce_indirect_energy, bias, max_texture_size, directional, use_texture_for_bounces, Lightmapper::GenerateProbes(gen_probes), environment_image, environment_transform, _lightmap_bake_step_function, &bsud, exposure_normalization);
Lightmapper::BakeError bake_err = lightmapper->bake(Lightmapper::BakeQuality(bake_quality), use_denoiser, denoiser_strength, denoiser_range, bounces, bounce_indirect_energy, bias, max_texture_size, directional, shadowmask_mode != LightmapGIData::SHADOWMASK_MODE_NONE, use_texture_for_bounces, Lightmapper::GenerateProbes(gen_probes), environment_image, environment_transform, _lightmap_bake_step_function, &bsud, exposure_normalization);
if (bake_err == Lightmapper::BAKE_ERROR_TEXTURE_EXCEEDS_MAX_SIZE) {
return BAKE_ERROR_TEXTURE_SIZE_TOO_SMALL;
@ -1196,15 +1267,23 @@ LightmapGI::BakeError LightmapGI::bake(Node *p_from_node, String p_image_data_pa
// POSTBAKE: Save Textures.
TypedArray<TextureLayered> lightmap_textures;
TypedArray<TextureLayered> shadowmask_textures;
const String texture_filename = p_image_data_path.get_basename();
const int shadowmask_texture_count = lightmapper->get_shadowmask_texture_count();
const bool save_shadowmask = shadowmask_mode != LightmapGIData::SHADOWMASK_MODE_NONE && shadowmask_texture_count > 0;
// Save the lightmap atlases.
BakeError save_err = _save_and_reimport_atlas_textures(lightmapper, texture_filename, lightmap_textures, false);
BakeError save_err = _save_and_reimport_atlas_textures(lightmapper, texture_filename, lightmap_textures, false, false);
ERR_FAIL_COND_V(save_err != BAKE_ERROR_OK, save_err);
// POSTBAKE: Save Light Data.
if (save_shadowmask) {
// Save the shadowmask atlases.
save_err = _save_and_reimport_atlas_textures(lightmapper, texture_filename + "_shadow", shadowmask_textures, true, true);
ERR_FAIL_COND_V(save_err != BAKE_ERROR_OK, save_err);
}
/* POSTBAKE: Save Light Data. */
Ref<LightmapGIData> gi_data;
if (get_light_data().is_valid()) {
@ -1217,6 +1296,13 @@ LightmapGI::BakeError LightmapGI::bake(Node *p_from_node, String p_image_data_pa
}
gi_data->set_lightmap_textures(lightmap_textures);
if (save_shadowmask) {
gi_data->set_shadowmask_textures(shadowmask_textures);
} else {
gi_data->clear_shadowmask_textures();
}
gi_data->set_uses_spherical_harmonics(directional);
gi_data->_set_uses_packed_directional(directional); // New SH lightmaps are packed automatically.
@ -1375,6 +1461,7 @@ LightmapGI::BakeError LightmapGI::bake(Node *p_from_node, String p_image_data_pa
}
set_light_data(gi_data);
update_configuration_warnings();
return BAKE_ERROR_OK;
}
@ -1452,6 +1539,7 @@ void LightmapGI::set_light_data(const Ref<LightmapGIData> &p_data) {
if (is_inside_tree()) {
_assign_lightmaps();
}
light_data->update_shadowmask_mode(shadowmask_mode);
}
update_gizmos();
@ -1506,6 +1594,19 @@ bool LightmapGI::is_directional() const {
return directional;
}
void LightmapGI::set_shadowmask_mode(LightmapGIData::ShadowmaskMode p_mode) {
shadowmask_mode = p_mode;
if (light_data.is_valid()) {
light_data->update_shadowmask_mode(p_mode);
}
update_configuration_warnings();
}
LightmapGIData::ShadowmaskMode LightmapGI::get_shadowmask_mode() const {
return shadowmask_mode;
}
void LightmapGI::set_use_texture_for_bounces(bool p_enable) {
use_texture_for_bounces = p_enable;
}
@ -1625,6 +1726,11 @@ PackedStringArray LightmapGI::get_configuration_warnings() const {
warnings.push_back(vformat(RTR("Lightmaps can only be baked from a GPU that supports the RenderingDevice backends.\nYour GPU (%s) does not support RenderingDevice, as it does not support Vulkan, Direct3D 12, or Metal.\nLightmap baking will not be available on this device, although rendering existing baked lightmaps will work."), RenderingServer::get_singleton()->get_video_adapter_name()));
return warnings;
}
if (shadowmask_mode != LightmapGIData::SHADOWMASK_MODE_NONE && light_data.is_valid() && !light_data->has_shadowmask_textures()) {
warnings.push_back(RTR("The lightmap has no baked shadowmask textures. Please rebake with the Shadowmask Mode set to anything other than None."));
}
#elif defined(ANDROID_ENABLED) || defined(IOS_ENABLED)
warnings.push_back(vformat(RTR("Lightmaps cannot be baked on %s. Rendering existing baked lightmaps will still work."), OS::get_singleton()->get_name()));
#else
@ -1704,6 +1810,9 @@ void LightmapGI::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_directional", "directional"), &LightmapGI::set_directional);
ClassDB::bind_method(D_METHOD("is_directional"), &LightmapGI::is_directional);
ClassDB::bind_method(D_METHOD("set_shadowmask_mode", "mode"), &LightmapGI::set_shadowmask_mode);
ClassDB::bind_method(D_METHOD("get_shadowmask_mode"), &LightmapGI::get_shadowmask_mode);
ClassDB::bind_method(D_METHOD("set_use_texture_for_bounces", "use_texture_for_bounces"), &LightmapGI::set_use_texture_for_bounces);
ClassDB::bind_method(D_METHOD("is_using_texture_for_bounces"), &LightmapGI::is_using_texture_for_bounces);
@ -1717,6 +1826,7 @@ void LightmapGI::_bind_methods() {
ADD_PROPERTY(PropertyInfo(Variant::INT, "bounces", PROPERTY_HINT_RANGE, "0,6,1,or_greater"), "set_bounces", "get_bounces");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "bounce_indirect_energy", PROPERTY_HINT_RANGE, "0,2,0.01"), "set_bounce_indirect_energy", "get_bounce_indirect_energy");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "directional"), "set_directional", "is_directional");
ADD_PROPERTY(PropertyInfo(Variant::INT, "shadowmask_mode", PROPERTY_HINT_ENUM, "None,Replace,Overlay"), "set_shadowmask_mode", "get_shadowmask_mode");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_texture_for_bounces"), "set_use_texture_for_bounces", "is_using_texture_for_bounces");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior"), "set_interior", "is_interior");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_denoiser"), "set_use_denoiser", "is_using_denoiser");

