2020-12-12 20:06:59 +08:00
// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
# include "meshoptimizer.h"
# include <assert.h>
# include <float.h>
# include <math.h>
# include <string.h>
# ifndef TRACE
# define TRACE 0
# endif
# if TRACE
# include <stdio.h>
# endif
2020-12-28 08:54:21 +08:00
# if TRACE
# define TRACESTATS(i) stats[i]++;
# else
# define TRACESTATS(i) (void)0
# endif
2021-04-10 13:44:36 +08:00
# define ATTRIBUTES 8
2020-12-12 20:06:59 +08:00
// This work is based on:
// Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. 1997
// Michael Garland. Quadric-based polygonal surface simplification. 1999
// Peter Lindstrom. Out-of-Core Simplification of Large Polygonal Models. 2000
// Matthias Teschner, Bruno Heidelberger, Matthias Mueller, Danat Pomeranets, Markus Gross. Optimized Spatial Hashing for Collision Detection of Deformable Objects. 2003
// Peter Van Sandt, Yannis Chronis, Jignesh M. Patel. Efficiently Searching In-Memory Sorted Arrays: Revenge of the Interpolation Search? 2019
namespace meshopt
{
struct EdgeAdjacency
{
2020-12-28 08:54:21 +08:00
struct Edge
{
unsigned int next ;
unsigned int prev ;
} ;
2020-12-12 20:06:59 +08:00
unsigned int * counts ;
unsigned int * offsets ;
2020-12-28 08:54:21 +08:00
Edge * data ;
2020-12-12 20:06:59 +08:00
} ;
2020-12-28 08:54:21 +08:00
static void prepareEdgeAdjacency ( EdgeAdjacency & adjacency , size_t index_count , size_t vertex_count , meshopt_Allocator & allocator )
2020-12-12 20:06:59 +08:00
{
adjacency . counts = allocator . allocate < unsigned int > ( vertex_count ) ;
adjacency . offsets = allocator . allocate < unsigned int > ( vertex_count ) ;
2020-12-28 08:54:21 +08:00
adjacency . data = allocator . allocate < EdgeAdjacency : : Edge > ( index_count ) ;
}
static void updateEdgeAdjacency ( EdgeAdjacency & adjacency , const unsigned int * indices , size_t index_count , size_t vertex_count , const unsigned int * remap )
{
size_t face_count = index_count / 3 ;
2020-12-12 20:06:59 +08:00
// fill edge counts
memset ( adjacency . counts , 0 , vertex_count * sizeof ( unsigned int ) ) ;
for ( size_t i = 0 ; i < index_count ; + + i )
{
2020-12-28 08:54:21 +08:00
unsigned int v = remap ? remap [ indices [ i ] ] : indices [ i ] ;
assert ( v < vertex_count ) ;
2020-12-12 20:06:59 +08:00
2020-12-28 08:54:21 +08:00
adjacency . counts [ v ] + + ;
2020-12-12 20:06:59 +08:00
}
// fill offset table
unsigned int offset = 0 ;
for ( size_t i = 0 ; i < vertex_count ; + + i )
{
adjacency . offsets [ i ] = offset ;
offset + = adjacency . counts [ i ] ;
}
assert ( offset = = index_count ) ;
// fill edge data
for ( size_t i = 0 ; i < face_count ; + + i )
{
unsigned int a = indices [ i * 3 + 0 ] , b = indices [ i * 3 + 1 ] , c = indices [ i * 3 + 2 ] ;
2020-12-28 08:54:21 +08:00
if ( remap )
{
a = remap [ a ] ;
b = remap [ b ] ;
c = remap [ c ] ;
}
adjacency . data [ adjacency . offsets [ a ] ] . next = b ;
adjacency . data [ adjacency . offsets [ a ] ] . prev = c ;
adjacency . offsets [ a ] + + ;
adjacency . data [ adjacency . offsets [ b ] ] . next = c ;
adjacency . data [ adjacency . offsets [ b ] ] . prev = a ;
adjacency . offsets [ b ] + + ;
adjacency . data [ adjacency . offsets [ c ] ] . next = a ;
adjacency . data [ adjacency . offsets [ c ] ] . prev = b ;
adjacency . offsets [ c ] + + ;
2020-12-12 20:06:59 +08:00
}
// fix offsets that have been disturbed by the previous pass
for ( size_t i = 0 ; i < vertex_count ; + + i )
{
assert ( adjacency . offsets [ i ] > = adjacency . counts [ i ] ) ;
adjacency . offsets [ i ] - = adjacency . counts [ i ] ;
}
}
struct PositionHasher
{
const float * vertex_positions ;
size_t vertex_stride_float ;
size_t hash ( unsigned int index ) const
{
const unsigned int * key = reinterpret_cast < const unsigned int * > ( vertex_positions + index * vertex_stride_float ) ;
// Optimized Spatial Hashing for Collision Detection of Deformable Objects
return ( key [ 0 ] * 73856093 ) ^ ( key [ 1 ] * 19349663 ) ^ ( key [ 2 ] * 83492791 ) ;
}
bool equal ( unsigned int lhs , unsigned int rhs ) const
{
return memcmp ( vertex_positions + lhs * vertex_stride_float , vertex_positions + rhs * vertex_stride_float , sizeof ( float ) * 3 ) = = 0 ;
}
} ;
static size_t hashBuckets2 ( size_t count )
{
size_t buckets = 1 ;
2021-04-18 22:15:43 +08:00
while ( buckets < count + count / 4 )
2020-12-12 20:06:59 +08:00
buckets * = 2 ;
return buckets ;
}
template < typename T , typename Hash >
static T * hashLookup2 ( T * table , size_t buckets , const Hash & hash , const T & key , const T & empty )
{
assert ( buckets > 0 ) ;
assert ( ( buckets & ( buckets - 1 ) ) = = 0 ) ;
size_t hashmod = buckets - 1 ;
size_t bucket = hash . hash ( key ) & hashmod ;
for ( size_t probe = 0 ; probe < = hashmod ; + + probe )
{
T & item = table [ bucket ] ;
if ( item = = empty )
return & item ;
if ( hash . equal ( item , key ) )
return & item ;
// hash collision, quadratic probing
bucket = ( bucket + probe + 1 ) & hashmod ;
}
assert ( false & & " Hash table is full " ) ; // unreachable
return 0 ;
}
static void buildPositionRemap ( unsigned int * remap , unsigned int * wedge , const float * vertex_positions_data , size_t vertex_count , size_t vertex_positions_stride , meshopt_Allocator & allocator )
{
PositionHasher hasher = { vertex_positions_data , vertex_positions_stride / sizeof ( float ) } ;
size_t table_size = hashBuckets2 ( vertex_count ) ;
unsigned int * table = allocator . allocate < unsigned int > ( table_size ) ;
memset ( table , - 1 , table_size * sizeof ( unsigned int ) ) ;
// build forward remap: for each vertex, which other (canonical) vertex does it map to?
// we use position equivalence for this, and remap vertices to other existing vertices
for ( size_t i = 0 ; i < vertex_count ; + + i )
{
unsigned int index = unsigned ( i ) ;
unsigned int * entry = hashLookup2 ( table , table_size , hasher , index , ~ 0u ) ;
if ( * entry = = ~ 0u )
* entry = index ;
remap [ index ] = * entry ;
}
// build wedge table: for each vertex, which other vertex is the next wedge that also maps to the same vertex?
