godot/servers/rendering/rendering_device.h

1442 lines
56 KiB
C++
Raw Normal View History

/**************************************************************************/
/* rendering_device.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef RENDERING_DEVICE_H
#define RENDERING_DEVICE_H
#include "core/object/class_db.h"
#include "core/object/worker_thread_pool.h"
#include "core/os/thread_safe.h"
#include "core/templates/local_vector.h"
#include "core/templates/oa_hash_map.h"
#include "core/templates/rid_owner.h"
#include "core/variant/typed_array.h"
#include "servers/display_server.h"
#include "servers/rendering/rendering_device.h"
#include "servers/rendering/rendering_device_commons.h"
#include "servers/rendering/rendering_device_driver.h"
#include "servers/rendering/rendering_device_graph.h"
class RDTextureFormat;
class RDTextureView;
class RDAttachmentFormat;
class RDSamplerState;
class RDVertexAttribute;
class RDShaderSource;
class RDShaderSPIRV;
2022-09-01 01:24:04 +08:00
class RDUniform;
class RDPipelineRasterizationState;
class RDPipelineMultisampleState;
class RDPipelineDepthStencilState;
class RDPipelineColorBlendState;
class RDFramebufferPass;
class RDPipelineSpecializationConstant;
class RenderingDevice : public RenderingDeviceCommons {
GDCLASS(RenderingDevice, Object)
_THREAD_SAFE_CLASS_
public:
2021-03-22 18:04:55 +08:00
enum DeviceFamily {
DEVICE_UNKNOWN,
DEVICE_OPENGL,
DEVICE_VULKAN,
DEVICE_DIRECTX,
};
enum ShaderLanguage {
SHADER_LANGUAGE_GLSL,
SHADER_LANGUAGE_HLSL
};
2021-03-22 18:04:55 +08:00
enum SubgroupOperations {
SUBGROUP_BASIC_BIT = 1,
SUBGROUP_VOTE_BIT = 2,
SUBGROUP_ARITHMETIC_BIT = 4,
SUBGROUP_BALLOT_BIT = 8,
SUBGROUP_SHUFFLE_BIT = 16,
SUBGROUP_SHUFFLE_RELATIVE_BIT = 32,
SUBGROUP_CLUSTERED_BIT = 64,
SUBGROUP_QUAD_BIT = 128,
};
struct Capabilities {
// main device info
DeviceFamily device_family = DEVICE_UNKNOWN;
uint32_t version_major = 1;
uint32_t version_minor = 0;
2021-03-22 18:04:55 +08:00
};
typedef int64_t DrawListID;
typedef int64_t ComputeListID;
typedef String (*ShaderSPIRVGetCacheKeyFunction)(const RenderingDevice *p_render_device);
typedef Vector<uint8_t> (*ShaderCompileToSPIRVFunction)(ShaderStage p_stage, const String &p_source_code, ShaderLanguage p_language, String *r_error, const RenderingDevice *p_render_device);
typedef Vector<uint8_t> (*ShaderCacheFunction)(ShaderStage p_stage, const String &p_source_code, ShaderLanguage p_language);
typedef void (*InvalidationCallback)(void *);
private:
static ShaderCompileToSPIRVFunction compile_to_spirv_function;
static ShaderCacheFunction cache_function;
static ShaderSPIRVGetCacheKeyFunction get_spirv_cache_key_function;
static RenderingDevice *singleton;
Capabilities device_capabilities;
RenderingDeviceDriver *driver = nullptr; // Owned by the context.
protected:
static void _bind_methods();
#ifndef DISABLE_DEPRECATED
RID _shader_create_from_bytecode_bind_compat_79606(const Vector<uint8_t> &p_shader_binary);
static void _bind_compatibility_methods();
#endif
/***************************/
/**** ID INFRASTRUCTURE ****/
/***************************/
public:
//base numeric ID for all types
enum {
INVALID_FORMAT_ID = -1
};
enum IDType {
ID_TYPE_FRAMEBUFFER_FORMAT,
ID_TYPE_VERTEX_FORMAT,
ID_TYPE_DRAW_LIST,
ID_TYPE_COMPUTE_LIST = 4,
ID_TYPE_MAX,
ID_BASE_SHIFT = 58, // 5 bits for ID types.
ID_MASK = (ID_BASE_SHIFT - 1),
};
private:
HashMap<RID, HashSet<RID>> dependency_map; // IDs to IDs that depend on it.
HashMap<RID, HashSet<RID>> reverse_dependency_map; // Same as above, but in reverse.
void _add_dependency(RID p_id, RID p_depends_on);
void _free_dependencies(RID p_id);
private:
/***************************/
/**** BUFFER MANAGEMENT ****/
/***************************/
// These are temporary buffers on CPU memory that hold
// the information until the CPU fetches it and places it
// either on GPU buffers, or images (textures). It ensures
// updates are properly synchronized with whatever the
// GPU is doing.
//
// The logic here is as follows, only 3 of these
// blocks are created at the beginning (one per frame)
// they can each belong to a frame (assigned to current when
// used) and they can only be reused after the same frame is
// recycled.
//
// When CPU requires to allocate more than what is available,
// more of these buffers are created. If a limit is reached,
// then a fence will ensure will wait for blocks allocated
// in previous frames are processed. If that fails, then
// another fence will ensure everything pending for the current
// frame is processed (effectively stalling).
//
// See the comments in the code to understand better how it works.
struct StagingBufferBlock {
RDD::BufferID driver_id;
uint64_t frame_used = 0;
uint32_t fill_amount = 0;
};
Vector<StagingBufferBlock> staging_buffer_blocks;
int staging_buffer_current = 0;
uint32_t staging_buffer_block_size = 0;
uint64_t staging_buffer_max_size = 0;
bool staging_buffer_used = false;
enum StagingRequiredAction {
STAGING_REQUIRED_ACTION_NONE,
STAGING_REQUIRED_ACTION_FLUSH_CURRENT,
STAGING_REQUIRED_ACTION_FLUSH_OLDER
};
Error _staging_buffer_allocate(uint32_t p_amount, uint32_t p_required_align, uint32_t &r_alloc_offset, uint32_t &r_alloc_size, StagingRequiredAction &r_required_action, bool p_can_segment = true);
void _staging_buffer_execute_required_action(StagingRequiredAction p_required_action);
Error _insert_staging_block();
struct Buffer {
RDD::BufferID driver_id;
uint32_t size = 0;
BitField<RDD::BufferUsageBits> usage;
RDG::ResourceTracker *draw_tracker = nullptr;
};
Buffer *_get_buffer_from_owner(RID p_buffer);
Error _buffer_update(Buffer *p_buffer, RID p_buffer_id, size_t p_offset, const uint8_t *p_data, size_t p_data_size, bool p_use_draw_queue = false, uint32_t p_required_align = 32);
RID_Owner<Buffer> uniform_buffer_owner;
RID_Owner<Buffer> storage_buffer_owner;
RID_Owner<Buffer> texture_buffer_owner;
public:
Error buffer_copy(RID p_src_buffer, RID p_dst_buffer, uint32_t p_src_offset, uint32_t p_dst_offset, uint32_t p_size);
Error buffer_update(RID p_buffer, uint32_t p_offset, uint32_t p_size, const void *p_data);
Error buffer_clear(RID p_buffer, uint32_t p_offset, uint32_t p_size);
Vector<uint8_t> buffer_get_data(RID p_buffer, uint32_t p_offset = 0, uint32_t p_size = 0); // This causes stall, only use to retrieve large buffers for saving.