View File

@ -43,12 +43,23 @@ class LightmapGIData : public Resource {
GDCLASS(LightmapGIData, Resource);
RES_BASE_EXTENSION("lmbake")
public:
enum ShadowmaskMode {
SHADOWMASK_MODE_NONE,
SHADOWMASK_MODE_REPLACE,
SHADOWMASK_MODE_OVERLAY,
SHADOWMASK_MODE_ONLY,
};
private:
// The 'merged' texture atlases actually used by the renderer.
Ref<TextureLayered> combined_light_texture;
Ref<TextureLayered> combined_shadowmask_texture;
// The temporary texture atlas arrays which are used for storage.
// If a single atlas is too large, it's split and recombined during loading.
TypedArray<TextureLayered> storage_light_textures;
TypedArray<TextureLayered> storage_shadowmask_textures;
bool uses_spherical_harmonics = false;
bool interior = false;
@ -74,6 +85,7 @@ class LightmapGIData : public Resource {
Dictionary _get_probe_data() const;
void _reset_lightmap_textures();
void _reset_shadowmask_textures();
protected:
static void _bind_methods();
@ -101,6 +113,9 @@ public:
void _set_uses_packed_directional(bool p_enable);
bool _is_using_packed_directional() const;
void update_shadowmask_mode(ShadowmaskMode p_mode);
ShadowmaskMode get_shadowmask_mode() const;
bool is_interior() const;
float get_baked_exposure() const;
@ -116,6 +131,11 @@ public:
void set_lightmap_textures(const TypedArray<TextureLayered> &p_data);
TypedArray<TextureLayered> get_lightmap_textures() const;
void set_shadowmask_textures(const TypedArray<TextureLayered> &p_data);
TypedArray<TextureLayered> get_shadowmask_textures() const;
void clear_shadowmask_textures();
bool has_shadowmask_textures();
virtual RID get_rid() const override;
LightmapGIData();
~LightmapGIData();
@ -179,6 +199,7 @@ private:
float environment_custom_energy = 1.0;
bool directional = false;
bool use_texture_for_bounces = true;
LightmapGIData::ShadowmaskMode shadowmask_mode = LightmapGIData::SHADOWMASK_MODE_NONE;
GenerateProbes gen_probes = GENERATE_PROBES_SUBDIV_8;
Ref<CameraAttributes> camera_attributes;
@ -249,7 +270,7 @@ private:
void _plot_triangle_into_octree(GenProbesOctree *p_cell, float p_cell_size, const Vector3 *p_triangle);
void _gen_new_positions_from_octree(const GenProbesOctree *p_cell, float p_cell_size, const Vector<Vector3> &probe_positions, LocalVector<Vector3> &new_probe_positions, HashMap<Vector3i, bool> &positions_used, const AABB &p_bounds);
BakeError _save_and_reimport_atlas_textures(const Ref<Lightmapper> p_lightmapper, const String &p_base_name, TypedArray<TextureLayered> &r_textures, bool p_compress = false) const;
BakeError _save_and_reimport_atlas_textures(const Ref<Lightmapper> p_lightmapper, const String &p_base_name, TypedArray<TextureLayered> &r_textures, bool p_is_shadowmask = false, bool p_compress = false) const;
protected:
void _validate_property(PropertyInfo &p_property) const;
@ -275,6 +296,9 @@ public:
void set_directional(bool p_enable);
bool is_directional() const;
void set_shadowmask_mode(LightmapGIData::ShadowmaskMode p_mode);
LightmapGIData::ShadowmaskMode get_shadowmask_mode() const;
void set_use_texture_for_bounces(bool p_enable);
bool is_using_texture_for_bounces() const;
@ -323,6 +347,7 @@ public:
LightmapGI();
};
VARIANT_ENUM_CAST(LightmapGIData::ShadowmaskMode);
VARIANT_ENUM_CAST(LightmapGI::BakeQuality);
VARIANT_ENUM_CAST(LightmapGI::GenerateProbes);
VARIANT_ENUM_CAST(LightmapGI::BakeError);