// entries in table form a (cyclic) wedge loop per vertex; for manifold vertices, wedge[i] == remap[i] == i
for ( size_t i = 0 ; i < vertex_count ; + + i )
wedge [ i ] = unsigned ( i ) ;
for ( size_t i = 0 ; i < vertex_count ; + + i )
if ( remap [ i ] ! = i )
{
unsigned int r = remap [ i ] ;
wedge [ i ] = wedge [ r ] ;
wedge [ r ] = unsigned ( i ) ;
}
}
enum VertexKind
{
Kind_Manifold , // not on an attribute seam, not on any boundary
Kind_Border , // not on an attribute seam, has exactly two open edges
Kind_Seam , // on an attribute seam with exactly two attribute seam edges
Kind_Complex , // none of the above; these vertices can move as long as all wedges move to the target vertex
Kind_Locked , // none of the above; these vertices can't move
Kind_Count
} ;
// manifold vertices can collapse onto anything
// border/seam vertices can only be collapsed onto border/seam respectively
// complex vertices can collapse onto complex/locked
// a rule of thumb is that collapsing kind A into kind B preserves the kind B in the target vertex
// for example, while we could collapse Complex into Manifold, this would mean the target vertex isn't Manifold anymore
const unsigned char kCanCollapse [ Kind_Count ] [ Kind_Count ] = {
{ 1 , 1 , 1 , 1 , 1 } ,
{ 0 , 1 , 0 , 0 , 0 } ,
{ 0 , 0 , 1 , 0 , 0 } ,
{ 0 , 0 , 0 , 1 , 1 } ,
{ 0 , 0 , 0 , 0 , 0 } ,
} ;
// if a vertex is manifold or seam, adjoining edges are guaranteed to have an opposite edge
// note that for seam edges, the opposite edge isn't present in the attribute-based topology
// but is present if you consider a position-only mesh variant
const unsigned char kHasOpposite [ Kind_Count ] [ Kind_Count ] = {
{ 1 , 1 , 1 , 0 , 1 } ,
{ 1 , 0 , 1 , 0 , 0 } ,
{ 1 , 1 , 1 , 0 , 1 } ,
{ 0 , 0 , 0 , 0 , 0 } ,
{ 1 , 0 , 1 , 0 , 0 } ,
} ;
static bool hasEdge ( const EdgeAdjacency & adjacency , unsigned int a , unsigned int b )
{
unsigned int count = adjacency . counts [ a ] ;
2020-12-28 08:54:21 +08:00
const EdgeAdjacency : : Edge * edges = adjacency . data + adjacency . offsets [ a ] ;
2020-12-12 20:06:59 +08:00
for ( size_t i = 0 ; i < count ; + + i )
2020-12-28 08:54:21 +08:00
if ( edges [ i ] . next = = b )
2020-12-12 20:06:59 +08:00
return true ;
return false ;
}
static void classifyVertices ( unsigned char * result , unsigned int * loop , unsigned int * loopback , size_t vertex_count , const EdgeAdjacency & adjacency , const unsigned int * remap , const unsigned int * wedge )
{
memset ( loop , - 1 , vertex_count * sizeof ( unsigned int ) ) ;
memset ( loopback , - 1 , vertex_count * sizeof ( unsigned int ) ) ;
// incoming & outgoing open edges: ~0u if no open edges, i if there are more than 1
// note that this is the same data as required in loop[] arrays; loop[] data is only valid for border/seam
// but here it's okay to fill the data out for other types of vertices as well
unsigned int * openinc = loopback ;
unsigned int * openout = loop ;
for ( size_t i = 0 ; i < vertex_count ; + + i )
{
unsigned int vertex = unsigned ( i ) ;
unsigned int count = adjacency . counts [ vertex ] ;
2020-12-28 08:54:21 +08:00
const EdgeAdjacency : : Edge * edges = adjacency . data + adjacency . offsets [ vertex ] ;
2020-12-12 20:06:59 +08:00
for ( size_t j = 0 ; j < count ; + + j )
{
2020-12-28 08:54:21 +08:00
unsigned int target = edges [ j ] . next ;
2020-12-12 20:06:59 +08:00
if ( ! hasEdge ( adjacency , target , vertex ) )
{
openinc [ target ] = ( openinc [ target ] = = ~ 0u ) ? vertex : target ;
openout [ vertex ] = ( openout [ vertex ] = = ~ 0u ) ? target : vertex ;
}
}
}
# if TRACE
2020-12-28 08:54:21 +08:00
size_t stats [ 4 ] = { } ;
2020-12-12 20:06:59 +08:00
# endif
for ( size_t i = 0 ; i < vertex_count ; + + i )
{
if ( remap [ i ] = = i )
{
if ( wedge [ i ] = = i )
{
// no attribute seam, need to check if it's manifold
unsigned int openi = openinc [ i ] , openo = openout [ i ] ;
// note: we classify any vertices with no open edges as manifold
// this is technically incorrect - if 4 triangles share an edge, we'll classify vertices as manifold
// it's unclear if this is a problem in practice
if ( openi = = ~ 0u & & openo = = ~ 0u )
{
result [ i ] = Kind_Manifold ;
}
else if ( openi ! = i & & openo ! = i )
{
result [ i ] = Kind_Border ;
}
else
{
result [ i ] = Kind_Locked ;
2020-12-28 08:54:21 +08:00
TRACESTATS ( 0 ) ;
2020-12-12 20:06:59 +08:00
}
}
else if ( wedge [ wedge [ i ] ] = = i )
{
// attribute seam; need to distinguish between Seam and Locked
unsigned int w = wedge [ i ] ;
unsigned int openiv = openinc [ i ] , openov = openout [ i ] ;
unsigned int openiw = openinc [ w ] , openow = openout [ w ] ;
// seam should have one open half-edge for each vertex, and the edges need to "connect" - point to the same vertex post-remap
if ( openiv ! = ~ 0u & & openiv ! = i & & openov ! = ~ 0u & & openov ! = i & &
openiw ! = ~ 0u & & openiw ! = w & & openow ! = ~ 0u & & openow ! = w )
{
if ( remap [ openiv ] = = remap [ openow ] & & remap [ openov ] = = remap [ openiw ] )
{
result [ i ] = Kind_Seam ;
}
else
{
result [ i ] = Kind_Locked ;
2020-12-28 08:54:21 +08:00
TRACESTATS ( 1 ) ;
2020-12-12 20:06:59 +08:00
}
}
else
{
result [ i ] = Kind_Locked ;
2020-12-28 08:54:21 +08:00
TRACESTATS ( 2 ) ;
2020-12-12 20:06:59 +08:00
}
}
else
{
// more than one vertex maps to this one; we don't have classification available
result [ i ] = Kind_Locked ;
2020-12-28 08:54:21 +08:00
TRACESTATS ( 3 ) ;
2020-12-12 20:06:59 +08:00
}
}
else
{
assert ( remap [ i ] < i ) ;
result [ i ] = result [ remap [ i ] ] ;
}
}
# if TRACE
printf ( " locked: many open edges %d, disconnected seam %d, many seam edges %d, many wedges %d \n " ,
2020-12-28 08:54:21 +08:00
int ( stats [ 0 ] ) , int ( stats [ 1 ] ) , int ( stats [ 2 ] ) , int ( stats [ 3 ] ) ) ;
2020-12-12 20:06:59 +08:00
# endif
}
struct Vector3
{
float x , y , z ;
2021-04-10 13:44:36 +08:00
# if ATTRIBUTES
float a [ ATTRIBUTES ] ;
# endif
2020-12-12 20:06:59 +08:00
} ;
2020-12-28 08:54:21 +08:00
static float rescalePositions ( Vector3 * result , const float * vertex_positions_data , size_t vertex_count , size_t vertex_positions_stride )
2020-12-12 20:06:59 +08:00
{
size_t vertex_stride_float = vertex_positions_stride / sizeof ( float ) ;
float minv [ 3 ] = { FLT_MAX , FLT_MAX , FLT_MAX } ;
float maxv [ 3 ] = { - FLT_MAX , - FLT_MAX , - FLT_MAX } ;
for ( size_t i = 0 ; i < vertex_count ; + + i )
{
const float * v = vertex_positions_data + i * vertex_stride_float ;
2020-12-28 08:54:21 +08:00
if ( result )
{
result [ i ] . x = v [ 0 ] ;
result [ i ] . y = v [ 1 ] ;
result [ i ] . z = v [ 2 ] ;
}
2020-12-12 20:06:59 +08:00
for ( int j = 0 ; j < 3 ; + + j )
{
float vj = v [ j ] ;
minv [ j ] = minv [ j ] > vj ? vj : minv [ j ] ;
maxv [ j ] = maxv [ j ] < vj ? vj : maxv [ j ] ;
}
}
float extent = 0.f ;
extent = ( maxv [ 0 ] - minv [ 0 ] ) < extent ? extent : ( maxv [ 0 ] - minv [ 0 ] ) ;
extent = ( maxv [ 1 ] - minv [ 1 ] ) < extent ? extent : ( maxv [ 1 ] - minv [ 1 ] ) ;
extent = ( maxv [ 2 ] - minv [ 2 ] ) < extent ? extent : ( maxv [ 2 ] - minv [ 2 ] ) ;
2020-12-28 08:54:21 +08:00
if ( result )
2020-12-12 20:06:59 +08:00
{
2020-12-28 08:54:21 +08:00
float scale = extent = = 0 ? 0.f : 1.f / extent ;
for ( size_t i = 0 ; i < vertex_count ; + + i )
{
result [ i ] . x = ( result [ i ] . x - minv [ 0 ] ) * scale ;
result [ i ] . y = ( result [ i ] . y - minv [ 1 ] ) * scale ;
result [ i ] . z = ( result [ i ] . z - minv [ 2 ] ) * scale ;
}
2020-12-12 20:06:59 +08:00
}
2020-12-19 05:56:14 +08:00
2020-12-28 08:54:21 +08:00
return extent ;
2020-12-12 20:06:59 +08:00
}
struct Quadric
{
float a00 , a11 , a22 ;
float a10 , a20 , a21 ;
float b0 , b1 , b2 , c ;
float w ;
2021-04-10 13:44:36 +08:00
# if ATTRIBUTES
float gx [ ATTRIBUTES ] ;
float gy [ ATTRIBUTES ] ;
float gz [ ATTRIBUTES ] ;
float gw [ ATTRIBUTES ] ;
# endif
2020-12-12 20:06:59 +08:00
} ;
struct Collapse
{
unsigned int v0 ;
unsigned int v1 ;
union
{
unsigned int bidi ;
float error ;
unsigned int errorui ;
} ;
} ;
static float normalize ( Vector3 & v )
{
float length = sqrtf ( v . x * v . x + v . y * v . y + v . z * v . z ) ;
if ( length > 0 )
{
v . x / = length ;
v . y / = length ;
v . z / = length ;
}
return length ;
}
static void quadricAdd ( Quadric & Q , const Quadric & R )
{
Q . a00 + = R . a00 ;
Q . a11 + = R . a11 ;
Q . a22 + = R . a22 ;
Q . a10 + = R . a10 ;
Q . a20 + = R . a20 ;
Q . a21 + = R . a21 ;
Q . b0 + = R . b0 ;
Q . b1 + = R . b1 ;
Q . b2 + = R . b2 ;
Q . c + = R . c ;
Q . w + = R . w ;
2021-04-10 13:44:36 +08:00
# if ATTRIBUTES
for ( int k = 0 ; k < ATTRIBUTES ; + + k )
{
Q . gx [ k ] + = R . gx [ k ] ;
Q . gy [ k ] + = R . gy [ k ] ;
Q . gz [ k ] + = R . gz [ k ] ;
Q . gw [ k ] + = R . gw [ k ] ;
}
# endif
2020-12-12 20:06:59 +08:00
}
static float quadricError ( const Quadric & Q , const Vector3 & v )
{
float rx = Q . b0 ;
float ry = Q . b1 ;
float rz = Q . b2 ;
rx + = Q . a10 * v . y ;
ry + = Q . a21 * v . z ;
rz + = Q . a20 * v . x ;
rx * = 2 ;
ry * = 2 ;
rz * = 2 ;
rx + = Q . a00 * v . x ;
ry + = Q . a11 * v . y ;
rz + = Q . a22 * v . z ;
float r = Q . c ;
r + = rx * v . x ;
r + = ry * v . y ;
r + = rz * v . z ;
2021-04-10 13:44:36 +08:00