/*****************/
/**** TEXTURE ****/
/*****************/
// In modern APIs, the concept of textures may not exist;
// instead there is the image (the memory pretty much,
// the view (how the memory is interpreted) and the
// sampler (how it's sampled from the shader).
//
// Texture here includes the first two stages, but
// It's possible to create textures sharing the image
// but with different views. The main use case for this
// is textures that can be read as both SRGB/Linear,
// or slices of a texture (a mipmap, a layer, a 3D slice)
// for a framebuffer to render into it.
struct Texture {
RDD::TextureID driver_id;
TextureType type = TEXTURE_TYPE_MAX;
DataFormat format = DATA_FORMAT_MAX;
TextureSamples samples = TEXTURE_SAMPLES_MAX;
TextureSliceType slice_type = TEXTURE_SLICE_MAX;
Rect2i slice_rect;
uint32_t width = 0;
uint32_t height = 0;
uint32_t depth = 0;
uint32_t layers = 0;
uint32_t mipmaps = 0;
uint32_t usage_flags = 0;
uint32_t base_mipmap = 0;
uint32_t base_layer = 0;
Vector<DataFormat> allowed_shared_formats;
bool is_resolve_buffer = false;
bool has_initial_data = false;
BitField<RDD::TextureAspectBits> read_aspect_flags;
BitField<RDD::TextureAspectBits> barrier_aspect_flags;
bool bound = false; // Bound to framebuffer.
RID owner;
RDG::ResourceTracker *draw_tracker = nullptr;
HashMap<Rect2i, RDG::ResourceTracker *> slice_trackers;
RDD::TextureSubresourceRange barrier_range() const {
RDD::TextureSubresourceRange r;
r.aspect = barrier_aspect_flags;
r.base_mipmap = base_mipmap;
r.mipmap_count = mipmaps;
r.base_layer = base_layer;
r.layer_count = layers;
return r;
}
};
RID_Owner<Texture> texture_owner;
uint32_t texture_upload_region_size_px = 0;
Vector<uint8_t> _texture_get_data(Texture *tex, uint32_t p_layer, bool p_2d = false);
Error _texture_update(RID p_texture, uint32_t p_layer, const Vector<uint8_t> &p_data, bool p_use_setup_queue, bool p_validate_can_update);
public:
struct TextureView {
DataFormat format_override = DATA_FORMAT_MAX; // // Means, use same as format.
TextureSwizzle swizzle_r = TEXTURE_SWIZZLE_R;
TextureSwizzle swizzle_g = TEXTURE_SWIZZLE_G;
TextureSwizzle swizzle_b = TEXTURE_SWIZZLE_B;
TextureSwizzle swizzle_a = TEXTURE_SWIZZLE_A;
bool operator==(const TextureView &p_other) const {
if (format_override != p_other.format_override) {
return false;
} else if (swizzle_r != p_other.swizzle_r) {
return false;
} else if (swizzle_g != p_other.swizzle_g) {
return false;
} else if (swizzle_b != p_other.swizzle_b) {
return false;
} else if (swizzle_a != p_other.swizzle_a) {
return false;
} else {
return true;
}
}
};
RID texture_create(const TextureFormat &p_format, const TextureView &p_view, const Vector<Vector<uint8_t>> &p_data = Vector<Vector<uint8_t>>());
RID texture_create_shared(const TextureView &p_view, RID p_with_texture);
RID texture_create_from_extension(TextureType p_type, DataFormat p_format, TextureSamples p_samples, BitField<RenderingDevice::TextureUsageBits> p_usage, uint64_t p_image, uint64_t p_width, uint64_t p_height, uint64_t p_depth, uint64_t p_layers);
RID texture_create_shared_from_slice(const TextureView &p_view, RID p_with_texture, uint32_t p_layer, uint32_t p_mipmap, uint32_t p_mipmaps = 1, TextureSliceType p_slice_type = TEXTURE_SLICE_2D, uint32_t p_layers = 0);
Error texture_update(RID p_texture, uint32_t p_layer, const Vector<uint8_t> &p_data);
Vector<uint8_t> texture_get_data(RID p_texture, uint32_t p_layer); // CPU textures will return immediately, while GPU textures will most likely force a flush
bool texture_is_format_supported_for_usage(DataFormat p_format, BitField<TextureUsageBits> p_usage) const;
bool texture_is_shared(RID p_texture);
bool texture_is_valid(RID p_texture);
TextureFormat texture_get_format(RID p_texture);
Size2i texture_size(RID p_texture);
#ifndef DISABLE_DEPRECATED
uint64_t texture_get_native_handle(RID p_texture);
#endif
2019-08-27 04:43:58 +08:00
Error texture_copy(RID p_from_texture, RID p_to_texture, const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_size, uint32_t p_src_mipmap, uint32_t p_dst_mipmap, uint32_t p_src_layer, uint32_t p_dst_layer);
Error texture_clear(RID p_texture, const Color &p_color, uint32_t p_base_mipmap, uint32_t p_mipmaps, uint32_t p_base_layer, uint32_t p_layers);
Error texture_resolve_multisample(RID p_from_texture, RID p_to_texture);
/************************/
/**** DRAW LISTS (I) ****/
/************************/
enum InitialAction {
INITIAL_ACTION_LOAD,
INITIAL_ACTION_CLEAR,
INITIAL_ACTION_DISCARD,
INITIAL_ACTION_MAX,
#ifndef DISABLE_DEPRECATED
INITIAL_ACTION_CLEAR_REGION = INITIAL_ACTION_CLEAR,
INITIAL_ACTION_CLEAR_REGION_CONTINUE = INITIAL_ACTION_LOAD,
INITIAL_ACTION_KEEP = INITIAL_ACTION_LOAD,
INITIAL_ACTION_DROP = INITIAL_ACTION_DISCARD,
INITIAL_ACTION_CONTINUE = INITIAL_ACTION_LOAD,
#endif
};
enum FinalAction {
FINAL_ACTION_STORE,
FINAL_ACTION_DISCARD,
FINAL_ACTION_MAX,
#ifndef DISABLE_DEPRECATED
FINAL_ACTION_READ = FINAL_ACTION_STORE,
FINAL_ACTION_CONTINUE = FINAL_ACTION_STORE,
#endif
};
2019-10-04 04:39:08 +08:00
/*********************/
/**** FRAMEBUFFER ****/
/*********************/
// In modern APIs, generally, framebuffers work similar to how they
// do in OpenGL, with the exception that
// the "format" (RDD::RenderPassID) is not dynamic
// and must be more or less the same as the one
// used for the render pipelines.
struct AttachmentFormat {
enum { UNUSED_ATTACHMENT = 0xFFFFFFFF };
DataFormat format;
TextureSamples samples;
uint32_t usage_flags;
AttachmentFormat() {
format = DATA_FORMAT_R8G8B8A8_UNORM;
samples = TEXTURE_SAMPLES_1;
usage_flags = 0;
}
};
struct FramebufferPass {
Vector<int32_t> color_attachments;
Vector<int32_t> input_attachments;
Vector<int32_t> resolve_attachments;
Vector<int32_t> preserve_attachments;
int32_t depth_attachment = ATTACHMENT_UNUSED;
int32_t vrs_attachment = ATTACHMENT_UNUSED; // density map for VRS, only used if supported
};
typedef int64_t FramebufferFormatID;
private:
struct FramebufferFormatKey {
Vector<AttachmentFormat> attachments;
Vector<FramebufferPass> passes;
uint32_t view_count = 1;
bool operator<(const FramebufferFormatKey &p_key) const {
if (view_count != p_key.view_count) {
return view_count < p_key.view_count;
}
uint32_t pass_size = passes.size();
uint32_t key_pass_size = p_key.passes.size();
if (pass_size != key_pass_size) {
return pass_size < key_pass_size;
}
const FramebufferPass *pass_ptr = passes.ptr();
const FramebufferPass *key_pass_ptr = p_key.passes.ptr();
for (uint32_t i = 0; i < pass_size; i++) {
{ // Compare color attachments.
