godot/scene/3d/follow_camera.cpp

779 lines
21 KiB
C++
Raw Normal View History

2014-02-10 09:10:30 +08:00
/*************************************************************************/
/* follow_camera.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "follow_camera.h"
#include "physics_body.h"
#include "scene/resources/surface_tool.h"
void FollowCamera::_set_initial_orbit(const Vector2& p_orbit) {
initial_orbit=p_orbit;
set_orbit(p_orbit);
}
void FollowCamera::_clear_queries() {
if (!queries_active)
return;
#if 0
for(int i=0;i<3;i++)
PhysicsServer::get_singleton()->query_clear(clip_ray[i].query);
#endif
queries_active=false;
}
void FollowCamera::_compute_camera() {
// update the transform with the next proposed transform (camera is 1 logic frame delayed)
/*
float time = get_root_node()->get_frame_time();
Vector3 oldp = accepted.get_origin();
Vector3 newp = proposed.get_origin();
float frame_dist = time *
if (oldp.distance_to(newp) >
*/
float time = get_process_delta_time();
bool noblend=false;
if (clip) {
if ((clip_ray[0].clipped==clip_ray[2].clipped || fullclip) && clip_ray[1].clipped) {
//all have been clipped
proposed_pos=clip_ray[1].clip_pos-extraclip*(proposed_pos-target_pos).normalized();
if (clip_ray[0].clipped)
fullclip=true;
noblend=true;
} else {
//Vector3 rel=follow_pos-target_pos;
if (clip_ray[0].clipped && !clip_ray[2].clipped) {
float distance = target_pos.distance_to(clip_ray[0].clip_pos);
real_t amount = 1.0-(distance/clip_len);
amount = CLAMP(amount,0,1)*autoturn_speed*time;
if (clip_ray[1].clipped)
amount*=2.0;
//rotate_rel=Matrix3(Vector3(0,1,0),amount).xform(rel);
rotate_orbit(Vector2(0,amount));
} else if (clip_ray[2].clipped && !clip_ray[0].clipped) {
float distance = target_pos.distance_to(clip_ray[2].clip_pos);
real_t amount = 1.0-(distance/clip_len);
amount = CLAMP(amount,0,1)*autoturn_speed*time;
if (clip_ray[1].clipped)
amount*=2.0;
rotate_orbit(Vector2(0,-amount));
}
fullclip=false;
}
}
Vector3 base_pos = get_global_transform().origin;
Vector3 pull_from = base_pos;
pull_from.y+=height; // height compensate
Vector3 camera_target;
if (use_lookat_target) {
camera_target = lookat_target;
} else {
camera_target = base_pos;
};
Transform proposed;
proposed.set_look_at(proposed_pos,camera_target,up_vector);
proposed = proposed * Transform(Matrix3(Vector3(1,0,0),Math::deg2rad(inclination)),Vector3()); //inclination
accepted=proposed;
if (smooth && !noblend) {
Vector3 vec1 = accepted.origin;
Vector3 vec2 = final.origin;
final.origin = vec2.linear_interpolate(vec1, MIN(1,smooth_pos_ratio * time));;
Quat q1 = accepted.basis;
Quat q2 = final.basis;
final.basis = q2.slerp(q1, MIN(1,smooth_rot_ratio * time));
} else {
final=accepted;
}
_update_camera();
// calculate the next proposed transform
Vector3 new_pos;
{ /*follow code*/
/* calculate some variables */
Vector3 rel = follow_pos - pull_from;
float l = rel.length();
Vector3 rel_n = (l > 0) ? (rel/l) : Vector3();
float ang = Math::acos(rel_n.dot( Vector3(0,1,0) ));
Vector3 tangent = rel_n;
tangent.y=0; // get rid of y
if (tangent.length_squared() < CMP_EPSILON2)
tangent=Vector3(0,0,1); // use Z as tangent if rel is parallel to y
else
tangent.normalize();
/* now start applying the rules */
//clip distance
if (l > max_distance)
l=max_distance;
if (l < min_distance)
l=min_distance;
//fix angle
float ang_min = Math_PI * 0.5 + Math::deg2rad(min_orbit_x);
float ang_max = Math_PI * 0.5 + Math::deg2rad(max_orbit_x);
if (ang<ang_min)
ang=ang_min;
if (ang>ang_max)
ang=ang_max;