# if ATTRIBUTES
// see quadricUpdateAttributes for general derivation; here we need to add the parts of (eval(pos) - attr)^2 that depend on attr
for ( int k = 0 ; k < ATTRIBUTES ; + + k )
{
float a = v . a [ k ] ;
r + = a * a * Q . w ;
r - = 2 * a * ( v . x * Q . gx [ k ] + v . y * Q . gy [ k ] + v . z * Q . gz [ k ] + Q . gw [ k ] ) ;
}
# endif
2020-12-12 20:06:59 +08:00
float s = Q . w = = 0.f ? 0.f : 1.f / Q . w ;
return fabsf ( r ) * s ;
}
static void quadricFromPlane ( Quadric & Q , float a , float b , float c , float d , float w )
{
float aw = a * w ;
float bw = b * w ;
float cw = c * w ;
float dw = d * w ;
Q . a00 = a * aw ;
Q . a11 = b * bw ;
Q . a22 = c * cw ;
Q . a10 = a * bw ;
Q . a20 = a * cw ;
Q . a21 = b * cw ;
Q . b0 = a * dw ;
Q . b1 = b * dw ;
Q . b2 = c * dw ;
Q . c = d * dw ;
Q . w = w ;
2021-04-10 13:44:36 +08:00
# if ATTRIBUTES
memset ( Q . gx , 0 , sizeof ( Q . gx ) ) ;
memset ( Q . gy , 0 , sizeof ( Q . gy ) ) ;
memset ( Q . gz , 0 , sizeof ( Q . gz ) ) ;
memset ( Q . gw , 0 , sizeof ( Q . gw ) ) ;
# endif
2020-12-12 20:06:59 +08:00
}
static void quadricFromPoint ( Quadric & Q , float x , float y , float z , float w )
{
// we need to encode (x - X) ^ 2 + (y - Y)^2 + (z - Z)^2 into the quadric
Q . a00 = w ;
Q . a11 = w ;
Q . a22 = w ;
Q . a10 = 0.f ;
Q . a20 = 0.f ;
Q . a21 = 0.f ;
Q . b0 = - 2.f * x * w ;
Q . b1 = - 2.f * y * w ;
Q . b2 = - 2.f * z * w ;
Q . c = ( x * x + y * y + z * z ) * w ;
Q . w = w ;
}
static void quadricFromTriangle ( Quadric & Q , const Vector3 & p0 , const Vector3 & p1 , const Vector3 & p2 , float weight )
{
Vector3 p10 = { p1 . x - p0 . x , p1 . y - p0 . y , p1 . z - p0 . z } ;
Vector3 p20 = { p2 . x - p0 . x , p2 . y - p0 . y , p2 . z - p0 . z } ;
// normal = cross(p1 - p0, p2 - p0)
Vector3 normal = { p10 . y * p20 . z - p10 . z * p20 . y , p10 . z * p20 . x - p10 . x * p20 . z , p10 . x * p20 . y - p10 . y * p20 . x } ;
float area = normalize ( normal ) ;
float distance = normal . x * p0 . x + normal . y * p0 . y + normal . z * p0 . z ;
// we use sqrtf(area) so that the error is scaled linearly; this tends to improve silhouettes
quadricFromPlane ( Q , normal . x , normal . y , normal . z , - distance , sqrtf ( area ) * weight ) ;
}
static void quadricFromTriangleEdge ( Quadric & Q , const Vector3 & p0 , const Vector3 & p1 , const Vector3 & p2 , float weight )
{
Vector3 p10 = { p1 . x - p0 . x , p1 . y - p0 . y , p1 . z - p0 . z } ;
float length = normalize ( p10 ) ;
// p20p = length of projection of p2-p0 onto normalize(p1 - p0)
Vector3 p20 = { p2 . x - p0 . x , p2 . y - p0 . y , p2 . z - p0 . z } ;
float p20p = p20 . x * p10 . x + p20 . y * p10 . y + p20 . z * p10 . z ;
// normal = altitude of triangle from point p2 onto edge p1-p0
Vector3 normal = { p20 . x - p10 . x * p20p , p20 . y - p10 . y * p20p , p20 . z - p10 . z * p20p } ;
normalize ( normal ) ;
float distance = normal . x * p0 . x + normal . y * p0 . y + normal . z * p0 . z ;
// note: the weight is scaled linearly with edge length; this has to match the triangle weight
quadricFromPlane ( Q , normal . x , normal . y , normal . z , - distance , length * weight ) ;
}
2021-04-10 13:44:36 +08:00
# if ATTRIBUTES
static void quadricUpdateAttributes ( Quadric & Q , const Vector3 & p0 , const Vector3 & p1 , const Vector3 & p2 , float w )
{
// for each attribute we want to encode the following function into the quadric:
// (eval(pos) - attr)^2
// where eval(pos) interpolates attribute across the triangle like so:
// eval(pos) = pos.x * gx + pos.y * gy + pos.z * gz + gw
// where gx/gy/gz/gw are gradients
Vector3 p10 = { p1 . x - p0 . x , p1 . y - p0 . y , p1 . z - p0 . z } ;
Vector3 p20 = { p2 . x - p0 . x , p2 . y - p0 . y , p2 . z - p0 . z } ;
// we compute gradients using barycentric coordinates; barycentric coordinates can be computed as follows:
// v = (d11 * d20 - d01 * d21) / denom
// w = (d00 * d21 - d01 * d20) / denom
// u = 1 - v - w
// here v0, v1 are triangle edge vectors, v2 is a vector from point to triangle corner, and dij = dot(vi, vj)
const Vector3 & v0 = p10 ;
const Vector3 & v1 = p20 ;
float d00 = v0 . x * v0 . x + v0 . y * v0 . y + v0 . z * v0 . z ;
float d01 = v0 . x * v1 . x + v0 . y * v1 . y + v0 . z * v1 . z ;
float d11 = v1 . x * v1 . x + v1 . y * v1 . y + v1 . z * v1 . z ;
float denom = d00 * d11 - d01 * d01 ;
float denomr = denom = = 0 ? 0.f : 1.f / denom ;
// precompute gradient factors
// these are derived by directly computing derivative of eval(pos) = a0 * u + a1 * v + a2 * w and factoring out common factors that are shared between attributes
float gx1 = ( d11 * v0 . x - d01 * v1 . x ) * denomr ;
float gx2 = ( d00 * v1 . x - d01 * v0 . x ) * denomr ;
float gy1 = ( d11 * v0 . y - d01 * v1 . y ) * denomr ;
float gy2 = ( d00 * v1 . y - d01 * v0 . y ) * denomr ;
float gz1 = ( d11 * v0 . z - d01 * v1 . z ) * denomr ;
float gz2 = ( d00 * v1 . z - d01 * v0 . z ) * denomr ;
for ( int k = 0 ; k < ATTRIBUTES ; + + k )
{
float a0 = p0 . a [ k ] , a1 = p1 . a [ k ] , a2 = p2 . a [ k ] ;
// compute gradient of eval(pos) for x/y/z/w
// the formulas below are obtained by directly computing derivative of eval(pos) = a0 * u + a1 * v + a2 * w
float gx = gx1 * ( a1 - a0 ) + gx2 * ( a2 - a0 ) ;
float gy = gy1 * ( a1 - a0 ) + gy2 * ( a2 - a0 ) ;
float gz = gz1 * ( a1 - a0 ) + gz2 * ( a2 - a0 ) ;
float gw = a0 - p0 . x * gx - p0 . y * gy - p0 . z * gz ;
// quadric encodes (eval(pos)-attr)^2; this means that the resulting expansion needs to compute, for example, pos.x * pos.y * K
// since quadrics already encode factors for pos.x * pos.y, we can accumulate almost everything in basic quadric fields
Q . a00 + = w * ( gx * gx ) ;
Q . a11 + = w * ( gy * gy ) ;
Q . a22 + = w * ( gz * gz ) ;
Q . a10 + = w * ( gy * gx ) ;
Q . a20 + = w * ( gz * gx ) ;
Q . a21 + = w * ( gz * gy ) ;
Q . b0 + = w * ( gx * gw ) ;
Q . b1 + = w * ( gy * gw ) ;
Q . b2 + = w * ( gz * gw ) ;
Q . c + = w * ( gw * gw ) ;
// the only remaining sum components are ones that depend on attr; these will be addded during error evaluation, see quadricError
Q . gx [ k ] = w * gx ;
Q . gy [ k ] = w * gy ;
Q . gz [ k ] = w * gz ;
Q . gw [ k ] = w * gw ;
# if TRACE > 2
printf ( " attr%d: %e %e %e \n " ,
k ,
( gx * p0 . x + gy * p0 . y + gz * p0 . z + gw - a0 ) ,
( gx * p1 . x + gy * p1 . y + gz * p1 . z + gw - a1 ) ,
( gx * p2 . x + gy * p2 . y + gz * p2 . z + gw - a2 )
) ;
# endif
}
}
# endif
2020-12-12 20:06:59 +08:00
static void fillFaceQuadrics ( Quadric * vertex_quadrics , const unsigned int * indices , size_t index_count , const Vector3 * vertex_positions , const unsigned int * remap )
{
for ( size_t i = 0 ; i < index_count ; i + = 3 )
{
unsigned int i0 = indices [ i + 0 ] ;
unsigned int i1 = indices [ i + 1 ] ;
unsigned int i2 = indices [ i + 2 ] ;
Quadric Q ;
quadricFromTriangle ( Q , vertex_positions [ i0 ] , vertex_positions [ i1 ] , vertex_positions [ i2 ] , 1.f ) ;
2021-04-10 13:44:36 +08:00
# if ATTRIBUTES
quadricUpdateAttributes ( Q , vertex_positions [ i0 ] , vertex_positions [ i1 ] , vertex_positions [ i2 ] , Q . w ) ;
# endif
2020-12-12 20:06:59 +08:00
quadricAdd ( vertex_quadrics [ remap [ i0 ] ] , Q ) ;
quadricAdd ( vertex_quadrics [ remap [ i1 ] ] , Q ) ;
quadricAdd ( vertex_quadrics [ remap [ i2 ] ] , Q ) ;
}
}
static void fillEdgeQuadrics ( Quadric * vertex_quadrics , const unsigned int * indices , size_t index_count , const Vector3 * vertex_positions , const unsigned int * remap , const unsigned char * vertex_kind , const unsigned int * loop , const unsigned int * loopback )
{
for ( size_t i = 0 ; i < index_count ; i + = 3 )
{
static const int next [ 3 ] = { 1 , 2 , 0 } ;
for ( int e = 0 ; e < 3 ; + + e )
{
unsigned int i0 = indices [ i + e ] ;
unsigned int i1 = indices [ i + next [ e ] ] ;
unsigned char k0 = vertex_kind [ i0 ] ;
unsigned char k1 = vertex_kind [ i1 ] ;
// check that either i0 or i1 are border/seam and are on the same edge loop
// note that we need to add the error even for edged that connect e.g. border & locked
// if we don't do that, the adjacent border->border edge won't have correct errors for corners
if ( k0 ! = Kind_Border & & k0 ! = Kind_Seam & & k1 ! = Kind_Border & & k1 ! = Kind_Seam )
continue ;
if ( ( k0 = = Kind_Border | | k0 = = Kind_Seam ) & & loop [ i0 ] ! = i1 )
continue ;
if ( ( k1 = = Kind_Border | | k1 = = Kind_Seam ) & & loopback [ i1 ] ! = i0 )
continue ;
// seam edges should occur twice (i0->i1 and i1->i0) - skip redundant edges
if ( kHasOpposite [ k0 ] [ k1 ] & & remap [ i1 ] > remap [ i0 ] )
continue ;
unsigned int i2 = indices [ i + next [ next [ e ] ] ] ;
// we try hard to maintain border edge geometry; seam edges can move more freely
// due to topological restrictions on collapses, seam quadrics slightly improves collapse structure but aren't critical
const float kEdgeWeightSeam = 1.f ;
const float kEdgeWeightBorder = 10.f ;
float edgeWeight = ( k0 = = Kind_Border | | k1 = = Kind_Border ) ? kEdgeWeightBorder : kEdgeWeightSeam ;
Quadric Q ;
quadricFromTriangleEdge ( Q , vertex_positions [ i0 ] , vertex_positions [ i1 ] , vertex_positions [ i2 ] , edgeWeight ) ;
quadricAdd ( vertex_quadrics [ remap [ i0 ] ] , Q ) ;
quadricAdd ( vertex_quadrics [ remap [ i1 ] ] , Q ) ;
}
}
}
2020-12-28 08:54:21 +08:00
// does triangle ABC flip when C is replaced with D?