View File

@ -133,7 +133,6 @@ public:
GENERATE_PROBES_SUBDIV_8,
GENERATE_PROBES_SUBDIV_16,
GENERATE_PROBES_SUBDIV_32,
};
enum LightType {
@ -178,14 +177,16 @@ public:
};
virtual void add_mesh(const MeshData &p_mesh) = 0;
virtual void add_directional_light(bool p_static, const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_energy, float p_angular_distance, float p_shadow_blur) = 0;
virtual void add_omni_light(bool p_static, const Vector3 &p_position, const Color &p_color, float p_energy, float p_indirect_energy, float p_range, float p_attenuation, float p_size, float p_shadow_blur) = 0;
virtual void add_spot_light(bool p_static, const Vector3 &p_position, const Vector3 p_direction, const Color &p_color, float p_energy, float p_indirect_energy, float p_range, float p_attenuation, float p_spot_angle, float p_spot_attenuation, float p_size, float p_shadow_blur) = 0;
virtual void add_directional_light(const String &p_name, bool p_static, const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_energy, float p_angular_distance, float p_shadow_blur) = 0;
virtual void add_omni_light(const String &p_name, bool p_static, const Vector3 &p_position, const Color &p_color, float p_energy, float p_indirect_energy, float p_range, float p_attenuation, float p_size, float p_shadow_blur) = 0;
virtual void add_spot_light(const String &p_name, bool p_static, const Vector3 &p_position, const Vector3 p_direction, const Color &p_color, float p_energy, float p_indirect_energy, float p_range, float p_attenuation, float p_spot_angle, float p_spot_attenuation, float p_size, float p_shadow_blur) = 0;
virtual void add_probe(const Vector3 &p_position) = 0;
virtual BakeError bake(BakeQuality p_quality, bool p_use_denoiser, float p_denoiser_strength, int p_denoiser_range, int p_bounces, float p_bounce_indirect_energy, float p_bias, int p_max_texture_size, bool p_bake_sh, bool p_texture_for_bounces, GenerateProbes p_generate_probes, const Ref<Image> &p_environment_panorama, const Basis &p_environment_transform, BakeStepFunc p_step_function = nullptr, void *p_step_userdata = nullptr, float p_exposure_normalization = 1.0) = 0;
virtual BakeError bake(BakeQuality p_quality, bool p_use_denoiser, float p_denoiser_strength, int p_denoiser_range, int p_bounces, float p_bounce_indirect_energy, float p_bias, int p_max_texture_size, bool p_bake_sh, bool p_bake_shadowmask, bool p_texture_for_bounces, GenerateProbes p_generate_probes, const Ref<Image> &p_environment_panorama, const Basis &p_environment_transform, BakeStepFunc p_step_function = nullptr, void *p_step_userdata = nullptr, float p_exposure_normalization = 1.0) = 0;
virtual int get_bake_texture_count() const = 0;
virtual Ref<Image> get_bake_texture(int p_index) const = 0;
virtual int get_shadowmask_texture_count() const = 0;
virtual Ref<Image> get_shadowmask_texture(int p_index) const = 0;
virtual int get_bake_mesh_count() const = 0;
virtual Variant get_bake_mesh_userdata(int p_index) const = 0;
virtual Rect2 get_bake_mesh_uv_scale(int p_index) const = 0;

View File

@ -191,6 +191,10 @@ public:
virtual void lightmap_set_probe_capture_update_speed(float p_speed) override {}
virtual float lightmap_get_probe_capture_update_speed() const override { return 0; }
virtual void lightmap_set_shadowmask_textures(RID p_lightmap, RID p_shadow) override {}
virtual RS::ShadowmaskMode lightmap_get_shadowmask_mode(RID p_lightmap) override { return RS::SHADOWMASK_MODE_NONE; }
virtual void lightmap_set_shadowmask_mode(RID p_lightmap, RS::ShadowmaskMode p_mode) override {}
/* LIGHTMAP INSTANCE */
bool owns_lightmap_instance(RID p_rid) { return lightmap_instance_owner.owns(p_rid); }

View File

@ -1167,6 +1167,7 @@ void RenderForwardClustered::_setup_lightmaps(const RenderDataRD *p_render_data,
// Exposure.
scene_state.lightmaps[i].exposure_normalization = 1.0;
scene_state.lightmaps[i].flags = light_storage->lightmap_get_shadowmask_mode(lightmap);
if (p_render_data->camera_attributes.is_valid()) {
float baked_exposure = light_storage->lightmap_get_baked_exposure_normalization(lightmap);
float enf = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
@ -3223,15 +3224,29 @@ RID RenderForwardClustered::_setup_render_pass_uniform_set(RenderListType p_rend
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
RID default_tex = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE);
for (uint32_t i = 0; i < scene_state.max_lightmaps; i++) {
if (p_render_data && i < p_render_data->lightmaps->size()) {
RID base = light_storage->lightmap_instance_get_lightmap((*p_render_data->lightmaps)[i]);
RID texture = light_storage->lightmap_get_texture(base);
RID rd_texture = texture_storage->texture_get_rd_texture(texture);
u.append_id(rd_texture);
} else {
u.append_id(default_tex);
for (uint32_t i = 0; i < scene_state.max_lightmaps * 2; i++) {
uint32_t current_lightmap_index = i < scene_state.max_lightmaps ? i : i - scene_state.max_lightmaps;
if (p_render_data && current_lightmap_index < p_render_data->lightmaps->size()) {
RID base = light_storage->lightmap_instance_get_lightmap((*p_render_data->lightmaps)[current_lightmap_index]);
RID texture;
if (i < scene_state.max_lightmaps) {
// Lightmap
texture = light_storage->lightmap_get_texture(base);
} else {
// Shadowmask
texture = light_storage->shadowmask_get_texture(base);
}
if (texture.is_valid()) {
RID rd_texture = texture_storage->texture_get_rd_texture(texture);
u.append_id(rd_texture);
continue;
}
}
u.append_id(default_tex);
}
uniforms.push_back(u);
@ -3535,7 +3550,7 @@ RID RenderForwardClustered::_setup_sdfgi_render_pass_uniform_set(RID p_albedo_te
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
RID default_tex = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE);
for (uint32_t i = 0; i < scene_state.max_lightmaps; i++) {
for (uint32_t i = 0; i < scene_state.max_lightmaps * 2; i++) {
u.append_id(default_tex);
}

View File

@ -237,7 +237,7 @@ private:
float normal_xform[12];
float texture_size[2];
float exposure_normalization;
float pad;
uint32_t flags;
};
struct LightmapCaptureData {