uint32_t attachment_size = pass_ptr[i].color_attachments.size();
uint32_t key_attachment_size = key_pass_ptr[i].color_attachments.size();
if (attachment_size != key_attachment_size) {
return attachment_size < key_attachment_size;
}
const int32_t *pass_attachment_ptr = pass_ptr[i].color_attachments.ptr();
const int32_t *key_pass_attachment_ptr = key_pass_ptr[i].color_attachments.ptr();
for (uint32_t j = 0; j < attachment_size; j++) {
if (pass_attachment_ptr[j] != key_pass_attachment_ptr[j]) {
return pass_attachment_ptr[j] < key_pass_attachment_ptr[j];
}
}
}
{ // Compare input attachments.
uint32_t attachment_size = pass_ptr[i].input_attachments.size();
uint32_t key_attachment_size = key_pass_ptr[i].input_attachments.size();
if (attachment_size != key_attachment_size) {
return attachment_size < key_attachment_size;
}
const int32_t *pass_attachment_ptr = pass_ptr[i].input_attachments.ptr();
const int32_t *key_pass_attachment_ptr = key_pass_ptr[i].input_attachments.ptr();
for (uint32_t j = 0; j < attachment_size; j++) {
if (pass_attachment_ptr[j] != key_pass_attachment_ptr[j]) {
return pass_attachment_ptr[j] < key_pass_attachment_ptr[j];
}
}
}
{ // Compare resolve attachments.
uint32_t attachment_size = pass_ptr[i].resolve_attachments.size();
uint32_t key_attachment_size = key_pass_ptr[i].resolve_attachments.size();
if (attachment_size != key_attachment_size) {
return attachment_size < key_attachment_size;
}
const int32_t *pass_attachment_ptr = pass_ptr[i].resolve_attachments.ptr();
const int32_t *key_pass_attachment_ptr = key_pass_ptr[i].resolve_attachments.ptr();
for (uint32_t j = 0; j < attachment_size; j++) {
if (pass_attachment_ptr[j] != key_pass_attachment_ptr[j]) {
return pass_attachment_ptr[j] < key_pass_attachment_ptr[j];
}
}
}
{ // Compare preserve attachments.
uint32_t attachment_size = pass_ptr[i].preserve_attachments.size();
uint32_t key_attachment_size = key_pass_ptr[i].preserve_attachments.size();
if (attachment_size != key_attachment_size) {
return attachment_size < key_attachment_size;
}
const int32_t *pass_attachment_ptr = pass_ptr[i].preserve_attachments.ptr();
const int32_t *key_pass_attachment_ptr = key_pass_ptr[i].preserve_attachments.ptr();
for (uint32_t j = 0; j < attachment_size; j++) {
if (pass_attachment_ptr[j] != key_pass_attachment_ptr[j]) {
return pass_attachment_ptr[j] < key_pass_attachment_ptr[j];
}
}
}
if (pass_ptr[i].depth_attachment != key_pass_ptr[i].depth_attachment) {
return pass_ptr[i].depth_attachment < key_pass_ptr[i].depth_attachment;
}
}
int as = attachments.size();
int bs = p_key.attachments.size();
if (as != bs) {
return as < bs;
}
const AttachmentFormat *af_a = attachments.ptr();
const AttachmentFormat *af_b = p_key.attachments.ptr();
for (int i = 0; i < as; i++) {
const AttachmentFormat &a = af_a[i];
const AttachmentFormat &b = af_b[i];
if (a.format != b.format) {
return a.format < b.format;
}
if (a.samples != b.samples) {
return a.samples < b.samples;
}
if (a.usage_flags != b.usage_flags) {
return a.usage_flags < b.usage_flags;
}
}
return false; // Equal.
}
};
RDD::RenderPassID _render_pass_create(const Vector<AttachmentFormat> &p_attachments, const Vector<FramebufferPass> &p_passes, InitialAction p_initial_action, FinalAction p_final_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, uint32_t p_view_count = 1, Vector<TextureSamples> *r_samples = nullptr);
// This is a cache and it's never freed, it ensures
// IDs for a given format are always unique.
RBMap<FramebufferFormatKey, FramebufferFormatID> framebuffer_format_cache;
struct FramebufferFormat {
const RBMap<FramebufferFormatKey, FramebufferFormatID>::Element *E;
RDD::RenderPassID render_pass; // Here for constructing shaders, never used, see section (7.2. Render Pass Compatibility from Vulkan spec).
Vector<TextureSamples> pass_samples;
uint32_t view_count = 1; // Number of views.
};
HashMap<FramebufferFormatID, FramebufferFormat> framebuffer_formats;
struct Framebuffer {
FramebufferFormatID format_id;
struct VersionKey {
InitialAction initial_color_action;
FinalAction final_color_action;
InitialAction initial_depth_action;
FinalAction final_depth_action;
uint32_t view_count;
bool operator<(const VersionKey &p_key) const {
if (initial_color_action == p_key.initial_color_action) {
if (final_color_action == p_key.final_color_action) {
if (initial_depth_action == p_key.initial_depth_action) {
if (final_depth_action == p_key.final_depth_action) {
return view_count < p_key.view_count;
} else {
return final_depth_action < p_key.final_depth_action;
}
} else {
return initial_depth_action < p_key.initial_depth_action;
}
} else {
return final_color_action < p_key.final_color_action;
}
} else {
return initial_color_action < p_key.initial_color_action;
}
}
};
uint32_t storage_mask = 0;
Vector<RID> texture_ids;
InvalidationCallback invalidated_callback = nullptr;
void *invalidated_callback_userdata = nullptr;
struct Version {
RDD::FramebufferID framebuffer;
RDD::RenderPassID render_pass; // This one is owned.
uint32_t subpass_count = 1;
};
RBMap<VersionKey, Version> framebuffers;
Size2 size;
uint32_t view_count;
};
RID_Owner<Framebuffer> framebuffer_owner;
public:
// This ID is warranted to be unique for the same formats, does not need to be freed
FramebufferFormatID framebuffer_format_create(const Vector<AttachmentFormat> &p_format, uint32_t p_view_count = 1);
FramebufferFormatID framebuffer_format_create_multipass(const Vector<AttachmentFormat> &p_attachments, const Vector<FramebufferPass> &p_passes, uint32_t p_view_count = 1);
FramebufferFormatID framebuffer_format_create_empty(TextureSamples p_samples = TEXTURE_SAMPLES_1);
TextureSamples framebuffer_format_get_texture_samples(FramebufferFormatID p_format, uint32_t p_pass = 0);
RID framebuffer_create(const Vector<RID> &p_texture_attachments, FramebufferFormatID p_format_check = INVALID_ID, uint32_t p_view_count = 1);
RID framebuffer_create_multipass(const Vector<RID> &p_texture_attachments, const Vector<FramebufferPass> &p_passes, FramebufferFormatID p_format_check = INVALID_ID, uint32_t p_view_count = 1);
RID framebuffer_create_empty(const Size2i &p_size, TextureSamples p_samples = TEXTURE_SAMPLES_1, FramebufferFormatID p_format_check = INVALID_ID);
bool framebuffer_is_valid(RID p_framebuffer) const;
void framebuffer_set_invalidation_callback(RID p_framebuffer, InvalidationCallback p_callback, void *p_userdata);
FramebufferFormatID framebuffer_get_format(RID p_framebuffer);
/*****************/
/**** SAMPLER ****/
/*****************/
private:
RID_Owner<RDD::SamplerID> sampler_owner;
public:
RID sampler_create(const SamplerState &p_state);
bool sampler_is_format_supported_for_filter(DataFormat p_format, SamplerFilter p_sampler_filter) const;
/**********************/
/**** VERTEX ARRAY ****/
/**********************/
typedef int64_t VertexFormatID;
private:
// Vertex buffers in Vulkan are similar to how
// they work in OpenGL, except that instead of
// an attribute index, there is a buffer binding
// index (for binding the buffers in real-time)
// and a location index (what is used in the shader).