static bool hasTriangleFlip ( const Vector3 & a , const Vector3 & b , const Vector3 & c , const Vector3 & d )
{
Vector3 eb = { b . x - a . x , b . y - a . y , b . z - a . z } ;
Vector3 ec = { c . x - a . x , c . y - a . y , c . z - a . z } ;
Vector3 ed = { d . x - a . x , d . y - a . y , d . z - a . z } ;
Vector3 nbc = { eb . y * ec . z - eb . z * ec . y , eb . z * ec . x - eb . x * ec . z , eb . x * ec . y - eb . y * ec . x } ;
Vector3 nbd = { eb . y * ed . z - eb . z * ed . y , eb . z * ed . x - eb . x * ed . z , eb . x * ed . y - eb . y * ed . x } ;
return nbc . x * nbd . x + nbc . y * nbd . y + nbc . z * nbd . z < 0 ;
}
static bool hasTriangleFlips ( const EdgeAdjacency & adjacency , const Vector3 * vertex_positions , const unsigned int * collapse_remap , unsigned int i0 , unsigned int i1 )
{
assert ( collapse_remap [ i0 ] = = i0 ) ;
assert ( collapse_remap [ i1 ] = = i1 ) ;
const Vector3 & v0 = vertex_positions [ i0 ] ;
const Vector3 & v1 = vertex_positions [ i1 ] ;
const EdgeAdjacency : : Edge * edges = & adjacency . data [ adjacency . offsets [ i0 ] ] ;
size_t count = adjacency . counts [ i0 ] ;
for ( size_t i = 0 ; i < count ; + + i )
{
unsigned int a = collapse_remap [ edges [ i ] . next ] ;
unsigned int b = collapse_remap [ edges [ i ] . prev ] ;
// skip triangles that get collapsed
// note: this is mathematically redundant as if either of these is true, the dot product in hasTriangleFlip should be 0
if ( a = = i1 | | b = = i1 )
continue ;
// early-out when at least one triangle flips due to a collapse
if ( hasTriangleFlip ( vertex_positions [ a ] , vertex_positions [ b ] , v0 , v1 ) )
return true ;
}
return false ;
}
2020-12-12 20:06:59 +08:00
static size_t pickEdgeCollapses ( Collapse * collapses , const unsigned int * indices , size_t index_count , const unsigned int * remap , const unsigned char * vertex_kind , const unsigned int * loop )
{
size_t collapse_count = 0 ;
for ( size_t i = 0 ; i < index_count ; i + = 3 )
{
static const int next [ 3 ] = { 1 , 2 , 0 } ;
for ( int e = 0 ; e < 3 ; + + e )
{
unsigned int i0 = indices [ i + e ] ;
unsigned int i1 = indices [ i + next [ e ] ] ;
// this can happen either when input has a zero-length edge, or when we perform collapses for complex
// topology w/seams and collapse a manifold vertex that connects to both wedges onto one of them
// we leave edges like this alone since they may be important for preserving mesh integrity
if ( remap [ i0 ] = = remap [ i1 ] )
continue ;
unsigned char k0 = vertex_kind [ i0 ] ;
unsigned char k1 = vertex_kind [ i1 ] ;
// the edge has to be collapsible in at least one direction
if ( ! ( kCanCollapse [ k0 ] [ k1 ] | kCanCollapse [ k1 ] [ k0 ] ) )
continue ;
// manifold and seam edges should occur twice (i0->i1 and i1->i0) - skip redundant edges
if ( kHasOpposite [ k0 ] [ k1 ] & & remap [ i1 ] > remap [ i0 ] )
continue ;
// two vertices are on a border or a seam, but there's no direct edge between them
// this indicates that they belong to two different edge loops and we should not collapse this edge
// loop[] tracks half edges so we only need to check i0->i1
if ( k0 = = k1 & & ( k0 = = Kind_Border | | k0 = = Kind_Seam ) & & loop [ i0 ] ! = i1 )
continue ;
// edge can be collapsed in either direction - we will pick the one with minimum error
// note: we evaluate error later during collapse ranking, here we just tag the edge as bidirectional
if ( kCanCollapse [ k0 ] [ k1 ] & kCanCollapse [ k1 ] [ k0 ] )
{
Collapse c = { i0 , i1 , { /* bidi= */ 1 } } ;
collapses [ collapse_count + + ] = c ;
}
else
{
// edge can only be collapsed in one direction
unsigned int e0 = kCanCollapse [ k0 ] [ k1 ] ? i0 : i1 ;
unsigned int e1 = kCanCollapse [ k0 ] [ k1 ] ? i1 : i0 ;
Collapse c = { e0 , e1 , { /* bidi= */ 0 } } ;
collapses [ collapse_count + + ] = c ;
}
}
}
return collapse_count ;
}
static void rankEdgeCollapses ( Collapse * collapses , size_t collapse_count , const Vector3 * vertex_positions , const Quadric * vertex_quadrics , const unsigned int * remap )
{
for ( size_t i = 0 ; i < collapse_count ; + + i )
{
Collapse & c = collapses [ i ] ;
unsigned int i0 = c . v0 ;
unsigned int i1 = c . v1 ;
// most edges are bidirectional which means we need to evaluate errors for two collapses
// to keep this code branchless we just use the same edge for unidirectional edges
unsigned int j0 = c . bidi ? i1 : i0 ;
unsigned int j1 = c . bidi ? i0 : i1 ;
const Quadric & qi = vertex_quadrics [ remap [ i0 ] ] ;
const Quadric & qj = vertex_quadrics [ remap [ j0 ] ] ;
float ei = quadricError ( qi , vertex_positions [ i1 ] ) ;
float ej = quadricError ( qj , vertex_positions [ j1 ] ) ;
// pick edge direction with minimal error
c . v0 = ei < = ej ? i0 : j0 ;
c . v1 = ei < = ej ? i1 : j1 ;
c . error = ei < = ej ? ei : ej ;
}
}
# if TRACE > 1
static void dumpEdgeCollapses ( const Collapse * collapses , size_t collapse_count , const unsigned char * vertex_kind )
{
size_t ckinds [ Kind_Count ] [ Kind_Count ] = { } ;
float cerrors [ Kind_Count ] [ Kind_Count ] = { } ;
for ( int k0 = 0 ; k0 < Kind_Count ; + + k0 )
for ( int k1 = 0 ; k1 < Kind_Count ; + + k1 )
cerrors [ k0 ] [ k1 ] = FLT_MAX ;
for ( size_t i = 0 ; i < collapse_count ; + + i )
{
unsigned int i0 = collapses [ i ] . v0 ;
unsigned int i1 = collapses [ i ] . v1 ;
unsigned char k0 = vertex_kind [ i0 ] ;
unsigned char k1 = vertex_kind [ i1 ] ;
ckinds [ k0 ] [ k1 ] + + ;
cerrors [ k0 ] [ k1 ] = ( collapses [ i ] . error < cerrors [ k0 ] [ k1 ] ) ? collapses [ i ] . error : cerrors [ k0 ] [ k1 ] ;
}
for ( int k0 = 0 ; k0 < Kind_Count ; + + k0 )
for ( int k1 = 0 ; k1 < Kind_Count ; + + k1 )
if ( ckinds [ k0 ] [ k1 ] )
2020-12-28 08:54:21 +08:00
printf ( " collapses %d -> %d: %d, min error %e \n " , k0 , k1 , int ( ckinds [ k0 ] [ k1 ] ) , ckinds [ k0 ] [ k1 ] ? sqrtf ( cerrors [ k0 ] [ k1 ] ) : 0.f ) ;
2020-12-12 20:06:59 +08:00
}
static void dumpLockedCollapses ( const unsigned int * indices , size_t index_count , const unsigned char * vertex_kind )
{
size_t locked_collapses [ Kind_Count ] [ Kind_Count ] = { } ;
for ( size_t i = 0 ; i < index_count ; i + = 3 )
{
static const int next [ 3 ] = { 1 , 2 , 0 } ;
for ( int e = 0 ; e < 3 ; + + e )
{
unsigned int i0 = indices [ i + e ] ;
unsigned int i1 = indices [ i + next [ e ] ] ;
unsigned char k0 = vertex_kind [ i0 ] ;
unsigned char k1 = vertex_kind [ i1 ] ;
locked_collapses [ k0 ] [ k1 ] + = ! kCanCollapse [ k0 ] [ k1 ] & & ! kCanCollapse [ k1 ] [ k0 ] ;
}
}
for ( int k0 = 0 ; k0 < Kind_Count ; + + k0 )
for ( int k1 = 0 ; k1 < Kind_Count ; + + k1 )
if ( locked_collapses [ k0 ] [ k1 ] )
printf ( " locked collapses %d -> %d: %d \n " , k0 , k1 , int ( locked_collapses [ k0 ] [ k1 ] ) ) ;
}
# endif
static void sortEdgeCollapses ( unsigned int * sort_order , const Collapse * collapses , size_t collapse_count )
{
const int sort_bits = 11 ;
// fill histogram for counting sort
unsigned int histogram [ 1 < < sort_bits ] ;
memset ( histogram , 0 , sizeof ( histogram ) ) ;
for ( size_t i = 0 ; i < collapse_count ; + + i )
{
// skip sign bit since error is non-negative
unsigned int key = ( collapses [ i ] . errorui < < 1 ) > > ( 32 - sort_bits ) ;
histogram [ key ] + + ;
}
// compute offsets based on histogram data
size_t histogram_sum = 0 ;
for ( size_t i = 0 ; i < 1 < < sort_bits ; + + i )
{
size_t count = histogram [ i ] ;
histogram [ i ] = unsigned ( histogram_sum ) ;
histogram_sum + = count ;
}
assert ( histogram_sum = = collapse_count ) ;