View File

@ -477,15 +477,29 @@ RID RenderForwardMobile::_setup_render_pass_uniform_set(RenderListType p_render_
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
RID default_tex = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE);
for (uint32_t i = 0; i < scene_state.max_lightmaps; i++) {
if (p_render_data && i < p_render_data->lightmaps->size()) {
RID base = light_storage->lightmap_instance_get_lightmap((*p_render_data->lightmaps)[i]);
RID texture = light_storage->lightmap_get_texture(base);
RID rd_texture = texture_storage->texture_get_rd_texture(texture);
u.append_id(rd_texture);
} else {
u.append_id(default_tex);
for (uint32_t i = 0; i < scene_state.max_lightmaps * 2; i++) {
uint32_t current_lightmap_index = i < scene_state.max_lightmaps ? i : i - scene_state.max_lightmaps;
if (p_render_data && current_lightmap_index < p_render_data->lightmaps->size()) {
RID base = light_storage->lightmap_instance_get_lightmap((*p_render_data->lightmaps)[current_lightmap_index]);
RID texture;
if (i < scene_state.max_lightmaps) {
// Lightmap
texture = light_storage->lightmap_get_texture(base);
} else {
// Shadowmask
texture = light_storage->shadowmask_get_texture(base);
}
if (texture.is_valid()) {
RID rd_texture = texture_storage->texture_get_rd_texture(texture);
u.append_id(rd_texture);
continue;
}
}
u.append_id(default_tex);
}
uniforms.push_back(u);
@ -642,6 +656,7 @@ void RenderForwardMobile::_setup_lightmaps(const RenderDataRD *p_render_data, co
// Exposure.
scene_state.lightmaps[i].exposure_normalization = 1.0;
scene_state.lightmaps[i].flags = light_storage->lightmap_get_shadowmask_mode(lightmap);
if (p_render_data->camera_attributes.is_valid()) {
float baked_exposure = light_storage->lightmap_get_baked_exposure_normalization(lightmap);
float enf = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);

View File

@ -184,7 +184,7 @@ private:
float normal_xform[12];
float texture_size[2];
float exposure_normalization;
float pad;
uint32_t flags;
};
struct LightmapCaptureData {