/* finally, rebuild the validated camera position */
new_pos=Vector3(0,Math::cos(ang),0);
new_pos+=tangent*Math::sin(ang);
new_pos*=l;
new_pos+=pull_from;
follow_pos=new_pos;
}
proposed_pos=new_pos;
Vector3 rel = new_pos-camera_target;
if (clip) {
Vector<RID> exclude;
exclude.push_back(target_body);
for(int i=0;i<3;i++) {
clip_ray[i].clipped=false;
clip_ray[i].clip_pos=Vector3();
clip_ray[i].cast_pos=camera_target;
Vector3 cast_to = camera_target+Matrix3(Vector3(0,1,0),Math::deg2rad(autoturn_tolerance*(i-1.0))).xform(rel);
if (i!=1) {
Vector3 side = rel.cross(Vector3(0,1,0)).normalized()*(i-1.0);
clip_ray[i].cast_pos+side*target_width+rel.normalized()*target_width;
Vector3 d = -rel;
d.rotate(Vector3(0,1,0),Math::deg2rad(get_fov())*(i-1.0));
Plane p(new_pos,new_pos+d,new_pos+Vector3(0,1,0)); //fov clipping plane, build a face and use it as plane, facing doesn't matter
Vector3 intersect;
if (p.intersects_segment(clip_ray[i].cast_pos,cast_to,&intersect))
cast_to=intersect;
} else {
cast_to+=rel.normalized()*extraclip;
}
// PhysicsServer::get_singleton()->query_intersection(clip_ray[i].query,get_world()->get_space(),exclude);
// PhysicsServer::get_singleton()->query_intersection_segment(clip_ray[i].query,clip_ray[i].cast_pos,cast_to);
}
queries_active=true;
} else {
_clear_queries();
}
target_pos=camera_target;
clip_len=rel.length();
}
void FollowCamera::set_use_lookat_target(bool p_use, const Vector3 &p_lookat) {
use_lookat_target = p_use;
lookat_target = p_lookat;
};
void FollowCamera::_notification(int p_what) {
switch(p_what) {
case NOTIFICATION_PROCESS: {
_compute_camera();
} break;
case NOTIFICATION_ENTER_WORLD: {
set_orbit(orbit);
set_distance(distance);
accepted=final=get_global_transform();
proposed_pos=accepted.origin;
target_body = RID();
/*
Node* parent = get_parent();
while (parent) {
PhysicsBody* p = parent->cast_to<PhysicsBody>();
if (p) {
target_body = p->get_body();
break;
};
parent = parent->get_parent();
};
*/
set_process(true);
} break;
case NOTIFICATION_TRANSFORM_CHANGED: {
} break;
case NOTIFICATION_EXIT_WORLD: {
distance=get_distance();
orbit=get_orbit();
_clear_queries();
} break;
case NOTIFICATION_BECAME_CURRENT: {
set_process(true);
} break;
case NOTIFICATION_LOST_CURRENT: {
set_process(false);
_clear_queries();
} break;
}
}
void FollowCamera::set_orbit(const Vector2& p_orbit) {
orbit=p_orbit;
if(is_inside_scene()) {
Vector3 char_pos = get_global_transform().origin;
char_pos.y+=height;
float d = char_pos.distance_to(follow_pos);
Matrix3 m;
m.rotate(Vector3(0,1,0),orbit.y);
m.rotate(Vector3(1,0,0),orbit.x);
follow_pos=char_pos + m.get_axis(2) * d;
}
update_gizmo();
}
void FollowCamera::set_orbit_x(float p_x) {
orbit.x=p_x;
if(is_inside_scene())
set_orbit(Vector2( p_x, get_orbit().y ));
}
void FollowCamera::set_orbit_y(float p_y) {
orbit.y=p_y;
if(is_inside_scene())
set_orbit(Vector2( get_orbit().x, p_y ));
}
Vector2 FollowCamera::get_orbit() const {
if (is_inside_scene()) {
Vector3 char_pos = get_global_transform().origin;
char_pos.y+=height;
Vector3 rel = (follow_pos - char_pos).normalized();
Vector2 ret_orbit;
ret_orbit.x = Math::acos( Vector3(0,1,0).dot( rel ) ) - Math_PI * 0.5;
ret_orbit.y = Math::atan2(rel.x,rel.z);
return ret_orbit;
}
return orbit;
}
void FollowCamera::rotate_orbit(const Vector2& p_relative) {
if (is_inside_scene()) {
Matrix3 m;
m.rotate(Vector3(0,1,0),Math::deg2rad(p_relative.y));
m.rotate(Vector3(1,0,0),Math::deg2rad(p_relative.x));
Vector3 char_pos = get_global_transform().origin;