// compute sort order based on offsets
for ( size_t i = 0 ; i < collapse_count ; + + i )
{
// skip sign bit since error is non-negative
unsigned int key = ( collapses [ i ] . errorui < < 1 ) > > ( 32 - sort_bits ) ;
sort_order [ histogram [ key ] + + ] = unsigned ( i ) ;
}
}
2020-12-28 08:54:21 +08:00
static size_t performEdgeCollapses ( unsigned int * collapse_remap , unsigned char * collapse_locked , Quadric * vertex_quadrics , const Collapse * collapses , size_t collapse_count , const unsigned int * collapse_order , const unsigned int * remap , const unsigned int * wedge , const unsigned char * vertex_kind , const Vector3 * vertex_positions , const EdgeAdjacency & adjacency , size_t triangle_collapse_goal , float error_limit , float & result_error )
2020-12-12 20:06:59 +08:00
{
size_t edge_collapses = 0 ;
size_t triangle_collapses = 0 ;
2020-12-28 08:54:21 +08:00
// most collapses remove 2 triangles; use this to establish a bound on the pass in terms of error limit
// note that edge_collapse_goal is an estimate; triangle_collapse_goal will be used to actually limit collapses
size_t edge_collapse_goal = triangle_collapse_goal / 2 ;
# if TRACE
size_t stats [ 4 ] = { } ;
# endif
2020-12-12 20:06:59 +08:00
for ( size_t i = 0 ; i < collapse_count ; + + i )
{
const Collapse & c = collapses [ collapse_order [ i ] ] ;
2020-12-28 08:54:21 +08:00
TRACESTATS ( 0 ) ;
2020-12-12 20:06:59 +08:00
if ( c . error > error_limit )
break ;
2020-12-28 08:54:21 +08:00
if ( triangle_collapses > = triangle_collapse_goal )
2020-12-12 20:06:59 +08:00
break ;
2020-12-28 08:54:21 +08:00
// we limit the error in each pass based on the error of optimal last collapse; since many collapses will be locked
// as they will share vertices with other successfull collapses, we need to increase the acceptable error by some factor
float error_goal = edge_collapse_goal < collapse_count ? 1.5f * collapses [ collapse_order [ edge_collapse_goal ] ] . error : FLT_MAX ;
// on average, each collapse is expected to lock 6 other collapses; to avoid degenerate passes on meshes with odd
// topology, we only abort if we got over 1/6 collapses accordingly.
if ( c . error > error_goal & & triangle_collapses > triangle_collapse_goal / 6 )
2020-12-12 20:06:59 +08:00
break ;
unsigned int i0 = c . v0 ;
unsigned int i1 = c . v1 ;
unsigned int r0 = remap [ i0 ] ;
unsigned int r1 = remap [ i1 ] ;
// we don't collapse vertices that had source or target vertex involved in a collapse
// it's important to not move the vertices twice since it complicates the tracking/remapping logic
// it's important to not move other vertices towards a moved vertex to preserve error since we don't re-rank collapses mid-pass
if ( collapse_locked [ r0 ] | collapse_locked [ r1 ] )
2020-12-28 08:54:21 +08:00
{
TRACESTATS ( 1 ) ;
continue ;
}
if ( hasTriangleFlips ( adjacency , vertex_positions , collapse_remap , r0 , r1 ) )
{
// adjust collapse goal since this collapse is invalid and shouldn't factor into error goal
edge_collapse_goal + + ;
TRACESTATS ( 2 ) ;
2020-12-12 20:06:59 +08:00
continue ;
2020-12-28 08:54:21 +08:00
}
2020-12-12 20:06:59 +08:00
assert ( collapse_remap [ r0 ] = = r0 ) ;
assert ( collapse_remap [ r1 ] = = r1 ) ;
quadricAdd ( vertex_quadrics [ r1 ] , vertex_quadrics [ r0 ] ) ;
if ( vertex_kind [ i0 ] = = Kind_Complex )
{
unsigned int v = i0 ;
do
{
collapse_remap [ v ] = r1 ;
v = wedge [ v ] ;
} while ( v ! = i0 ) ;
}
else if ( vertex_kind [ i0 ] = = Kind_Seam )
{
// remap v0 to v1 and seam pair of v0 to seam pair of v1
unsigned int s0 = wedge [ i0 ] ;
unsigned int s1 = wedge [ i1 ] ;
assert ( s0 ! = i0 & & s1 ! = i1 ) ;
assert ( wedge [ s0 ] = = i0 & & wedge [ s1 ] = = i1 ) ;
collapse_remap [ i0 ] = i1 ;
collapse_remap [ s0 ] = s1 ;
}
else
{
assert ( wedge [ i0 ] = = i0 ) ;
collapse_remap [ i0 ] = i1 ;
}
collapse_locked [ r0 ] = 1 ;
collapse_locked [ r1 ] = 1 ;
// border edges collapse 1 triangle, other edges collapse 2 or more
triangle_collapses + = ( vertex_kind [ i0 ] = = Kind_Border ) ? 1 : 2 ;
edge_collapses + + ;
2020-12-28 08:54:21 +08:00
result_error = result_error < c . error ? c . error : result_error ;
2020-12-12 20:06:59 +08:00
}
2020-12-28 08:54:21 +08:00
# if TRACE
float error_goal_perfect = edge_collapse_goal < collapse_count ? collapses [ collapse_order [ edge_collapse_goal ] ] . error : 0.f ;
printf ( " removed %d triangles, error %e (goal %e); evaluated %d/%d collapses (done %d, skipped %d, invalid %d) \n " ,
int ( triangle_collapses ) , sqrtf ( result_error ) , sqrtf ( error_goal_perfect ) ,
int ( stats [ 0 ] ) , int ( collapse_count ) , int ( edge_collapses ) , int ( stats [ 1 ] ) , int ( stats [ 2 ] ) ) ;
# endif
2020-12-12 20:06:59 +08:00
return edge_collapses ;
}
static size_t remapIndexBuffer ( unsigned int * indices , size_t index_count , const unsigned int * collapse_remap )
{
size_t write = 0 ;
for ( size_t i = 0 ; i < index_count ; i + = 3 )
{
unsigned int v0 = collapse_remap [ indices [ i + 0 ] ] ;
unsigned int v1 = collapse_remap [ indices [ i + 1 ] ] ;
unsigned int v2 = collapse_remap [ indices [ i + 2 ] ] ;
// we never move the vertex twice during a single pass
assert ( collapse_remap [ v0 ] = = v0 ) ;
assert ( collapse_remap [ v1 ] = = v1 ) ;
assert ( collapse_remap [ v2 ] = = v2 ) ;
if ( v0 ! = v1 & & v0 ! = v2 & & v1 ! = v2 )
{
indices [ write + 0 ] = v0 ;
indices [ write + 1 ] = v1 ;
indices [ write + 2 ] = v2 ;
write + = 3 ;
}
}
return write ;
}
static void remapEdgeLoops ( unsigned int * loop , size_t vertex_count , const unsigned int * collapse_remap )
{
for ( size_t i = 0 ; i < vertex_count ; + + i )
{
if ( loop [ i ] ! = ~ 0u )
{
unsigned int l = loop [ i ] ;
unsigned int r = collapse_remap [ l ] ;
// i == r is a special case when the seam edge is collapsed in a direction opposite to where loop goes
loop [ i ] = ( i = = r ) ? loop [ l ] : r ;
}
}
}
struct CellHasher
{
const unsigned int * vertex_ids ;
size_t hash ( unsigned int i ) const
{
unsigned int h = vertex_ids [ i ] ;
// MurmurHash2 finalizer
h ^ = h > > 13 ;
h * = 0x5bd1e995 ;
h ^ = h > > 15 ;
return h ;
}
bool equal ( unsigned int lhs , unsigned int rhs ) const
{
return vertex_ids [ lhs ] = = vertex_ids [ rhs ] ;
}
} ;
struct IdHasher
{
size_t hash ( unsigned int id ) const
{
unsigned int h = id ;
// MurmurHash2 finalizer
h ^ = h > > 13 ;
h * = 0x5bd1e995 ;
h ^ = h > > 15 ;
return h ;
}
bool equal ( unsigned int lhs , unsigned int rhs ) const
{
return lhs = = rhs ;
}
} ;
struct TriangleHasher
{
unsigned int * indices ;
size_t hash ( unsigned int i ) const
{
const unsigned int * tri = indices + i * 3 ;
// Optimized Spatial Hashing for Collision Detection of Deformable Objects
return ( tri [ 0 ] * 73856093 ) ^ ( tri [ 1 ] * 19349663 ) ^ ( tri [ 2 ] * 83492791 ) ;
}
bool equal ( unsigned int lhs , unsigned int rhs ) const
{
const unsigned int * lt = indices + lhs * 3 ;
const unsigned int * rt = indices + rhs * 3 ;
return lt [ 0 ] = = rt [ 0 ] & & lt [ 1 ] = = rt [ 1 ] & & lt [ 2 ] = = rt [ 2 ] ;
}
} ;
static void computeVertexIds ( unsigned int * vertex_ids , const Vector3 * vertex_positions , size_t vertex_count , int grid_size )
{
assert ( grid_size > = 1 & & grid_size < = 1024 ) ;
float cell_scale = float ( grid_size - 1 ) ;
for ( size_t i = 0 ; i < vertex_count ; + + i )
{
const Vector3 & v = vertex_positions [ i ] ;
int xi = int ( v . x * cell_scale + 0.5f ) ;
int yi = int ( v . y * cell_scale + 0.5f ) ;
int zi = int ( v . z * cell_scale + 0.5f ) ;