View File

@ -1978,9 +1978,34 @@ void fragment_shader(in SceneData scene_data) {
uint shadow0 = 0;
uint shadow1 = 0;
float shadowmask = 1.0;
#ifdef USE_LIGHTMAP
uint shadowmask_mode = LIGHTMAP_SHADOWMASK_MODE_NONE;
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) {
const uint ofs = instances.data[instance_index].gi_offset & 0xFFFF;
shadowmask_mode = lightmaps.data[ofs].flags;
if (shadowmask_mode != LIGHTMAP_SHADOWMASK_MODE_NONE) {
const uint slice = instances.data[instance_index].gi_offset >> 16;
const vec2 scaled_uv = uv2 * instances.data[instance_index].lightmap_uv_scale.zw + instances.data[instance_index].lightmap_uv_scale.xy;
const vec3 uvw = vec3(scaled_uv, float(slice));
if (sc_use_lightmap_bicubic_filter()) {
shadowmask = textureArray_bicubic(lightmap_textures[MAX_LIGHTMAP_TEXTURES + ofs], uvw, lightmaps.data[ofs].light_texture_size).x;
} else {
shadowmask = textureLod(sampler2DArray(lightmap_textures[MAX_LIGHTMAP_TEXTURES + ofs], SAMPLER_LINEAR_CLAMP), uvw, 0.0).x;
}
}
}
if (shadowmask_mode != LIGHTMAP_SHADOWMASK_MODE_ONLY) {
#endif // USE_LIGHTMAP
#ifdef USE_VERTEX_LIGHTING
// Only process the first light's shadow for vertex lighting.
for (uint i = 0; i < 1; i++) {
// Only process the first light's shadow for vertex lighting.
for (uint i = 0; i < 1; i++) {
#else
for (uint i = 0; i < 8; i++) {
if (i >= scene_data.directional_light_count) {
@ -1988,20 +2013,20 @@ void fragment_shader(in SceneData scene_data) {
}
#endif
if (!bool(directional_lights.data[i].mask & instances.data[instance_index].layer_mask)) {
continue; //not masked
}
if (!bool(directional_lights.data[i].mask & instances.data[instance_index].layer_mask)) {
continue; //not masked
}
if (directional_lights.data[i].bake_mode == LIGHT_BAKE_STATIC && bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) {
continue; // Statically baked light and object uses lightmap, skip
}
if (directional_lights.data[i].bake_mode == LIGHT_BAKE_STATIC && bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) {
continue; // Statically baked light and object uses lightmap, skip
}
float shadow = 1.0;
float shadow = 1.0;
if (directional_lights.data[i].shadow_opacity > 0.001) {
float depth_z = -vertex.z;
vec3 light_dir = directional_lights.data[i].direction;
vec3 base_normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp))));
if (directional_lights.data[i].shadow_opacity > 0.001) {
float depth_z = -vertex.z;
vec3 light_dir = directional_lights.data[i].direction;
vec3 base_normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp))));
#define BIAS_FUNC(m_var, m_idx) \
m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \
@ -2009,195 +2034,218 @@ void fragment_shader(in SceneData scene_data) {
normal_bias -= light_dir * dot(light_dir, normal_bias); \
m_var.xyz += normal_bias;
//version with soft shadows, more expensive
if (sc_use_directional_soft_shadows() && directional_lights.data[i].softshadow_angle > 0) {
uint blend_count = 0;
const uint blend_max = directional_lights.data[i].blend_splits ? 2 : 1;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 0)
vec4 pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
pssm_coord /= pssm_coord.w;
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.x;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale1 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale, scene_data.taa_frame_count);
blend_count++;
}
if (blend_count < blend_max && depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
vec4 pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
pssm_coord /= pssm_coord.w;
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.y;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
float s = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale, scene_data.taa_frame_count);
if (blend_count == 0) {
shadow = s;
} else {
//blend
float blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
shadow = mix(shadow, s, blend);
}
blend_count++;
}
if (blend_count < blend_max && depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
vec4 pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
pssm_coord /= pssm_coord.w;
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.z;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
float s = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale, scene_data.taa_frame_count);
if (blend_count == 0) {
shadow = s;
} else {
//blend
float blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);
shadow = mix(shadow, s, blend);
}
blend_count++;
}
if (blend_count < blend_max) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
vec4 pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
pssm_coord /= pssm_coord.w;
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.w;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
float s = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale, scene_data.taa_frame_count);
if (blend_count == 0) {
shadow = s;
} else {
//blend
float blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
shadow = mix(shadow, s, blend);
}
}
} else { //no soft shadows
vec4 pssm_coord;
float blur_factor;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 0)
pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
blur_factor = 1.0;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.y;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.z;
} else {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.w;
}
pssm_coord /= pssm_coord.w;
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale * (blur_factor + (1.0 - blur_factor) * float(directional_lights.data[i].blend_splits)), pssm_coord, scene_data.taa_frame_count);
if (directional_lights.data[i].blend_splits) {
float pssm_blend;
float blur_factor2;
//version with soft shadows, more expensive
if (sc_use_directional_soft_shadows() && directional_lights.data[i].softshadow_angle > 0) {
uint blend_count = 0;
const uint blend_max = directional_lights.data[i].blend_splits ? 2 : 1;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 0)
vec4 pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
pssm_coord /= pssm_coord.w;
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.x;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale1 * test_radius;
shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale, scene_data.taa_frame_count);
blend_count++;
}
if (blend_count < blend_max && depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x - directional_lights.data[i].shadow_split_offsets.x * 0.1, directional_lights.data[i].shadow_split_offsets.x, depth_z);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor2 = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.y;
vec4 pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
pssm_coord /= pssm_coord.w;
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.y;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
float s = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale, scene_data.taa_frame_count);
if (blend_count == 0) {
shadow = s;
} else {
//blend
float blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
shadow = mix(shadow, s, blend);
}
blend_count++;
}
if (blend_count < blend_max && depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
vec4 pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
pssm_coord /= pssm_coord.w;
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.z;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
float s = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale, scene_data.taa_frame_count);
if (blend_count == 0) {
shadow = s;
} else {
//blend
float blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);
shadow = mix(shadow, s, blend);
}
blend_count++;
}
if (blend_count < blend_max) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
vec4 pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
pssm_coord /= pssm_coord.w;
float range_pos = dot(directional_lights.data[i].direction, v.xyz);
float range_begin = directional_lights.data[i].shadow_range_begin.w;
float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
float s = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale, scene_data.taa_frame_count);
if (blend_count == 0) {
shadow = s;
} else {
//blend
float blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
shadow = mix(shadow, s, blend);
}
}
} else { //no soft shadows
vec4 pssm_coord;
float blur_factor;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 0)
pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
blur_factor = 1.0;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y - directional_lights.data[i].shadow_split_offsets.y * 0.1, directional_lights.data[i].shadow_split_offsets.y, depth_z);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor2 = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.z;
blur_factor = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.y;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.z - directional_lights.data[i].shadow_split_offsets.z * 0.1, directional_lights.data[i].shadow_split_offsets.z, depth_z);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor2 = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.w;
blur_factor = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.z;
} else {
pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
blur_factor2 = 1.0;
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.w;
}
pssm_coord /= pssm_coord.w;
float shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale * (blur_factor2 + (1.0 - blur_factor2) * float(directional_lights.data[i].blend_splits)), pssm_coord, scene_data.taa_frame_count);
shadow = mix(shadow, shadow2, pssm_blend);
}
}
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale * (blur_factor + (1.0 - blur_factor) * float(directional_lights.data[i].blend_splits)), pssm_coord, scene_data.taa_frame_count);
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
if (directional_lights.data[i].blend_splits) {
float pssm_blend;
float blur_factor2;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x - directional_lights.data[i].shadow_split_offsets.x * 0.1, directional_lights.data[i].shadow_split_offsets.x, depth_z);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor2 = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.y;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y - directional_lights.data[i].shadow_split_offsets.y * 0.1, directional_lights.data[i].shadow_split_offsets.y, depth_z);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor2 = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.z;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.z - directional_lights.data[i].shadow_split_offsets.z * 0.1, directional_lights.data[i].shadow_split_offsets.z, depth_z);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor2 = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.w;
} else {
pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
blur_factor2 = 1.0;
}
pssm_coord /= pssm_coord.w;
float shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale * (blur_factor2 + (1.0 - blur_factor2) * float(directional_lights.data[i].blend_splits)), pssm_coord, scene_data.taa_frame_count);
shadow = mix(shadow, shadow2, pssm_blend);
}
}
#ifdef USE_LIGHTMAP
if (shadowmask_mode == LIGHTMAP_SHADOWMASK_MODE_REPLACE) {
shadow = mix(shadow, shadowmask, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
} else if (shadowmask_mode == LIGHTMAP_SHADOWMASK_MODE_OVERLAY) {
shadow = shadowmask * mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
} else {
#endif
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
#ifdef USE_LIGHTMAP
}
#endif
#ifdef USE_VERTEX_LIGHTING
diffuse_light *= mix(1.0, shadow, diffuse_light_interp.a);
specular_light *= mix(1.0, shadow, specular_light_interp.a);
diffuse_light *= mix(1.0, shadow, diffuse_light_interp.a);
specular_light *= mix(1.0, shadow, specular_light_interp.a);
#endif
#undef BIAS_FUNC
} // shadows
} // shadows
if (i < 4) {
shadow0 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << (i * 8);
} else {
shadow1 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << ((i - 4) * 8);
if (i < 4) {
shadow0 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << (i * 8);
} else {
shadow1 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << ((i - 4) * 8);
}
}
#ifdef USE_LIGHTMAP
} else { // shadowmask_mode == LIGHTMAP_SHADOWMASK_MODE_ONLY
#ifdef USE_VERTEX_LIGHTING
diffuse_light *= mix(1.0, shadowmask, diffuse_light_interp.a);
specular_light *= mix(1.0, shadowmask, specular_light_interp.a);
#endif
shadow0 |= uint(clamp(shadowmask * 255.0, 0.0, 255.0));
}
#endif // USE_LIGHTMAP
#endif // SHADOWS_DISABLED
#ifndef USE_VERTEX_LIGHTING