//
// This mapping is done here internally, and it's not
// exposed.
RID_Owner<Buffer> vertex_buffer_owner;
struct VertexDescriptionKey {
Vector<VertexAttribute> vertex_formats;
bool operator==(const VertexDescriptionKey &p_key) const {
int vdc = vertex_formats.size();
int vdck = p_key.vertex_formats.size();
if (vdc != vdck) {
return false;
} else {
const VertexAttribute *a_ptr = vertex_formats.ptr();
const VertexAttribute *b_ptr = p_key.vertex_formats.ptr();
for (int i = 0; i < vdc; i++) {
const VertexAttribute &a = a_ptr[i];
const VertexAttribute &b = b_ptr[i];
if (a.location != b.location) {
return false;
}
if (a.offset != b.offset) {
return false;
}
if (a.format != b.format) {
return false;
}
if (a.stride != b.stride) {
return false;
}
if (a.frequency != b.frequency) {
return false;
}
}
return true; // They are equal.
}
}
uint32_t hash() const {
int vdc = vertex_formats.size();
uint32_t h = hash_murmur3_one_32(vdc);
const VertexAttribute *ptr = vertex_formats.ptr();
for (int i = 0; i < vdc; i++) {
const VertexAttribute &vd = ptr[i];
h = hash_murmur3_one_32(vd.location, h);
h = hash_murmur3_one_32(vd.offset, h);
h = hash_murmur3_one_32(vd.format, h);
h = hash_murmur3_one_32(vd.stride, h);
h = hash_murmur3_one_32(vd.frequency, h);
}
return hash_fmix32(h);
}
};
struct VertexDescriptionHash {
static _FORCE_INLINE_ uint32_t hash(const VertexDescriptionKey &p_key) {
return p_key.hash();
}
};
// This is a cache and it's never freed, it ensures that
// ID used for a specific format always remain the same.
HashMap<VertexDescriptionKey, VertexFormatID, VertexDescriptionHash> vertex_format_cache;
struct VertexDescriptionCache {
Vector<VertexAttribute> vertex_formats;
RDD::VertexFormatID driver_id;
};
HashMap<VertexFormatID, VertexDescriptionCache> vertex_formats;
struct VertexArray {
RID buffer;
VertexFormatID description;
int vertex_count = 0;
uint32_t max_instances_allowed = 0;
Vector<RDD::BufferID> buffers; // Not owned, just referenced.
Vector<RDG::ResourceTracker *> draw_trackers; // Not owned, just referenced.
Vector<uint64_t> offsets;
HashSet<RID> untracked_buffers;
};
RID_Owner<VertexArray> vertex_array_owner;
struct IndexBuffer : public Buffer {
uint32_t max_index = 0; // Used for validation.
uint32_t index_count = 0;
IndexBufferFormat format = INDEX_BUFFER_FORMAT_UINT16;
bool supports_restart_indices = false;
};
RID_Owner<IndexBuffer> index_buffer_owner;
struct IndexArray {
uint32_t max_index = 0; // Remember the maximum index here too, for validation.
RDD::BufferID driver_id; // Not owned, inherited from index buffer.
RDG::ResourceTracker *draw_tracker = nullptr; // Not owned, inherited from index buffer.
uint32_t offset = 0;
uint32_t indices = 0;
IndexBufferFormat format = INDEX_BUFFER_FORMAT_UINT16;
bool supports_restart_indices = false;
};
RID_Owner<IndexArray> index_array_owner;
public:
RID vertex_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data = Vector<uint8_t>(), bool p_use_as_storage = false);
// This ID is warranted to be unique for the same formats, does not need to be freed
VertexFormatID vertex_format_create(const Vector<VertexAttribute> &p_vertex_descriptions);
RID vertex_array_create(uint32_t p_vertex_count, VertexFormatID p_vertex_format, const Vector<RID> &p_src_buffers, const Vector<uint64_t> &p_offsets = Vector<uint64_t>());
RID index_buffer_create(uint32_t p_size_indices, IndexBufferFormat p_format, const Vector<uint8_t> &p_data = Vector<uint8_t>(), bool p_use_restart_indices = false);
RID index_array_create(RID p_index_buffer, uint32_t p_index_offset, uint32_t p_index_count);
/****************/
/**** SHADER ****/
/****************/
// Some APIs (e.g., Vulkan) specifies a really complex behavior for the application
// in order to tell when descriptor sets need to be re-bound (or not).
// "When binding a descriptor set (see Descriptor Set Binding) to set
// number N, if the previously bound descriptor sets for sets zero
// through N-1 were all bound using compatible pipeline layouts,
// then performing this binding does not disturb any of the lower numbered sets.
// If, additionally, the previous bound descriptor set for set N was
// bound using a pipeline layout compatible for set N, then the bindings
// in sets numbered greater than N are also not disturbed."
// As a result, we need to figure out quickly when something is no longer "compatible".
// in order to avoid costly rebinds.
2021-03-22 18:04:55 +08:00
private:
struct UniformSetFormat {
Vector<ShaderUniform> uniforms;
_FORCE_INLINE_ bool operator<(const UniformSetFormat &p_other) const {
if (uniforms.size() != p_other.uniforms.size()) {
return uniforms.size() < p_other.uniforms.size();
}
for (int i = 0; i < uniforms.size(); i++) {
if (uniforms[i] < p_other.uniforms[i]) {
return true;
} else if (p_other.uniforms[i] < uniforms[i]) {
return false;
}
}
return false;
}
};
// Always grows, never shrinks, ensuring unique IDs, but we assume
// the amount of formats will never be a problem, as the amount of shaders
// in a game is limited.
RBMap<UniformSetFormat, uint32_t> uniform_set_format_cache;
// Shaders in Vulkan are just pretty much
// precompiled blocks of SPIR-V bytecode. They
// are most likely not really compiled to host
// assembly until a pipeline is created.
//
// When supplying the shaders, this implementation
// will use the reflection abilities of glslang to
// understand and cache everything required to
// create and use the descriptor sets (Vulkan's
// biggest pain).
//
// Additionally, hashes are created for every set
// to do quick validation and ensuring the user
// does not submit something invalid.
struct Shader : public ShaderDescription {
String name; // Used for debug.