vertex_ids [ i ] = ( xi < < 20 ) | ( yi < < 10 ) | zi ;
}
}
static size_t countTriangles ( const unsigned int * vertex_ids , const unsigned int * indices , size_t index_count )
{
size_t result = 0 ;
for ( size_t i = 0 ; i < index_count ; i + = 3 )
{
unsigned int id0 = vertex_ids [ indices [ i + 0 ] ] ;
unsigned int id1 = vertex_ids [ indices [ i + 1 ] ] ;
unsigned int id2 = vertex_ids [ indices [ i + 2 ] ] ;
result + = ( id0 ! = id1 ) & ( id0 ! = id2 ) & ( id1 ! = id2 ) ;
}
return result ;
}
static size_t fillVertexCells ( unsigned int * table , size_t table_size , unsigned int * vertex_cells , const unsigned int * vertex_ids , size_t vertex_count )
{
CellHasher hasher = { vertex_ids } ;
memset ( table , - 1 , table_size * sizeof ( unsigned int ) ) ;
size_t result = 0 ;
for ( size_t i = 0 ; i < vertex_count ; + + i )
{
unsigned int * entry = hashLookup2 ( table , table_size , hasher , unsigned ( i ) , ~ 0u ) ;
if ( * entry = = ~ 0u )
{
* entry = unsigned ( i ) ;
vertex_cells [ i ] = unsigned ( result + + ) ;
}
else
{
vertex_cells [ i ] = vertex_cells [ * entry ] ;
}
}
return result ;
}
static size_t countVertexCells ( unsigned int * table , size_t table_size , const unsigned int * vertex_ids , size_t vertex_count )
{
IdHasher hasher ;
memset ( table , - 1 , table_size * sizeof ( unsigned int ) ) ;
size_t result = 0 ;
for ( size_t i = 0 ; i < vertex_count ; + + i )
{
unsigned int id = vertex_ids [ i ] ;
unsigned int * entry = hashLookup2 ( table , table_size , hasher , id , ~ 0u ) ;
result + = ( * entry = = ~ 0u ) ;
* entry = id ;
}
return result ;
}
static void fillCellQuadrics ( Quadric * cell_quadrics , const unsigned int * indices , size_t index_count , const Vector3 * vertex_positions , const unsigned int * vertex_cells )
{
for ( size_t i = 0 ; i < index_count ; i + = 3 )
{
unsigned int i0 = indices [ i + 0 ] ;
unsigned int i1 = indices [ i + 1 ] ;
unsigned int i2 = indices [ i + 2 ] ;
unsigned int c0 = vertex_cells [ i0 ] ;
unsigned int c1 = vertex_cells [ i1 ] ;
unsigned int c2 = vertex_cells [ i2 ] ;
bool single_cell = ( c0 = = c1 ) & ( c0 = = c2 ) ;
Quadric Q ;
quadricFromTriangle ( Q , vertex_positions [ i0 ] , vertex_positions [ i1 ] , vertex_positions [ i2 ] , single_cell ? 3.f : 1.f ) ;
if ( single_cell )
{
quadricAdd ( cell_quadrics [ c0 ] , Q ) ;
}
else
{
quadricAdd ( cell_quadrics [ c0 ] , Q ) ;
quadricAdd ( cell_quadrics [ c1 ] , Q ) ;
quadricAdd ( cell_quadrics [ c2 ] , Q ) ;
}
}
}
static void fillCellQuadrics ( Quadric * cell_quadrics , const Vector3 * vertex_positions , size_t vertex_count , const unsigned int * vertex_cells )
{
for ( size_t i = 0 ; i < vertex_count ; + + i )
{
unsigned int c = vertex_cells [ i ] ;
const Vector3 & v = vertex_positions [ i ] ;
Quadric Q ;
quadricFromPoint ( Q , v . x , v . y , v . z , 1.f ) ;
quadricAdd ( cell_quadrics [ c ] , Q ) ;
}
}
static void fillCellRemap ( unsigned int * cell_remap , float * cell_errors , size_t cell_count , const unsigned int * vertex_cells , const Quadric * cell_quadrics , const Vector3 * vertex_positions , size_t vertex_count )
{
memset ( cell_remap , - 1 , cell_count * sizeof ( unsigned int ) ) ;
for ( size_t i = 0 ; i < vertex_count ; + + i )
{
unsigned int cell = vertex_cells [ i ] ;
float error = quadricError ( cell_quadrics [ cell ] , vertex_positions [ i ] ) ;
if ( cell_remap [ cell ] = = ~ 0u | | cell_errors [ cell ] > error )
{
cell_remap [ cell ] = unsigned ( i ) ;
cell_errors [ cell ] = error ;
}
}
}
static size_t filterTriangles ( unsigned int * destination , unsigned int * tritable , size_t tritable_size , const unsigned int * indices , size_t index_count , const unsigned int * vertex_cells , const unsigned int * cell_remap )
{
TriangleHasher hasher = { destination } ;
memset ( tritable , - 1 , tritable_size * sizeof ( unsigned int ) ) ;
size_t result = 0 ;
for ( size_t i = 0 ; i < index_count ; i + = 3 )
{
unsigned int c0 = vertex_cells [ indices [ i + 0 ] ] ;
unsigned int c1 = vertex_cells [ indices [ i + 1 ] ] ;
unsigned int c2 = vertex_cells [ indices [ i + 2 ] ] ;
if ( c0 ! = c1 & & c0 ! = c2 & & c1 ! = c2 )
{
unsigned int a = cell_remap [ c0 ] ;
unsigned int b = cell_remap [ c1 ] ;
unsigned int c = cell_remap [ c2 ] ;
if ( b < a & & b < c )
{
unsigned int t = a ;
a = b , b = c , c = t ;
}
else if ( c < a & & c < b )
{
unsigned int t = c ;
c = b , b = a , a = t ;
}
destination [ result * 3 + 0 ] = a ;
destination [ result * 3 + 1 ] = b ;
destination [ result * 3 + 2 ] = c ;
unsigned int * entry = hashLookup2 ( tritable , tritable_size , hasher , unsigned ( result ) , ~ 0u ) ;
if ( * entry = = ~ 0u )
* entry = unsigned ( result + + ) ;
}
}
return result * 3 ;
}
static float interpolate ( float y , float x0 , float y0 , float x1 , float y1 , float x2 , float y2 )
{
// three point interpolation from "revenge of interpolation search" paper
float num = ( y1 - y ) * ( x1 - x2 ) * ( x1 - x0 ) * ( y2 - y0 ) ;
float den = ( y2 - y ) * ( x1 - x2 ) * ( y0 - y1 ) + ( y0 - y ) * ( x1 - x0 ) * ( y1 - y2 ) ;
return x1 + num / den ;
}
} // namespace meshopt
# ifndef NDEBUG
unsigned char * meshopt_simplifyDebugKind = 0 ;
unsigned int * meshopt_simplifyDebugLoop = 0 ;
unsigned int * meshopt_simplifyDebugLoopBack = 0 ;
# endif
2020-12-28 08:54:21 +08:00
size_t meshopt_simplify ( unsigned int * destination , const unsigned int * indices , size_t index_count , const float * vertex_positions_data , size_t vertex_count , size_t vertex_positions_stride , size_t target_index_count , float target_error , float * out_result_error )
2021-04-10 13:44:36 +08:00
{
return meshopt_simplifyWithAttributes ( destination , indices , index_count , vertex_positions_data , vertex_count , vertex_positions_stride , target_index_count , target_error , out_result_error , 0 , 0 , 0 ) ;
}
size_t meshopt_simplifyWithAttributes ( unsigned int * destination , const unsigned int * indices , size_t index_count , const float * vertex_data , size_t vertex_count , size_t vertex_stride , size_t target_index_count , float target_error , float * out_result_error , const float * attributes , const float * attribute_weights , size_t attribute_count )
2020-12-12 20:06:59 +08:00
{
using namespace meshopt ;
assert ( index_count % 3 = = 0 ) ;
2021-04-10 13:44:36 +08:00
assert ( vertex_stride > 0 & & vertex_stride < = 256 ) ;
assert ( vertex_stride % sizeof ( float ) = = 0 ) ;
2020-12-12 20:06:59 +08:00
assert ( target_index_count < = index_count ) ;
2021-04-10 13:44:36 +08:00
assert ( attribute_count < = ATTRIBUTES ) ;
2020-12-12 20:06:59 +08:00
meshopt_Allocator allocator ;
unsigned int * result = destination ;
// build adjacency information
EdgeAdjacency adjacency = { } ;
2020-12-28 08:54:21 +08:00
prepareEdgeAdjacency ( adjacency , index_count , vertex_count , allocator ) ;
updateEdgeAdjacency ( adjacency , indices , index_count , vertex_count , NULL ) ;
2020-12-12 20:06:59 +08:00
// build position remap that maps each vertex to the one with identical position
unsigned int * remap = allocator . allocate < unsigned int > ( vertex_count ) ;
unsigned int * wedge = allocator . allocate < unsigned int > ( vertex_count ) ;
2021-04-10 13:44:36 +08:00
buildPositionRemap ( remap , wedge , vertex_data , vertex_count , vertex_stride , allocator ) ;
2020-12-12 20:06:59 +08:00
// classify vertices; vertex kind determines collapse rules, see kCanCollapse
unsigned char * vertex_kind = allocator . allocate < unsigned char > ( vertex_count ) ;
unsigned int * loop = allocator . allocate < unsigned int > ( vertex_count ) ;