View File

@ -200,11 +200,16 @@ directional_lights;
#define LIGHTMAP_FLAG_USE_DIRECTION 1
#define LIGHTMAP_FLAG_USE_SPECULAR_DIRECTION 2
#define LIGHTMAP_SHADOWMASK_MODE_NONE 0
#define LIGHTMAP_SHADOWMASK_MODE_REPLACE 1
#define LIGHTMAP_SHADOWMASK_MODE_OVERLAY 2
#define LIGHTMAP_SHADOWMASK_MODE_ONLY 3
struct Lightmap {
mat3 normal_xform;
vec2 light_texture_size;
float exposure_normalization;
float pad;
uint flags;
};
layout(set = 0, binding = 7, std140) restrict readonly buffer Lightmaps {
@ -349,7 +354,7 @@ layout(set = 1, binding = 5) uniform texture2D shadow_atlas;
layout(set = 1, binding = 6) uniform texture2D directional_shadow_atlas;
layout(set = 1, binding = 7) uniform texture2DArray lightmap_textures[MAX_LIGHTMAP_TEXTURES];
layout(set = 1, binding = 7) uniform texture2DArray lightmap_textures[MAX_LIGHTMAP_TEXTURES * 2];
layout(set = 1, binding = 8) uniform texture3D voxel_gi_textures[MAX_VOXEL_GI_INSTANCES];

View File

@ -1434,30 +1434,54 @@ void main() {
uint shadow0 = 0;
uint shadow1 = 0;
float shadowmask = 1.0;
#ifdef USE_LIGHTMAP
uint shadowmask_mode = LIGHTMAP_SHADOWMASK_MODE_NONE;
if (bool(instances.data[draw_call.instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) {
const uint ofs = instances.data[draw_call.instance_index].gi_offset & 0xFFFF;
shadowmask_mode = lightmaps.data[ofs].flags;
if (shadowmask_mode != LIGHTMAP_SHADOWMASK_MODE_NONE) {
const uint slice = instances.data[draw_call.instance_index].gi_offset >> 16;
const vec2 scaled_uv = uv2 * instances.data[draw_call.instance_index].lightmap_uv_scale.zw + instances.data[draw_call.instance_index].lightmap_uv_scale.xy;
const vec3 uvw = vec3(scaled_uv, float(slice));
if (sc_use_lightmap_bicubic_filter()) {
shadowmask = textureArray_bicubic(lightmap_textures[MAX_LIGHTMAP_TEXTURES + ofs], uvw, lightmaps.data[ofs].light_texture_size).x;
} else {
shadowmask = textureLod(sampler2DArray(lightmap_textures[MAX_LIGHTMAP_TEXTURES + ofs], SAMPLER_LINEAR_CLAMP), uvw, 0.0).x;
}
}
}
if (shadowmask_mode != LIGHTMAP_SHADOWMASK_MODE_ONLY) {
#endif // USE_LIGHTMAP
#ifdef USE_VERTEX_LIGHTING
// Only process the first light's shadow for vertex lighting.
for (uint i = 0; i < 1; i++) {
// Only process the first light's shadow for vertex lighting.
for (uint i = 0; i < 1; i++) {
#else
for (uint i = 0; i < sc_directional_lights(); i++) {
#endif
if (!bool(directional_lights.data[i].mask & instances.data[draw_call.instance_index].layer_mask)) {
continue; //not masked
}
if (!bool(directional_lights.data[i].mask & instances.data[draw_call.instance_index].layer_mask)) {
continue; //not masked
}
if (directional_lights.data[i].bake_mode == LIGHT_BAKE_STATIC && bool(instances.data[draw_call.instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) {
continue; // Statically baked light and object uses lightmap, skip.
}
if (directional_lights.data[i].bake_mode == LIGHT_BAKE_STATIC && bool(instances.data[draw_call.instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) {
continue; // Statically baked light and object uses lightmap, skip.
}
float shadow = 1.0;
float shadow = 1.0;
if (directional_lights.data[i].shadow_opacity > 0.001) {
float depth_z = -vertex.z;
if (directional_lights.data[i].shadow_opacity > 0.001) {
float depth_z = -vertex.z;
vec4 pssm_coord;
float blur_factor;
vec3 light_dir = directional_lights.data[i].direction;
vec3 base_normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp))));
vec4 pssm_coord;
float blur_factor;
vec3 light_dir = directional_lights.data[i].direction;
vec3 base_normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp))));
#define BIAS_FUNC(m_var, m_idx) \
m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \
@ -1465,97 +1489,119 @@ void main() {
normal_bias -= light_dir * dot(light_dir, normal_bias); \
m_var.xyz += normal_bias;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 0)
pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
blur_factor = 1.0;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.y;
;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.z;
} else {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.w;
}
pssm_coord /= pssm_coord.w;
bool blend_split = sc_directional_light_blend_split(i);
float blend_split_weight = blend_split ? 1.0f : 0.0f;
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale * (blur_factor + (1.0 - blur_factor) * blend_split_weight), pssm_coord, scene_data.taa_frame_count);
if (blend_split) {
float pssm_blend;
float blur_factor2;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x - directional_lights.data[i].shadow_split_offsets.x * 0.1, directional_lights.data[i].shadow_split_offsets.x, depth_z);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor2 = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.y;
BIAS_FUNC(v, 0)
pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
blur_factor = 1.0;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y - directional_lights.data[i].shadow_split_offsets.y * 0.1, directional_lights.data[i].shadow_split_offsets.y, depth_z);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor2 = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.z;
blur_factor = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.y;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.z - directional_lights.data[i].shadow_split_offsets.z * 0.1, directional_lights.data[i].shadow_split_offsets.z, depth_z);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor2 = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.w;
blur_factor = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.z;
} else {
pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
blur_factor2 = 1.0;
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.w;
}
pssm_coord /= pssm_coord.w;
float shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale * (blur_factor2 + (1.0 - blur_factor2) * blend_split_weight), pssm_coord, scene_data.taa_frame_count);
shadow = mix(shadow, shadow2, pssm_blend);
}
bool blend_split = sc_directional_light_blend_split(i);
float blend_split_weight = blend_split ? 1.0f : 0.0f;
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale * (blur_factor + (1.0 - blur_factor) * blend_split_weight), pssm_coord, scene_data.taa_frame_count);
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
if (blend_split) {
float pssm_blend;
float blur_factor2;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 1)
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x - directional_lights.data[i].shadow_split_offsets.x * 0.1, directional_lights.data[i].shadow_split_offsets.x, depth_z);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor2 = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.y;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y - directional_lights.data[i].shadow_split_offsets.y * 0.1, directional_lights.data[i].shadow_split_offsets.y, depth_z);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor2 = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.z;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.z - directional_lights.data[i].shadow_split_offsets.z * 0.1, directional_lights.data[i].shadow_split_offsets.z, depth_z);
// Adjust shadow blur with reference to the first split to reduce discrepancy between shadow splits.
blur_factor2 = directional_lights.data[i].shadow_split_offsets.x / directional_lights.data[i].shadow_split_offsets.w;
} else {
pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
blur_factor2 = 1.0;
}
pssm_coord /= pssm_coord.w;
float shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale * (blur_factor2 + (1.0 - blur_factor2) * blend_split_weight), pssm_coord, scene_data.taa_frame_count);
shadow = mix(shadow, shadow2, pssm_blend);
}
#ifdef USE_LIGHTMAP
if (shadowmask_mode == LIGHTMAP_SHADOWMASK_MODE_REPLACE) {
shadow = mix(shadow, shadowmask, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
} else if (shadowmask_mode == LIGHTMAP_SHADOWMASK_MODE_OVERLAY) {
shadow = shadowmask * mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
} else {
#endif
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
#ifdef USE_LIGHTMAP
}
#endif
#ifdef USE_VERTEX_LIGHTING
diffuse_light *= mix(1.0, shadow, diffuse_light_interp.a);
specular_light *= mix(1.0, shadow, specular_light_interp.a);
diffuse_light *= mix(1.0, shadow, diffuse_light_interp.a);
specular_light *= mix(1.0, shadow, specular_light_interp.a);
#endif
#undef BIAS_FUNC
}
if (i < 4) {
shadow0 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << (i * 8);
} else {
shadow1 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << ((i - 4) * 8);
}
}
if (i < 4) {
shadow0 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << (i * 8);
} else {
shadow1 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << ((i - 4) * 8);
}
#ifdef USE_LIGHTMAP
} else { // shadowmask_mode == LIGHTMAP_SHADOWMASK_MODE_ONLY
#ifdef USE_VERTEX_LIGHTING
diffuse_light *= mix(1.0, shadowmask, diffuse_light_interp.a);
specular_light *= mix(1.0, shadowmask, specular_light_interp.a);
#endif
shadow0 |= uint(clamp(shadowmask * 255.0, 0.0, 255.0));
}
#endif // USE_LIGHTMAP
#endif // SHADOWS_DISABLED
#ifndef USE_VERTEX_LIGHTING