RDD::ShaderID driver_id;
uint32_t layout_hash = 0;
BitField<RDD::PipelineStageBits> stage_bits;
Vector<uint32_t> set_formats;
};
String _shader_uniform_debug(RID p_shader, int p_set = -1);
RID_Owner<Shader> shader_owner;
#ifndef DISABLE_DEPRECATED
public:
enum BarrierMask{
BARRIER_MASK_VERTEX = 1,
BARRIER_MASK_FRAGMENT = 8,
BARRIER_MASK_COMPUTE = 2,
BARRIER_MASK_TRANSFER = 4,
BARRIER_MASK_RASTER = BARRIER_MASK_VERTEX | BARRIER_MASK_FRAGMENT, // 9,
BARRIER_MASK_ALL_BARRIERS = 0x7FFF, // all flags set
BARRIER_MASK_NO_BARRIER = 0x8000,
};
void barrier(BitField<BarrierMask> p_from = BARRIER_MASK_ALL_BARRIERS, BitField<BarrierMask> p_to = BARRIER_MASK_ALL_BARRIERS);
void full_barrier();
void draw_command_insert_label(String p_label_name, const Color &p_color = Color(1, 1, 1, 1));
Error draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, DrawListID *r_split_ids, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values = Vector<Color>(), float p_clear_depth = 1.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2(), const Vector<RID> &p_storage_textures = Vector<RID>());
Error draw_list_switch_to_next_pass_split(uint32_t p_splits, DrawListID *r_split_ids);
Vector<int64_t> _draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values = Vector<Color>(), float p_clear_depth = 1.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2(), const TypedArray<RID> &p_storage_textures = TypedArray<RID>());
Vector<int64_t> _draw_list_switch_to_next_pass_split(uint32_t p_splits);
private:
void _draw_list_end_bind_compat_81356(BitField<BarrierMask> p_post_barrier);
void _compute_list_end_bind_compat_81356(BitField<BarrierMask> p_post_barrier);
void _barrier_bind_compat_81356(BitField<BarrierMask> p_from, BitField<BarrierMask> p_to);
void _draw_list_end_bind_compat_84976(BitField<BarrierMask> p_post_barrier);
void _compute_list_end_bind_compat_84976(BitField<BarrierMask> p_post_barrier);
InitialAction _convert_initial_action_84976(InitialAction p_old_initial_action);
FinalAction _convert_final_action_84976(FinalAction p_old_final_action);
DrawListID _draw_list_begin_bind_compat_84976(RID p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values, float p_clear_depth, uint32_t p_clear_stencil, const Rect2 &p_region, const TypedArray<RID> &p_storage_textures);
ComputeListID _compute_list_begin_bind_compat_84976(bool p_allow_draw_overlap);
Error _buffer_update_bind_compat_84976(RID p_buffer, uint32_t p_offset, uint32_t p_size, const Vector<uint8_t> &p_data, BitField<BarrierMask> p_post_barrier);
Error _buffer_clear_bind_compat_84976(RID p_buffer, uint32_t p_offset, uint32_t p_size, BitField<BarrierMask> p_post_barrier);
Error _texture_update_bind_compat_84976(RID p_texture, uint32_t p_layer, const Vector<uint8_t> &p_data, BitField<BarrierMask> p_post_barrier);
Error _texture_copy_bind_compat_84976(RID p_from_texture, RID p_to_texture, const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_size, uint32_t p_src_mipmap, uint32_t p_dst_mipmap, uint32_t p_src_layer, uint32_t p_dst_layer, BitField<BarrierMask> p_post_barrier);
Error _texture_clear_bind_compat_84976(RID p_texture, const Color &p_color, uint32_t p_base_mipmap, uint32_t p_mipmaps, uint32_t p_base_layer, uint32_t p_layers, BitField<BarrierMask> p_post_barrier);
Error _texture_resolve_multisample_bind_compat_84976(RID p_from_texture, RID p_to_texture, BitField<BarrierMask> p_post_barrier);
#endif
public:
ApiContextRD *get_context() const { return context; }
const Capabilities *get_device_capabilities() const { return &device_capabilities; };
bool has_feature(const Features p_feature) const;
Vector<uint8_t> shader_compile_spirv_from_source(ShaderStage p_stage, const String &p_source_code, ShaderLanguage p_language = SHADER_LANGUAGE_GLSL, String *r_error = nullptr, bool p_allow_cache = true);
String shader_get_spirv_cache_key() const;
static void shader_set_compile_to_spirv_function(ShaderCompileToSPIRVFunction p_function);
static void shader_set_spirv_cache_function(ShaderCacheFunction p_function);
static void shader_set_get_cache_key_function(ShaderSPIRVGetCacheKeyFunction p_function);
String shader_get_binary_cache_key() const;
Vector<uint8_t> shader_compile_binary_from_spirv(const Vector<ShaderStageSPIRVData> &p_spirv, const String &p_shader_name = "");
RID shader_create_from_spirv(const Vector<ShaderStageSPIRVData> &p_spirv, const String &p_shader_name = "");
RID shader_create_from_bytecode(const Vector<uint8_t> &p_shader_binary, RID p_placeholder = RID());
RID shader_create_placeholder();
uint64_t shader_get_vertex_input_attribute_mask(RID p_shader);
/******************/
/**** UNIFORMS ****/
/******************/
enum StorageBufferUsage {
STORAGE_BUFFER_USAGE_DISPATCH_INDIRECT = 1,
};
RID uniform_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data = Vector<uint8_t>());
RID storage_buffer_create(uint32_t p_size, const Vector<uint8_t> &p_data = Vector<uint8_t>(), BitField<StorageBufferUsage> p_usage = 0);
RID texture_buffer_create(uint32_t p_size_elements, DataFormat p_format, const Vector<uint8_t> &p_data = Vector<uint8_t>());
struct Uniform {
UniformType uniform_type = UNIFORM_TYPE_IMAGE;
uint32_t binding = 0; // Binding index as specified in shader.
private:
// In most cases only one ID is provided per binding, so avoid allocating memory unnecessarily for performance.
RID id; // If only one is provided, this is used.
Vector<RID> ids; // If multiple ones are provided, this is used instead.
public:
_FORCE_INLINE_ uint32_t get_id_count() const {
return (id.is_valid() ? 1 : ids.size());
}
_FORCE_INLINE_ RID get_id(uint32_t p_idx) const {
if (id.is_valid()) {
ERR_FAIL_COND_V(p_idx != 0, RID());
return id;
} else {
return ids[p_idx];
}
}
_FORCE_INLINE_ void set_id(uint32_t p_idx, RID p_id) {
if (id.is_valid()) {
ERR_FAIL_COND(p_idx != 0);
id = p_id;
} else {
ids.write[p_idx] = p_id;
}
}
_FORCE_INLINE_ void append_id(RID p_id) {
if (ids.is_empty()) {
if (id == RID()) {
id = p_id;
} else {
ids.push_back(id);
ids.push_back(p_id);
id = RID();
}
} else {
ids.push_back(p_id);
}
}
_FORCE_INLINE_ void clear_ids() {
id = RID();
ids.clear();
}
_FORCE_INLINE_ Uniform(UniformType p_type, int p_binding, RID p_id) {
uniform_type = p_type;
binding = p_binding;
id = p_id;
}
_FORCE_INLINE_ Uniform(UniformType p_type, int p_binding, const Vector<RID> &p_ids) {
uniform_type = p_type;
binding = p_binding;
ids = p_ids;
}
_FORCE_INLINE_ Uniform() = default;
};
private:
static const uint32_t MAX_UNIFORM_SETS = 16;
static const uint32_t MAX_PUSH_CONSTANT_SIZE = 128;
// This structure contains the descriptor set. They _need_ to be allocated
// for a shader (and will be erased when this shader is erased), but should
// work for other shaders as long as the hash matches. This covers using
// them in shader variants.
//
// Keep also in mind that you can share buffers between descriptor sets, so
// the above restriction is not too serious.
struct UniformSet {
uint32_t format = 0;
RID shader_id;
uint32_t shader_set = 0;
RDD::UniformSetID driver_id;
struct AttachableTexture {
uint32_t bind = 0;
RID texture;
};
LocalVector<AttachableTexture> attachable_textures; // Used for validation.