unsigned int * loopback = allocator . allocate < unsigned int > ( vertex_count ) ;
classifyVertices ( vertex_kind , loop , loopback , vertex_count , adjacency , remap , wedge ) ;
# if TRACE
size_t unique_positions = 0 ;
for ( size_t i = 0 ; i < vertex_count ; + + i )
unique_positions + = remap [ i ] = = i ;
printf ( " position remap: %d vertices => %d positions \n " , int ( vertex_count ) , int ( unique_positions ) ) ;
size_t kinds [ Kind_Count ] = { } ;
for ( size_t i = 0 ; i < vertex_count ; + + i )
kinds [ vertex_kind [ i ] ] + = remap [ i ] = = i ;
printf ( " kinds: manifold %d, border %d, seam %d, complex %d, locked %d \n " ,
int ( kinds [ Kind_Manifold ] ) , int ( kinds [ Kind_Border ] ) , int ( kinds [ Kind_Seam ] ) , int ( kinds [ Kind_Complex ] ) , int ( kinds [ Kind_Locked ] ) ) ;
# endif
Vector3 * vertex_positions = allocator . allocate < Vector3 > ( vertex_count ) ;
2021-04-10 13:44:36 +08:00
rescalePositions ( vertex_positions , vertex_data , vertex_count , vertex_stride ) ;
# if ATTRIBUTES
for ( size_t i = 0 ; i < vertex_count ; + + i )
{
memset ( vertex_positions [ i ] . a , 0 , sizeof ( vertex_positions [ i ] . a ) ) ;
for ( size_t k = 0 ; k < attribute_count ; + + k )
{
float a = attributes [ i * attribute_count + k ] ;
vertex_positions [ i ] . a [ k ] = a * attribute_weights [ k ] ;
}
}
# endif
2020-12-12 20:06:59 +08:00
Quadric * vertex_quadrics = allocator . allocate < Quadric > ( vertex_count ) ;
memset ( vertex_quadrics , 0 , vertex_count * sizeof ( Quadric ) ) ;
fillFaceQuadrics ( vertex_quadrics , indices , index_count , vertex_positions , remap ) ;
fillEdgeQuadrics ( vertex_quadrics , indices , index_count , vertex_positions , remap , vertex_kind , loop , loopback ) ;
if ( result ! = indices )
memcpy ( result , indices , index_count * sizeof ( unsigned int ) ) ;
# if TRACE
size_t pass_count = 0 ;
# endif
Collapse * edge_collapses = allocator . allocate < Collapse > ( index_count ) ;
unsigned int * collapse_order = allocator . allocate < unsigned int > ( index_count ) ;
unsigned int * collapse_remap = allocator . allocate < unsigned int > ( vertex_count ) ;
unsigned char * collapse_locked = allocator . allocate < unsigned char > ( vertex_count ) ;
size_t result_count = index_count ;
2020-12-28 08:54:21 +08:00
float result_error = 0 ;
2020-12-12 20:06:59 +08:00
// target_error input is linear; we need to adjust it to match quadricError units
float error_limit = target_error * target_error ;
while ( result_count > target_index_count )
{
2020-12-28 08:54:21 +08:00
// note: throughout the simplification process adjacency structure reflects welded topology for result-in-progress
updateEdgeAdjacency ( adjacency , result , result_count , vertex_count , remap ) ;
2020-12-12 20:06:59 +08:00
size_t edge_collapse_count = pickEdgeCollapses ( edge_collapses , result , result_count , remap , vertex_kind , loop ) ;
// no edges can be collapsed any more due to topology restrictions
if ( edge_collapse_count = = 0 )
break ;
rankEdgeCollapses ( edge_collapses , edge_collapse_count , vertex_positions , vertex_quadrics , remap ) ;
# if TRACE > 1
dumpEdgeCollapses ( edge_collapses , edge_collapse_count , vertex_kind ) ;
# endif
sortEdgeCollapses ( collapse_order , edge_collapses , edge_collapse_count ) ;
size_t triangle_collapse_goal = ( result_count - target_index_count ) / 3 ;
for ( size_t i = 0 ; i < vertex_count ; + + i )
collapse_remap [ i ] = unsigned ( i ) ;
memset ( collapse_locked , 0 , vertex_count ) ;
2020-12-28 08:54:21 +08:00
# if TRACE
printf ( " pass %d: " , int ( pass_count + + ) ) ;
# endif
size_t collapses = performEdgeCollapses ( collapse_remap , collapse_locked , vertex_quadrics , edge_collapses , edge_collapse_count , collapse_order , remap , wedge , vertex_kind , vertex_positions , adjacency , triangle_collapse_goal , error_limit , result_error ) ;
2020-12-12 20:06:59 +08:00
// no edges can be collapsed any more due to hitting the error limit or triangle collapse limit
if ( collapses = = 0 )
break ;
remapEdgeLoops ( loop , vertex_count , collapse_remap ) ;
remapEdgeLoops ( loopback , vertex_count , collapse_remap ) ;
size_t new_count = remapIndexBuffer ( result , result_count , collapse_remap ) ;
assert ( new_count < result_count ) ;
result_count = new_count ;
}
# if TRACE
2020-12-28 08:54:21 +08:00
printf ( " result: %d triangles, error: %e; total %d passes \n " , int ( result_count ) , sqrtf ( result_error ) , int ( pass_count ) ) ;
2020-12-12 20:06:59 +08:00
# endif
# if TRACE > 1
dumpLockedCollapses ( result , result_count , vertex_kind ) ;
# endif
# ifndef NDEBUG
if ( meshopt_simplifyDebugKind )
memcpy ( meshopt_simplifyDebugKind , vertex_kind , vertex_count ) ;
if ( meshopt_simplifyDebugLoop )
memcpy ( meshopt_simplifyDebugLoop , loop , vertex_count * sizeof ( unsigned int ) ) ;
if ( meshopt_simplifyDebugLoopBack )
memcpy ( meshopt_simplifyDebugLoopBack , loopback , vertex_count * sizeof ( unsigned int ) ) ;
# endif
2020-12-28 08:54:21 +08:00
// result_error is quadratic; we need to remap it back to linear
if ( out_result_error )
2021-04-10 13:44:36 +08:00
{
2020-12-28 08:54:21 +08:00
* out_result_error = sqrtf ( result_error ) ;
2021-04-10 13:44:36 +08:00
}
2020-12-28 08:54:21 +08:00
2020-12-12 20:06:59 +08:00
return result_count ;
}
2021-01-10 02:04:09 +08:00
size_t meshopt_simplifySloppy ( unsigned int * destination , const unsigned int * indices , size_t index_count , const float * vertex_positions_data , size_t vertex_count , size_t vertex_positions_stride , size_t target_index_count , float target_error , float * out_result_error )
2020-12-12 20:06:59 +08:00
{
using namespace meshopt ;
assert ( index_count % 3 = = 0 ) ;
assert ( vertex_positions_stride > 0 & & vertex_positions_stride < = 256 ) ;
assert ( vertex_positions_stride % sizeof ( float ) = = 0 ) ;
assert ( target_index_count < = index_count ) ;
// we expect to get ~2 triangles/vertex in the output
size_t target_cell_count = target_index_count / 6 ;
meshopt_Allocator allocator ;
Vector3 * vertex_positions = allocator . allocate < Vector3 > ( vertex_count ) ;
rescalePositions ( vertex_positions , vertex_positions_data , vertex_count , vertex_positions_stride ) ;
// find the optimal grid size using guided binary search
# if TRACE
printf ( " source: %d vertices, %d triangles \n " , int ( vertex_count ) , int ( index_count / 3 ) ) ;
printf ( " target: %d cells, %d triangles \n " , int ( target_cell_count ) , int ( target_index_count / 3 ) ) ;
# endif
unsigned int * vertex_ids = allocator . allocate < unsigned int > ( vertex_count ) ;
const int kInterpolationPasses = 5 ;
// invariant: # of triangles in min_grid <= target_count
2021-01-10 02:04:09 +08:00
int min_grid = int ( 1.f / ( target_error < 1e-3 f ? 1e-3 f : target_error ) ) ;
2020-12-12 20:06:59 +08:00
int max_grid = 1025 ;
size_t min_triangles = 0 ;
size_t max_triangles = index_count / 3 ;
2021-01-10 02:04:09 +08:00
// when we're error-limited, we compute the triangle count for the min. size; this accelerates convergence and provides the correct answer when we can't use a larger grid
if ( min_grid > 1 )
{
computeVertexIds ( vertex_ids , vertex_positions , vertex_count , min_grid ) ;
min_triangles = countTriangles ( vertex_ids , indices , index_count ) ;
}
2020-12-12 20:06:59 +08:00
// instead of starting in the middle, let's guess as to what the answer might be! triangle count usually grows as a square of grid size...