View File

@ -246,11 +246,16 @@ directional_lights;
#define LIGHTMAP_FLAG_USE_DIRECTION 1
#define LIGHTMAP_FLAG_USE_SPECULAR_DIRECTION 2
#define LIGHTMAP_SHADOWMASK_MODE_NONE 0
#define LIGHTMAP_SHADOWMASK_MODE_REPLACE 1
#define LIGHTMAP_SHADOWMASK_MODE_OVERLAY 2
#define LIGHTMAP_SHADOWMASK_MODE_ONLY 3
struct Lightmap {
mediump mat3 normal_xform;
vec2 light_texture_size;
float exposure_normalization;
float pad;
uint flags;
};
layout(set = 0, binding = 7, std140) restrict readonly buffer Lightmaps {
@ -330,7 +335,7 @@ layout(set = 1, binding = 4) uniform highp texture2D shadow_atlas;
layout(set = 1, binding = 5) uniform highp texture2D directional_shadow_atlas;
// this needs to change to providing just the lightmap we're using..
layout(set = 1, binding = 6) uniform texture2DArray lightmap_textures[MAX_LIGHTMAP_TEXTURES];
layout(set = 1, binding = 6) uniform texture2DArray lightmap_textures[MAX_LIGHTMAP_TEXTURES * 2];
#ifdef USE_MULTIVIEW
layout(set = 1, binding = 9) uniform highp texture2DArray depth_buffer;