Vector<RDG::ResourceTracker *> draw_trackers;
Vector<RDG::ResourceUsage> draw_trackers_usage;
HashMap<RID, RDG::ResourceUsage> untracked_usage;
InvalidationCallback invalidated_callback = nullptr;
void *invalidated_callback_userdata = nullptr;
};
RID_Owner<UniformSet> uniform_set_owner;
public:
RID uniform_set_create(const Vector<Uniform> &p_uniforms, RID p_shader, uint32_t p_shader_set);
bool uniform_set_is_valid(RID p_uniform_set);
void uniform_set_set_invalidation_callback(RID p_uniform_set, InvalidationCallback p_callback, void *p_userdata);
/*******************/
/**** PIPELINES ****/
/*******************/
// Render pipeline contains ALL the
// information required for drawing.
// This includes all the rasterizer state
// as well as shader used, framebuffer format,
// etc.
// While the pipeline is just a single object
// (VkPipeline) a lot of values are also saved
// here to do validation (vulkan does none by
// default) and warn the user if something
// was not supplied as intended.
private:
struct RenderPipeline {
// Cached values for validation.
#ifdef DEBUG_ENABLED
struct Validation {
FramebufferFormatID framebuffer_format;
uint32_t render_pass = 0;
uint32_t dynamic_state = 0;
VertexFormatID vertex_format;
bool uses_restart_indices = false;
uint32_t primitive_minimum = 0;
uint32_t primitive_divisor = 0;
} validation;
#endif
// Actual pipeline.
RID shader;
RDD::ShaderID shader_driver_id;
uint32_t shader_layout_hash = 0;
Vector<uint32_t> set_formats;
RDD::PipelineID driver_id;
BitField<RDD::PipelineStageBits> stage_bits;
uint32_t push_constant_size = 0;
};
RID_Owner<RenderPipeline> render_pipeline_owner;
bool pipelines_cache_enabled = false;
size_t pipelines_cache_size = 0;
String pipelines_cache_file_path;
WorkerThreadPool::TaskID pipelines_cache_save_task = WorkerThreadPool::INVALID_TASK_ID;
Vector<uint8_t> _load_pipeline_cache();
void _update_pipeline_cache(bool p_closing = false);
static void _save_pipeline_cache(void *p_data);
struct ComputePipeline {
RID shader;
RDD::ShaderID shader_driver_id;
uint32_t shader_layout_hash = 0;
Vector<uint32_t> set_formats;
RDD::PipelineID driver_id;
uint32_t push_constant_size = 0;
uint32_t local_group_size[3] = { 0, 0, 0 };
};
RID_Owner<ComputePipeline> compute_pipeline_owner;
public:
RID render_pipeline_create(RID p_shader, FramebufferFormatID p_framebuffer_format, VertexFormatID p_vertex_format, RenderPrimitive p_render_primitive, const PipelineRasterizationState &p_rasterization_state, const PipelineMultisampleState &p_multisample_state, const PipelineDepthStencilState &p_depth_stencil_state, const PipelineColorBlendState &p_blend_state, BitField<PipelineDynamicStateFlags> p_dynamic_state_flags = 0, uint32_t p_for_render_pass = 0, const Vector<PipelineSpecializationConstant> &p_specialization_constants = Vector<PipelineSpecializationConstant>());
bool render_pipeline_is_valid(RID p_pipeline);
RID compute_pipeline_create(RID p_shader, const Vector<PipelineSpecializationConstant> &p_specialization_constants = Vector<PipelineSpecializationConstant>());
bool compute_pipeline_is_valid(RID p_pipeline);
/****************/
/**** SCREEN ****/
/****************/
int screen_get_width(DisplayServer::WindowID p_screen = 0) const;
int screen_get_height(DisplayServer::WindowID p_screen = 0) const;
FramebufferFormatID screen_get_framebuffer_format() const;
/*************************/
/**** DRAW LISTS (II) ****/
/*************************/
private:
// Draw list contains both the command buffer
// used for drawing as well as a LOT of
// information used for validation. This
// validation is cheap so most of it can
// also run in release builds.
struct DrawList {
Rect2i viewport;
bool viewport_set = false;
struct SetState {
uint32_t pipeline_expected_format = 0;
uint32_t uniform_set_format = 0;
RDD::UniformSetID uniform_set_driver_id;
RID uniform_set;
bool bound = false;
};
struct State {
SetState sets[MAX_UNIFORM_SETS];
uint32_t set_count = 0;
RID pipeline;
RID pipeline_shader;
RDD::ShaderID pipeline_shader_driver_id;
uint32_t pipeline_shader_layout_hash = 0;
RID vertex_array;
RID index_array;
} state;
#ifdef DEBUG_ENABLED
struct Validation {
bool active = true; // Means command buffer was not closed, so you can keep adding things.
// Actual render pass values.
uint32_t dynamic_state = 0;
VertexFormatID vertex_format = INVALID_ID;
uint32_t vertex_array_size = 0;
uint32_t vertex_max_instances_allowed = 0xFFFFFFFF;
bool index_buffer_uses_restart_indices = false;
uint32_t index_array_size = 0;
uint32_t index_array_max_index = 0;
uint32_t index_array_offset = 0;
Vector<uint32_t> set_formats;
Vector<bool> set_bound;
Vector<RID> set_rids;
// Last pipeline set values.
bool pipeline_active = false;
uint32_t pipeline_dynamic_state = 0;
VertexFormatID pipeline_vertex_format = INVALID_ID;
RID pipeline_shader;
bool pipeline_uses_restart_indices = false;
uint32_t pipeline_primitive_divisor = 0;
uint32_t pipeline_primitive_minimum = 0;
uint32_t pipeline_push_constant_size = 0;
bool pipeline_push_constant_supplied = false;
} validation;
#else
struct Validation {
uint32_t vertex_array_size = 0;
uint32_t index_array_size = 0;
uint32_t index_array_offset;
} validation;
#endif
};
DrawList *draw_list = nullptr;
uint32_t draw_list_subpass_count = 0;
uint32_t draw_list_count = 0;
RDD::RenderPassID draw_list_render_pass;
RDD::FramebufferID draw_list_vkframebuffer;
#ifdef DEBUG_ENABLED
FramebufferFormatID draw_list_framebuffer_format = INVALID_ID;
#endif
uint32_t draw_list_current_subpass = 0;
Vector<RID> draw_list_bound_textures;
void _draw_list_insert_clear_region(DrawList *p_draw_list, Framebuffer *p_framebuffer, Point2i p_viewport_offset, Point2i p_viewport_size, bool p_clear_color, const Vector<Color> &p_clear_colors, bool p_clear_depth, float p_depth, uint32_t p_stencil);
Error _draw_list_setup_framebuffer(Framebuffer *p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, RDD::FramebufferID *r_framebuffer, RDD::RenderPassID *r_render_pass, uint32_t *r_subpass_count);
Error _draw_list_render_pass_begin(Framebuffer *p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_colors, float p_clear_depth, uint32_t p_clear_stencil, Point2i p_viewport_offset, Point2i p_viewport_size, RDD::FramebufferID p_framebuffer_driver_id, RDD::RenderPassID p_render_pass);
void _draw_list_set_viewport(Rect2i p_rect);
void _draw_list_set_scissor(Rect2i p_rect);
_FORCE_INLINE_ DrawList *_get_draw_list_ptr(DrawListID p_id);
Error _draw_list_allocate(const Rect2i &p_viewport, uint32_t p_subpass);
void _draw_list_free(Rect2i *r_last_viewport = nullptr);
public:
DrawListID draw_list_begin_for_screen(DisplayServer::WindowID p_screen = 0, const Color &p_clear_color = Color());
DrawListID draw_list_begin(RID p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values = Vector<Color>(), float p_clear_depth = 1.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2());
void draw_list_set_blend_constants(DrawListID p_list, const Color &p_color);
void draw_list_bind_render_pipeline(DrawListID p_list, RID p_render_pipeline);
void draw_list_bind_uniform_set(DrawListID p_list, RID p_uniform_set, uint32_t p_index);
void draw_list_bind_vertex_array(DrawListID p_list, RID p_vertex_array);
void draw_list_bind_index_array(DrawListID p_list, RID p_index_array);
void draw_list_set_line_width(DrawListID p_list, float p_width);
void draw_list_set_push_constant(DrawListID p_list, const void *p_data, uint32_t p_data_size);
void draw_list_draw(DrawListID p_list, bool p_use_indices, uint32_t p_instances = 1, uint32_t p_procedural_vertices = 0);
void draw_list_enable_scissor(DrawListID p_list, const Rect2 &p_rect);
void draw_list_disable_scissor(DrawListID p_list);
uint32_t draw_list_get_current_pass();
DrawListID draw_list_switch_to_next_pass();
void draw_list_end();
private:
/***********************/
/**** COMPUTE LISTS ****/
/***********************/
struct ComputeList {
struct SetState {
uint32_t pipeline_expected_format = 0;
uint32_t uniform_set_format = 0;
RDD::UniformSetID uniform_set_driver_id;
RID uniform_set;
bool bound = false;
};
struct State {
SetState sets[MAX_UNIFORM_SETS];
uint32_t set_count = 0;
RID pipeline;
RID pipeline_shader;
RDD::ShaderID pipeline_shader_driver_id;
uint32_t pipeline_shader_layout_hash = 0;
uint32_t local_group_size[3] = { 0, 0, 0 };
uint8_t push_constant_data[MAX_PUSH_CONSTANT_SIZE] = {};
uint32_t push_constant_size = 0;
} state;
#ifdef DEBUG_ENABLED
struct Validation {
bool active = true; // Means command buffer was not closed, so you can keep adding things.