int next_grid_size = int ( sqrtf ( float ( target_cell_count ) ) + 0.5f ) ;
for ( int pass = 0 ; pass < 10 + kInterpolationPasses ; + + pass )
{
2021-01-10 02:04:09 +08:00
if ( min_triangles > = target_index_count / 3 | | max_grid - min_grid < = 1 )
break ;
2020-12-12 20:06:59 +08:00
// we clamp the prediction of the grid size to make sure that the search converges
int grid_size = next_grid_size ;
grid_size = ( grid_size < = min_grid ) ? min_grid + 1 : ( grid_size > = max_grid ) ? max_grid - 1 : grid_size ;
computeVertexIds ( vertex_ids , vertex_positions , vertex_count , grid_size ) ;
size_t triangles = countTriangles ( vertex_ids , indices , index_count ) ;
# if TRACE
printf ( " pass %d (%s): grid size %d, triangles %d, %s \n " ,
pass , ( pass = = 0 ) ? " guess " : ( pass < = kInterpolationPasses ) ? " lerp " : " binary " ,
grid_size , int ( triangles ) ,
( triangles < = target_index_count / 3 ) ? " under " : " over " ) ;
# endif
float tip = interpolate ( float ( target_index_count / 3 ) , float ( min_grid ) , float ( min_triangles ) , float ( grid_size ) , float ( triangles ) , float ( max_grid ) , float ( max_triangles ) ) ;
if ( triangles < = target_index_count / 3 )
{
min_grid = grid_size ;
min_triangles = triangles ;
}
else
{
max_grid = grid_size ;
max_triangles = triangles ;
}
// we start by using interpolation search - it usually converges faster
// however, interpolation search has a worst case of O(N) so we switch to binary search after a few iterations which converges in O(logN)
next_grid_size = ( pass < kInterpolationPasses ) ? int ( tip + 0.5f ) : ( min_grid + max_grid ) / 2 ;
}
if ( min_triangles = = 0 )
2021-01-10 02:04:09 +08:00
{
if ( out_result_error )
* out_result_error = 1.f ;
2020-12-12 20:06:59 +08:00
return 0 ;
2021-01-10 02:04:09 +08:00
}
2020-12-12 20:06:59 +08:00
// build vertex->cell association by mapping all vertices with the same quantized position to the same cell
size_t table_size = hashBuckets2 ( vertex_count ) ;
unsigned int * table = allocator . allocate < unsigned int > ( table_size ) ;
unsigned int * vertex_cells = allocator . allocate < unsigned int > ( vertex_count ) ;
computeVertexIds ( vertex_ids , vertex_positions , vertex_count , min_grid ) ;
size_t cell_count = fillVertexCells ( table , table_size , vertex_cells , vertex_ids , vertex_count ) ;
// build a quadric for each target cell
Quadric * cell_quadrics = allocator . allocate < Quadric > ( cell_count ) ;
memset ( cell_quadrics , 0 , cell_count * sizeof ( Quadric ) ) ;
fillCellQuadrics ( cell_quadrics , indices , index_count , vertex_positions , vertex_cells ) ;
// for each target cell, find the vertex with the minimal error
unsigned int * cell_remap = allocator . allocate < unsigned int > ( cell_count ) ;
float * cell_errors = allocator . allocate < float > ( cell_count ) ;
fillCellRemap ( cell_remap , cell_errors , cell_count , vertex_cells , cell_quadrics , vertex_positions , vertex_count ) ;
2021-01-10 02:04:09 +08:00
// compute error
float result_error = 0.f ;
for ( size_t i = 0 ; i < cell_count ; + + i )
result_error = result_error < cell_errors [ i ] ? cell_errors [ i ] : result_error ;
2020-12-12 20:06:59 +08:00
// collapse triangles!
// note that we need to filter out triangles that we've already output because we very frequently generate redundant triangles between cells :(
size_t tritable_size = hashBuckets2 ( min_triangles ) ;
unsigned int * tritable = allocator . allocate < unsigned int > ( tritable_size ) ;
size_t write = filterTriangles ( destination , tritable , tritable_size , indices , index_count , vertex_cells , cell_remap ) ;
# if TRACE
2021-01-10 02:04:09 +08:00
printf ( " result: %d cells, %d triangles (%d unfiltered), error %e \n " , int ( cell_count ) , int ( write / 3 ) , int ( min_triangles ) , sqrtf ( result_error ) ) ;
2020-12-12 20:06:59 +08:00
# endif
2021-01-10 02:04:09 +08:00
if ( out_result_error )
* out_result_error = sqrtf ( result_error ) ;
2020-12-12 20:06:59 +08:00
return write ;
}
size_t meshopt_simplifyPoints ( unsigned int * destination , const float * vertex_positions_data , size_t vertex_count , size_t vertex_positions_stride , size_t target_vertex_count )
{
using namespace meshopt ;
assert ( vertex_positions_stride > 0 & & vertex_positions_stride < = 256 ) ;
assert ( vertex_positions_stride % sizeof ( float ) = = 0 ) ;
assert ( target_vertex_count < = vertex_count ) ;
size_t target_cell_count = target_vertex_count ;
if ( target_cell_count = = 0 )
return 0 ;
meshopt_Allocator allocator ;
Vector3 * vertex_positions = allocator . allocate < Vector3 > ( vertex_count ) ;
rescalePositions ( vertex_positions , vertex_positions_data , vertex_count , vertex_positions_stride ) ;
// find the optimal grid size using guided binary search
# if TRACE
printf ( " source: %d vertices \n " , int ( vertex_count ) ) ;
printf ( " target: %d cells \n " , int ( target_cell_count ) ) ;
# endif
unsigned int * vertex_ids = allocator . allocate < unsigned int > ( vertex_count ) ;
size_t table_size = hashBuckets2 ( vertex_count ) ;
unsigned int * table = allocator . allocate < unsigned int > ( table_size ) ;
const int kInterpolationPasses = 5 ;
// invariant: # of vertices in min_grid <= target_count
int min_grid = 0 ;
int max_grid = 1025 ;
size_t min_vertices = 0 ;
size_t max_vertices = vertex_count ;
// instead of starting in the middle, let's guess as to what the answer might be! triangle count usually grows as a square of grid size...
int next_grid_size = int ( sqrtf ( float ( target_cell_count ) ) + 0.5f ) ;
for ( int pass = 0 ; pass < 10 + kInterpolationPasses ; + + pass )
{
assert ( min_vertices < target_vertex_count ) ;
assert ( max_grid - min_grid > 1 ) ;
// we clamp the prediction of the grid size to make sure that the search converges
int grid_size = next_grid_size ;
grid_size = ( grid_size < = min_grid ) ? min_grid + 1 : ( grid_size > = max_grid ) ? max_grid - 1 : grid_size ;
computeVertexIds ( vertex_ids , vertex_positions , vertex_count , grid_size ) ;
size_t vertices = countVertexCells ( table , table_size , vertex_ids , vertex_count ) ;
# if TRACE
printf ( " pass %d (%s): grid size %d, vertices %d, %s \n " ,
pass , ( pass = = 0 ) ? " guess " : ( pass < = kInterpolationPasses ) ? " lerp " : " binary " ,
grid_size , int ( vertices ) ,
( vertices < = target_vertex_count ) ? " under " : " over " ) ;
# endif
float tip = interpolate ( float ( target_vertex_count ) , float ( min_grid ) , float ( min_vertices ) , float ( grid_size ) , float ( vertices ) , float ( max_grid ) , float ( max_vertices ) ) ;
if ( vertices < = target_vertex_count )
{
min_grid = grid_size ;
min_vertices = vertices ;
}
else
{
max_grid = grid_size ;
max_vertices = vertices ;
}
if ( vertices = = target_vertex_count | | max_grid - min_grid < = 1 )
break ;
// we start by using interpolation search - it usually converges faster
// however, interpolation search has a worst case of O(N) so we switch to binary search after a few iterations which converges in O(logN)
next_grid_size = ( pass < kInterpolationPasses ) ? int ( tip + 0.5f ) : ( min_grid + max_grid ) / 2 ;
}
if ( min_vertices = = 0 )
return 0 ;
// build vertex->cell association by mapping all vertices with the same quantized position to the same cell
unsigned int * vertex_cells = allocator . allocate < unsigned int > ( vertex_count ) ;
computeVertexIds ( vertex_ids , vertex_positions , vertex_count , min_grid ) ;
size_t cell_count = fillVertexCells ( table , table_size , vertex_cells , vertex_ids , vertex_count ) ;
// build a quadric for each target cell
Quadric * cell_quadrics = allocator . allocate < Quadric > ( cell_count ) ;
memset ( cell_quadrics , 0 , cell_count * sizeof ( Quadric ) ) ;
fillCellQuadrics ( cell_quadrics , vertex_positions , vertex_count , vertex_cells ) ;
// for each target cell, find the vertex with the minimal error
unsigned int * cell_remap = allocator . allocate < unsigned int > ( cell_count ) ;
float * cell_errors = allocator . allocate < float > ( cell_count ) ;
fillCellRemap ( cell_remap , cell_errors , cell_count , vertex_cells , cell_quadrics , vertex_positions , vertex_count ) ;
// copy results to the output
assert ( cell_count < = target_vertex_count ) ;
memcpy ( destination , cell_remap , sizeof ( unsigned int ) * cell_count ) ;
# if TRACE
printf ( " result: %d cells \n " , int ( cell_count ) ) ;
# endif
return cell_count ;
}
2020-12-28 08:54:21 +08:00
float meshopt_simplifyScale ( const float * vertex_positions , size_t vertex_count , size_t vertex_positions_stride )
{
using namespace meshopt ;
assert ( vertex_positions_stride > 0 & & vertex_positions_stride < = 256 ) ;
assert ( vertex_positions_stride % sizeof ( float ) = = 0 ) ;
float extent = rescalePositions ( NULL , vertex_positions , vertex_count , vertex_positions_stride ) ;
return extent ;
}