char_pos.y+=height;
Vector3 rel = (follow_pos - char_pos);
rel = m.xform(rel);
follow_pos=char_pos+rel;
}
orbit+=p_relative;
update_gizmo();
}
void FollowCamera::set_height(float p_height) {
height=p_height;
update_gizmo();
}
float FollowCamera::get_height() const {
return height;
}
void FollowCamera::set_max_orbit_x(float p_max) {
max_orbit_x=p_max;
update_gizmo();
}
float FollowCamera::get_max_orbit_x() const {
return max_orbit_x;
}
void FollowCamera::set_min_orbit_x(float p_min) {
min_orbit_x=p_min;
update_gizmo();
}
float FollowCamera::get_min_orbit_x() const {
return min_orbit_x;
}
float FollowCamera::get_min_distance() const {
return min_distance;
}
float FollowCamera::get_max_distance() const {
return max_distance;
}
void FollowCamera::set_min_distance(float p_min) {
min_distance=p_min;
update_gizmo();
}
void FollowCamera::set_max_distance(float p_max) {
max_distance = p_max;
update_gizmo();
}
void FollowCamera::set_distance(float p_distance) {
if (is_inside_scene()) {
Vector3 char_pos = get_global_transform().origin;
char_pos.y+=height;
Vector3 rel = (follow_pos - char_pos).normalized();
rel*=p_distance;
follow_pos=char_pos+rel;
}
distance=p_distance;
}
float FollowCamera::get_distance() const {
if (is_inside_scene()) {
Vector3 char_pos = get_global_transform().origin;
char_pos.y+=height;
return (follow_pos - char_pos).length();
}
return distance;
}
void FollowCamera::set_clip(bool p_enabled) {
clip=p_enabled;
if (!p_enabled)
_clear_queries();
}
bool FollowCamera::has_clip() const {
return clip;
}
void FollowCamera::set_autoturn(bool p_enabled) {
autoturn=p_enabled;
}
bool FollowCamera::has_autoturn() const {
return autoturn;
}
void FollowCamera::set_autoturn_tolerance(float p_degrees) {
autoturn_tolerance=p_degrees;
}
float FollowCamera::get_autoturn_tolerance() const {
return autoturn_tolerance;
}
void FollowCamera::set_inclination(float p_degrees) {
inclination=p_degrees;
}
float FollowCamera::get_inclination() const {
return inclination;
}
void FollowCamera::set_autoturn_speed(float p_speed) {
autoturn_speed=p_speed;
}
float FollowCamera::get_autoturn_speed() const {
return autoturn_speed;
}
RES FollowCamera::_get_gizmo_geometry() const {
Ref<SurfaceTool> surface_tool( memnew( SurfaceTool ));
Ref<FixedMaterial> mat( memnew( FixedMaterial ));
mat->set_parameter( FixedMaterial::PARAM_DIFFUSE,Color(1.0,0.5,1.0,0.3) );
mat->set_line_width(4);
mat->set_flag(Material::FLAG_DOUBLE_SIDED,true);
mat->set_flag(Material::FLAG_UNSHADED,true);
// mat->set_hint(Material::HINT_NO_DEPTH_DRAW,true);
2014-02-10 09:10:30 +08:00
surface_tool->begin(Mesh::PRIMITIVE_LINES);
surface_tool->set_material(mat);
int steps=16;
Vector3 base_up = Matrix3(Vector3(1,0,0),Math::deg2rad(max_orbit_x)).get_axis(2);
Vector3 base_down = Matrix3(Vector3(1,0,0),Math::deg2rad(min_orbit_x)).get_axis(2);
Vector3 ofs(0,height,0);
for(int i=0;i<steps;i++) {
Matrix3 rot(Vector3(0,1,0),Math_PI*2*float(i)/steps);
Matrix3 rot2(Vector3(0,1,0),Math_PI*2*float(i+1)/steps);
Vector3 up = rot.xform(base_up);
Vector3 up2 = rot2.xform(base_up);
Vector3 down = rot.xform(base_down);
Vector3 down2 = rot2.xform(base_down);
surface_tool->add_vertex(ofs+up*min_distance);
surface_tool->add_vertex(ofs+up*max_distance);
surface_tool->add_vertex(ofs+up*min_distance);
surface_tool->add_vertex(ofs+up2*min_distance);
surface_tool->add_vertex(ofs+up*max_distance);
surface_tool->add_vertex(ofs+up2*max_distance);
surface_tool->add_vertex(ofs+down*min_distance);
surface_tool->add_vertex(ofs+down*max_distance);