Vector<uint32_t> set_formats;
Vector<bool> set_bound;
Vector<RID> set_rids;
// Last pipeline set values.
bool pipeline_active = false;
RID pipeline_shader;
uint32_t invalid_set_from = 0;
uint32_t pipeline_push_constant_size = 0;
bool pipeline_push_constant_supplied = false;
} validation;
#endif
};
ComputeList *compute_list = nullptr;
ComputeList::State compute_list_barrier_state;
2019-09-26 03:44:44 +08:00
public:
ComputeListID compute_list_begin();
void compute_list_bind_compute_pipeline(ComputeListID p_list, RID p_compute_pipeline);
void compute_list_bind_uniform_set(ComputeListID p_list, RID p_uniform_set, uint32_t p_index);
void compute_list_set_push_constant(ComputeListID p_list, const void *p_data, uint32_t p_data_size);
void compute_list_dispatch(ComputeListID p_list, uint32_t p_x_groups, uint32_t p_y_groups, uint32_t p_z_groups);
void compute_list_dispatch_threads(ComputeListID p_list, uint32_t p_x_threads, uint32_t p_y_threads, uint32_t p_z_threads);
void compute_list_dispatch_indirect(ComputeListID p_list, RID p_buffer, uint32_t p_offset);
void compute_list_add_barrier(ComputeListID p_list);
2019-09-26 03:44:44 +08:00
void compute_list_end();
private:
/***********************/
/**** COMMAND GRAPH ****/
/***********************/
bool _texture_make_mutable(Texture *p_texture, RID p_texture_id);
bool _buffer_make_mutable(Buffer *p_buffer, RID p_buffer_id);
bool _vertex_array_make_mutable(VertexArray *p_vertex_array, RID p_resource_id, RDG::ResourceTracker *p_resource_tracker);
bool _index_array_make_mutable(IndexArray *p_index_array, RDG::ResourceTracker *p_resource_tracker);
bool _uniform_set_make_mutable(UniformSet *p_uniform_set, RID p_resource_id, RDG::ResourceTracker *p_resource_tracker);
bool _dependency_make_mutable(RID p_id, RID p_resource_id, RDG::ResourceTracker *p_resource_tracker);
bool _dependencies_make_mutable(RID p_id, RDG::ResourceTracker *p_resource_tracker);
RenderingDeviceGraph draw_graph;
/**************************/
/**** FRAME MANAGEMENT ****/
/**************************/
// This is the frame structure. There are normally
// 3 of these (used for triple buffering), or 2
// (double buffering). They are cycled constantly.
//
// It contains two command buffers, one that is
// used internally for setting up (creating stuff)
// and another used mostly for drawing.
//
// They also contains a list of things that need
// to be disposed of when deleted, which can't
// happen immediately due to the asynchronous
// nature of the GPU. They will get deleted
// when the frame is cycled.
private:
struct Frame {
// List in usage order, from last to free to first to free.
List<Buffer> buffers_to_dispose_of;
List<Texture> textures_to_dispose_of;
List<Framebuffer> framebuffers_to_dispose_of;
List<RDD::SamplerID> samplers_to_dispose_of;
List<Shader> shaders_to_dispose_of;
List<UniformSet> uniform_sets_to_dispose_of;
List<RenderPipeline> render_pipelines_to_dispose_of;
List<ComputePipeline> compute_pipelines_to_dispose_of;
RDD::CommandPoolID command_pool;
// Used for filling up newly created buffers with data provided on creation.
// Primarily intended to be accessed by worker threads.
// Ideally this cmd buffer should use an async transfer queue.
RDD::CommandBufferID setup_command_buffer; // Used at the beginning of every frame for set-up.
// The main cmd buffer for drawing and compute.
// Primarily intended to be used by the main thread to do most stuff.
RDD::CommandBufferID draw_command_buffer; // Used at the beginning of every frame for set-up.
struct Timestamp {
String description;
uint64_t value = 0;
};
RDD::QueryPoolID timestamp_pool;
TightLocalVector<String> timestamp_names;
TightLocalVector<uint64_t> timestamp_cpu_values;
uint32_t timestamp_count = 0;
TightLocalVector<String> timestamp_result_names;
TightLocalVector<uint64_t> timestamp_cpu_result_values;
TightLocalVector<uint64_t> timestamp_result_values;
uint32_t timestamp_result_count = 0;
uint64_t index = 0;
};
uint32_t max_timestamp_query_elements = 0;
TightLocalVector<Frame> frames; // Frames available, for main device they are cycled (usually 3), for local devices only 1.
int frame = 0; // Current frame.
int frame_count = 0; // Total amount of frames.