View File

@ -55,12 +55,18 @@ LightStorage::LightStorage() {
if (textures_per_stage <= 256) {
lightmap_textures.resize(32);
shadowmask_textures.resize(32);
} else {
lightmap_textures.resize(1024);
shadowmask_textures.resize(1024);
}
for (int i = 0; i < lightmap_textures.size(); i++) {
lightmap_textures.write[i] = texture_storage->texture_rd_get_default(TextureStorage::DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE);
for (RID &lightmap_texture : lightmap_textures) {
lightmap_texture = texture_storage->texture_rd_get_default(TextureStorage::DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE);
}
for (RID &shadowmask_texture : shadowmask_textures) {
shadowmask_texture = texture_storage->texture_rd_get_default(TextureStorage::DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE);
}
}
@ -2003,6 +2009,64 @@ AABB LightStorage::lightmap_get_aabb(RID p_lightmap) const {
return lm->bounds;
}
void LightStorage::lightmap_set_shadowmask_textures(RID p_lightmap, RID p_shadow) {
TextureStorage *texture_storage = TextureStorage::get_singleton();
Lightmap *lm = lightmap_owner.get_or_null(p_lightmap);
ERR_FAIL_NULL(lm);
// Erase lightmap users from shadow texture.
if (lm->shadow_texture.is_valid()) {
TextureStorage::Texture *t = texture_storage->get_texture(lm->shadow_texture);
if (t) {
t->lightmap_users.erase(p_lightmap);
}
}
TextureStorage::Texture *t = texture_storage->get_texture(p_shadow);
lm->shadow_texture = p_shadow;
RID default_2d_array = texture_storage->texture_rd_get_default(TextureStorage::DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE);
if (!t) {
if (lm->array_index >= 0) {
shadowmask_textures.write[lm->array_index] = default_2d_array;
lm->array_index = -1;
}
return;
}
t->lightmap_users.insert(p_lightmap);
if (lm->array_index < 0) {
// Not in array, try to put in array.
for (int i = 0; i < shadowmask_textures.size(); i++) {
if (shadowmask_textures[i] == default_2d_array) {
lm->array_index = i;
break;
}
}
}
ERR_FAIL_COND_MSG(lm->array_index < 0, vformat("Maximum amount of shadowmasks in use (%d) has been exceeded, shadowmask will not display properly.", shadowmask_textures.size()));
shadowmask_textures.write[lm->array_index] = t->rd_texture;
}
RS::ShadowmaskMode LightStorage::lightmap_get_shadowmask_mode(RID p_lightmap) {
Lightmap *lm = lightmap_owner.get_or_null(p_lightmap);
ERR_FAIL_NULL_V(lm, RS::SHADOWMASK_MODE_NONE);
return lm->shadowmask_mode;
}
void LightStorage::lightmap_set_shadowmask_mode(RID p_lightmap, RS::ShadowmaskMode p_mode) {
Lightmap *lm = lightmap_owner.get_or_null(p_lightmap);
ERR_FAIL_NULL(lm);
lm->shadowmask_mode = p_mode;
}
/* LIGHTMAP INSTANCE */
RID LightStorage::lightmap_instance_create(RID p_lightmap) {

View File

@ -329,6 +329,8 @@ private:
struct Lightmap {
RID light_texture;
RID shadow_texture;
RS::ShadowmaskMode shadowmask_mode = RS::SHADOWMASK_MODE_NONE;
bool uses_spherical_harmonics = false;
bool interior = false;
AABB bounds = AABB(Vector3(), Vector3(1, 1, 1));
@ -356,6 +358,8 @@ private:
mutable RID_Owner<Lightmap, true> lightmap_owner;
Vector<RID> shadowmask_textures;
/* LIGHTMAP INSTANCE */
struct LightmapInstance {
@ -985,6 +989,10 @@ public:
Dependency *lightmap_get_dependency(RID p_lightmap) const;
virtual void lightmap_set_shadowmask_textures(RID p_lightmap, RID p_shadow) override;
virtual RS::ShadowmaskMode lightmap_get_shadowmask_mode(RID p_lightmap) override;
virtual void lightmap_set_shadowmask_mode(RID p_lightmap, RS::ShadowmaskMode p_mode) override;
virtual float lightmap_get_probe_capture_update_speed() const override {
return lightmap_probe_capture_update_speed;
}
@ -1027,6 +1035,12 @@ public:
return lightmap_textures;
}
_FORCE_INLINE_ RID shadowmask_get_texture(RID p_lightmap) const {
const Lightmap *lm = lightmap_owner.get_or_null(p_lightmap);
ERR_FAIL_NULL_V(lm, RID());
return lm->shadow_texture;
}
/* LIGHTMAP INSTANCE */
bool owns_lightmap_instance(RID p_rid) { return lightmap_instance_owner.owns(p_rid); }

View File

@ -489,6 +489,10 @@ public:
FUNC1RC(PackedInt32Array, lightmap_get_probe_capture_bsp_tree, RID)
FUNC1(lightmap_set_probe_capture_update_speed, float)
FUNC2(lightmap_set_shadowmask_textures, RID, RID)
FUNC1R(ShadowmaskMode, lightmap_get_shadowmask_mode, RID)
FUNC2(lightmap_set_shadowmask_mode, RID, ShadowmaskMode)
/* Shadow Atlas */
FUNC0R(RID, shadow_atlas_create)
FUNC3(shadow_atlas_set_size, RID, int, bool)

View File

@ -175,6 +175,10 @@ public:
virtual void lightmap_set_probe_capture_update_speed(float p_speed) = 0;
virtual float lightmap_get_probe_capture_update_speed() const = 0;
virtual void lightmap_set_shadowmask_textures(RID p_lightmap, RID p_shadow) = 0;
virtual RS::ShadowmaskMode lightmap_get_shadowmask_mode(RID p_lightmap) = 0;
virtual void lightmap_set_shadowmask_mode(RID p_lightmap, RS::ShadowmaskMode p_mode) = 0;
/* LIGHTMAP INSTANCE */
virtual RID lightmap_instance_create(RID p_lightmap) = 0;

View File

@ -709,6 +709,13 @@ public:
/* LIGHTMAP */
enum ShadowmaskMode {
SHADOWMASK_MODE_NONE,
SHADOWMASK_MODE_REPLACE,
SHADOWMASK_MODE_OVERLAY,
SHADOWMASK_MODE_ONLY,
};
virtual RID lightmap_create() = 0;
virtual void lightmap_set_textures(RID p_lightmap, RID p_light, bool p_uses_spherical_haromics) = 0;
@ -722,9 +729,12 @@ public:
virtual PackedInt32Array lightmap_get_probe_capture_bsp_tree(RID p_lightmap) const = 0;
virtual void lightmap_set_probe_capture_update_speed(float p_speed) = 0;
virtual void lightmaps_set_bicubic_filter(bool p_enable) = 0;
virtual void lightmap_set_shadowmask_textures(RID p_lightmap, RID p_shadow) = 0;
virtual ShadowmaskMode lightmap_get_shadowmask_mode(RID p_lightmap) = 0;
virtual void lightmap_set_shadowmask_mode(RID p_lightmap, ShadowmaskMode p_mode) = 0;
/* PARTICLES API */
virtual RID particles_create() = 0;