The [Transform3D] built-in [Variant] type is a 3×4 matrix representing a transformation in 3D space. It contains a [Basis], which on its own can represent rotation, scale, and shear. Additionally, combined with its own [member origin], the transform can also represent a translation.
[b]Note:[/b] Godot uses a [url=https://en.wikipedia.org/wiki/Right-hand_rule]right-handed coordinate system[/url], which is a common standard. For directions, the convention for built-in types like [Camera3D] is for -Z to point forward (+X is right, +Y is up, and +Z is back). Other objects may use different direction conventions. For more information, see the [url=$DOCS_URL/tutorials/assets_pipeline/importing_3d_scenes/model_export_considerations.html#d-asset-direction-conventions]3D asset direction conventions[/url] tutorial.
Constructs a [Transform3D] from a [Projection]. Because [Transform3D] is a 3×4 matrix and [Projection] is a 4×4 matrix, this operation trims the last row of the projection matrix ([code]from.x.w[/code], [code]from.y.w[/code], [code]from.z.w[/code], and [code]from.w.w[/code] are not included in the new transform).
Returns the inverted version of this transform. Unlike [method inverse], this method works with almost any [member basis], including non-uniform ones, but is slower. See also [method Basis.inverse].
[b]Note:[/b] For this method to return correctly, the transform's [member basis] needs to have a determinant that is not exactly [code]0.0[/code] (see [method Basis.determinant]).
The [param weight] should be between [code]0.0[/code] and [code]1.0[/code] (inclusive). Values outside this range are allowed and can be used to perform [i]extrapolation[/i] instead.
Returns the [url=https://en.wikipedia.org/wiki/Invertible_matrix]inverted version of this transform[/url]. See also [method Basis.inverse].
[b]Note:[/b] For this method to return correctly, the transform's [member basis] needs to be [i]orthonormal[/i] (see [method orthonormalized]). That means the basis should only represent a rotation. If it does not, use [method affine_inverse] instead.
Returns [code]true[/code] if this transform and [param xform] are approximately equal, by running [method @GlobalScope.is_equal_approx] on each component.
The up axis (+Y) points as close to the [param up] vector as possible while staying perpendicular to the forward axis. The resulting transform is orthonormalized. The existing rotation, scale, and skew information from the original transform is discarded. The [param target] and [param up] vectors cannot be zero, cannot be parallel to each other, and are defined in global/parent space.
If [param use_model_front] is [code]true[/code], the +Z axis (asset front) is treated as forward (implies +X is left) and points toward the [param target] position. By default, the -Z axis (camera forward) is treated as forward (implies +X is right).
Returns a copy of this transform with its [member basis] orthonormalized. An orthonormal basis is both [i]orthogonal[/i] (the axes are perpendicular to each other) and [i]normalized[/i] (the axes have a length of [code]1.0[/code]), which also means it can only represent a rotation. See also [method Basis.orthonormalized].
The [param axis] must be a normalized vector (see [method Vector3.normalized]). If [param angle] is positive, the basis is rotated counter-clockwise around the axis.
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding rotation transform [code]R[/code] from the left, i.e., [code]R * X[/code].
The [param axis] must be a normalized vector in the transform's local coordinate system. For example, to rotate around the local X-axis, use [constant Vector3.RIGHT].
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding rotation transform [code]R[/code] from the right, i.e., [code]X * R[/code].
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding scaling transform [code]S[/code] from the left, i.e., [code]S * X[/code].
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding scaling transform [code]S[/code] from the right, i.e., [code]X * S[/code].
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding translation transform [code]T[/code] from the left, i.e., [code]T * X[/code].
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding translation transform [code]T[/code] from the right, i.e., [code]X * T[/code].
The [Basis] of this transform. It is composed by 3 axes ([member Basis.x], [member Basis.y], and [member Basis.z]). Together, these represent the transform's rotation, scale, and shear.
The identity [Transform3D]. This is a transform with no translation, no rotation, and a scale of [constant Vector3.ONE]. Its [member basis] is equal to [constant Basis.IDENTITY]. This also means that:
- Its [member Basis.x] points right ([constant Vector3.RIGHT]);
- Its [member Basis.y] points up ([constant Vector3.UP]);
- Its [member Basis.z] points back ([constant Vector3.BACK]).
If a [Vector3], an [AABB], a [Plane], a [PackedVector3Array], or another [Transform3D] is transformed (multiplied) by this constant, no transformation occurs.
[b]Note:[/b] In GDScript, this constant is equivalent to creating a [constructor Transform3D] without any arguments. It can be used to make your code clearer, and for consistency with C#.
Multiplies all components of the [Transform3D] by the given [float], including the [member origin]. This affects the transform's scale uniformly, scaling the [member basis].
Multiplies all components of the [Transform3D] by the given [int], including the [member origin]. This affects the transform's scale uniformly, scaling the [member basis].
Divides all components of the [Transform3D] by the given [float], including the [member origin]. This affects the transform's scale uniformly, scaling the [member basis].
Divides all components of the [Transform3D] by the given [int], including the [member origin]. This affects the transform's scale uniformly, scaling the [member basis].