uint64_t frames_drawn = 0;
RID local_device;
bool local_device_processing = false;
void _free_pending_resources(int p_frame);
ApiContextRD *context = nullptr;
uint64_t texture_memory = 0;
uint64_t buffer_memory = 0;
void _free_internal(RID p_id);
void _flush(bool p_current_frame);
2019-09-26 03:44:44 +08:00
bool screen_prepared = false;
2019-09-26 03:44:44 +08:00
template <class T>
void _free_rids(T &p_owner, const char *p_type);
2019-10-04 04:39:08 +08:00
void _finalize_command_buffers(bool p_postpare);
void _begin_frame();
2019-09-26 03:44:44 +08:00
#ifdef DEV_ENABLED
HashMap<RID, String> resource_names;
#endif
public:
void initialize(ApiContextRD *p_context, bool p_local_device = false);
void finalize();
void free(RID p_id);
/****************/
/**** Timing ****/
/****************/
void capture_timestamp(const String &p_name);
uint32_t get_captured_timestamps_count() const;
uint64_t get_captured_timestamps_frame() const;
uint64_t get_captured_timestamp_gpu_time(uint32_t p_index) const;
uint64_t get_captured_timestamp_cpu_time(uint32_t p_index) const;
String get_captured_timestamp_name(uint32_t p_index) const;
/****************/
/**** LIMITS ****/
/****************/
uint64_t limit_get(Limit p_limit) const;
//methods below not exposed, used by RenderingDeviceRD
void prepare_screen_for_drawing();
2019-10-05 21:27:43 +08:00
void swap_buffers();
2019-10-05 21:27:43 +08:00
uint32_t get_frame_delay() const;
void submit();
void sync();
enum MemoryType {
MEMORY_TEXTURES,
MEMORY_BUFFERS,
MEMORY_TOTAL
};
uint64_t get_memory_usage(MemoryType p_type) const;
RenderingDevice *create_local_device();
void set_resource_name(RID p_id, const String &p_name);
void draw_command_begin_label(String p_label_name, const Color &p_color = Color(1, 1, 1, 1));
void draw_command_end_label();
String get_device_vendor_name() const;
String get_device_name() const;
DeviceType get_device_type() const;
String get_device_api_version() const;
String get_device_pipeline_cache_uuid() const;
uint64_t get_driver_resource(DriverResource p_resource, RID p_rid = RID(), uint64_t p_index = 0);
static RenderingDevice *get_singleton();
RenderingDevice();
~RenderingDevice();
private:
/*****************/
/**** BINDERS ****/
/*****************/
RID _texture_create(const Ref<RDTextureFormat> &p_format, const Ref<RDTextureView> &p_view, const TypedArray<PackedByteArray> &p_data = Array());
RID _texture_create_shared(const Ref<RDTextureView> &p_view, RID p_with_texture);
2021-08-03 15:07:32 +08:00
RID _texture_create_shared_from_slice(const Ref<RDTextureView> &p_view, RID p_with_texture, uint32_t p_layer, uint32_t p_mipmap, uint32_t p_mipmaps = 1, TextureSliceType p_slice_type = TEXTURE_SLICE_2D);
2023-07-10 20:31:27 +08:00
Ref<RDTextureFormat> _texture_get_format(RID p_rd_texture);
FramebufferFormatID _framebuffer_format_create(const TypedArray<RDAttachmentFormat> &p_attachments, uint32_t p_view_count);
FramebufferFormatID _framebuffer_format_create_multipass(const TypedArray<RDAttachmentFormat> &p_attachments, const TypedArray<RDFramebufferPass> &p_passes, uint32_t p_view_count);
RID _framebuffer_create(const TypedArray<RID> &p_textures, FramebufferFormatID p_format_check = INVALID_ID, uint32_t p_view_count = 1);
RID _framebuffer_create_multipass(const TypedArray<RID> &p_textures, const TypedArray<RDFramebufferPass> &p_passes, FramebufferFormatID p_format_check = INVALID_ID, uint32_t p_view_count = 1);
RID _sampler_create(const Ref<RDSamplerState> &p_state);
VertexFormatID _vertex_format_create(const TypedArray<RDVertexAttribute> &p_vertex_formats);
RID _vertex_array_create(uint32_t p_vertex_count, VertexFormatID p_vertex_format, const TypedArray<RID> &p_src_buffers, const Vector<int64_t> &p_offsets = Vector<int64_t>());
Ref<RDShaderSPIRV> _shader_compile_spirv_from_source(const Ref<RDShaderSource> &p_source, bool p_allow_cache = true);
Vector<uint8_t> _shader_compile_binary_from_spirv(const Ref<RDShaderSPIRV> &p_bytecode, const String &p_shader_name = "");
RID _shader_create_from_spirv(const Ref<RDShaderSPIRV> &p_spirv, const String &p_shader_name = "");
2022-09-01 01:24:04 +08:00
RID _uniform_set_create(const TypedArray<RDUniform> &p_uniforms, RID p_shader, uint32_t p_shader_set);
Error _buffer_update_bind(RID p_buffer, uint32_t p_offset, uint32_t p_size, const Vector<uint8_t> &p_data);
RID _render_pipeline_create(RID p_shader, FramebufferFormatID p_framebuffer_format, VertexFormatID p_vertex_format, RenderPrimitive p_render_primitive, const Ref<RDPipelineRasterizationState> &p_rasterization_state, const Ref<RDPipelineMultisampleState> &p_multisample_state, const Ref<RDPipelineDepthStencilState> &p_depth_stencil_state, const Ref<RDPipelineColorBlendState> &p_blend_state, BitField<PipelineDynamicStateFlags> p_dynamic_state_flags, uint32_t p_for_render_pass, const TypedArray<RDPipelineSpecializationConstant> &p_specialization_constants);
RID _compute_pipeline_create(RID p_shader, const TypedArray<RDPipelineSpecializationConstant> &p_specialization_constants);
void _draw_list_set_push_constant(DrawListID p_list, const Vector<uint8_t> &p_data, uint32_t p_data_size);
void _compute_list_set_push_constant(ComputeListID p_list, const Vector<uint8_t> &p_data, uint32_t p_data_size);
};
VARIANT_ENUM_CAST(RenderingDevice::DeviceType)
VARIANT_ENUM_CAST(RenderingDevice::DriverResource)
VARIANT_ENUM_CAST(RenderingDevice::ShaderStage)
VARIANT_ENUM_CAST(RenderingDevice::ShaderLanguage)
VARIANT_ENUM_CAST(RenderingDevice::CompareOperator)
VARIANT_ENUM_CAST(RenderingDevice::DataFormat)
VARIANT_ENUM_CAST(RenderingDevice::TextureType)
VARIANT_ENUM_CAST(RenderingDevice::TextureSamples)
VARIANT_BITFIELD_CAST(RenderingDevice::TextureUsageBits)
VARIANT_ENUM_CAST(RenderingDevice::TextureSwizzle)
VARIANT_ENUM_CAST(RenderingDevice::TextureSliceType)
VARIANT_ENUM_CAST(RenderingDevice::SamplerFilter)
VARIANT_ENUM_CAST(RenderingDevice::SamplerRepeatMode)
VARIANT_ENUM_CAST(RenderingDevice::SamplerBorderColor)
VARIANT_ENUM_CAST(RenderingDevice::VertexFrequency)
VARIANT_ENUM_CAST(RenderingDevice::IndexBufferFormat)
VARIANT_BITFIELD_CAST(RenderingDevice::StorageBufferUsage)
VARIANT_ENUM_CAST(RenderingDevice::UniformType)
VARIANT_ENUM_CAST(RenderingDevice::RenderPrimitive)
VARIANT_ENUM_CAST(RenderingDevice::PolygonCullMode)
VARIANT_ENUM_CAST(RenderingDevice::PolygonFrontFace)
VARIANT_ENUM_CAST(RenderingDevice::StencilOperation)
VARIANT_ENUM_CAST(RenderingDevice::LogicOperation)
VARIANT_ENUM_CAST(RenderingDevice::BlendFactor)
VARIANT_ENUM_CAST(RenderingDevice::BlendOperation)
VARIANT_BITFIELD_CAST(RenderingDevice::PipelineDynamicStateFlags)
VARIANT_ENUM_CAST(RenderingDevice::PipelineSpecializationConstantType)
VARIANT_ENUM_CAST(RenderingDevice::InitialAction)
VARIANT_ENUM_CAST(RenderingDevice::FinalAction)
VARIANT_ENUM_CAST(RenderingDevice::Limit)
VARIANT_ENUM_CAST(RenderingDevice::MemoryType)
VARIANT_ENUM_CAST(RenderingDevice::Features)
#ifndef DISABLE_DEPRECATED
VARIANT_BITFIELD_CAST(RenderingDevice::BarrierMask);
#endif
typedef RenderingDevice RD;
#endif // RENDERING_DEVICE_H