surface_tool->add_vertex(ofs+down*min_distance);
surface_tool->add_vertex(ofs+down2*min_distance);
surface_tool->add_vertex(ofs+down*max_distance);
surface_tool->add_vertex(ofs+down2*max_distance);
int substeps = 8;
for(int j=0;j<substeps;j++) {
Vector3 a = up.linear_interpolate(down,float(j)/substeps).normalized()*max_distance;
Vector3 b = up.linear_interpolate(down,float(j+1)/substeps).normalized()*max_distance;
Vector3 am = up.linear_interpolate(down,float(j)/substeps).normalized()*min_distance;
Vector3 bm = up.linear_interpolate(down,float(j+1)/substeps).normalized()*min_distance;
surface_tool->add_vertex(ofs+a);
surface_tool->add_vertex(ofs+b);
surface_tool->add_vertex(ofs+am);
surface_tool->add_vertex(ofs+bm);
}
}
return surface_tool->commit();
}
void FollowCamera::_bind_methods() {
ObjectTypeDB::bind_method(_MD("_set_initial_orbit","orbit"),&FollowCamera::_set_initial_orbit);
ObjectTypeDB::bind_method(_MD("set_orbit","orbit"),&FollowCamera::set_orbit);
ObjectTypeDB::bind_method(_MD("get_orbit"),&FollowCamera::get_orbit);
ObjectTypeDB::bind_method(_MD("set_orbit_x","x"),&FollowCamera::set_orbit_x);
ObjectTypeDB::bind_method(_MD("set_orbit_y","y"),&FollowCamera::set_orbit_y);
ObjectTypeDB::bind_method(_MD("set_min_orbit_x","x"),&FollowCamera::set_min_orbit_x);
ObjectTypeDB::bind_method(_MD("get_min_orbit_x"),&FollowCamera::get_min_orbit_x);
ObjectTypeDB::bind_method(_MD("set_max_orbit_x","x"),&FollowCamera::set_max_orbit_x);
ObjectTypeDB::bind_method(_MD("get_max_orbit_x"),&FollowCamera::get_max_orbit_x);
ObjectTypeDB::bind_method(_MD("set_height","height"),&FollowCamera::set_height);
ObjectTypeDB::bind_method(_MD("get_height"),&FollowCamera::get_height);
ObjectTypeDB::bind_method(_MD("set_inclination","inclination"),&FollowCamera::set_inclination);
ObjectTypeDB::bind_method(_MD("get_inclination"),&FollowCamera::get_inclination);
ObjectTypeDB::bind_method(_MD("rotate_orbit"),&FollowCamera::rotate_orbit);
ObjectTypeDB::bind_method(_MD("set_distance","distance"),&FollowCamera::set_distance);
ObjectTypeDB::bind_method(_MD("get_distance"),&FollowCamera::get_distance);
ObjectTypeDB::bind_method(_MD("set_max_distance","max_distance"),&FollowCamera::set_max_distance);
ObjectTypeDB::bind_method(_MD("get_max_distance"),&FollowCamera::get_max_distance);
ObjectTypeDB::bind_method(_MD("set_min_distance","min_distance"),&FollowCamera::set_min_distance);
ObjectTypeDB::bind_method(_MD("get_min_distance"),&FollowCamera::get_min_distance);
ObjectTypeDB::bind_method(_MD("set_clip","enable"),&FollowCamera::set_clip);
ObjectTypeDB::bind_method(_MD("has_clip"),&FollowCamera::has_clip);
ObjectTypeDB::bind_method(_MD("set_autoturn","enable"),&FollowCamera::set_autoturn);
ObjectTypeDB::bind_method(_MD("has_autoturn"),&FollowCamera::has_autoturn);
ObjectTypeDB::bind_method(_MD("set_autoturn_tolerance","degrees"),&FollowCamera::set_autoturn_tolerance);
ObjectTypeDB::bind_method(_MD("get_autoturn_tolerance"),&FollowCamera::get_autoturn_tolerance);
ObjectTypeDB::bind_method(_MD("set_autoturn_speed","speed"),&FollowCamera::set_autoturn_speed);
ObjectTypeDB::bind_method(_MD("get_autoturn_speed"),&FollowCamera::get_autoturn_speed);
ObjectTypeDB::bind_method(_MD("set_smoothing","enable"),&FollowCamera::set_smoothing);
ObjectTypeDB::bind_method(_MD("has_smoothing"),&FollowCamera::has_smoothing);
ObjectTypeDB::bind_method(_MD("set_rotation_smoothing","amount"),&FollowCamera::set_rotation_smoothing);
ObjectTypeDB::bind_method(_MD("get_rotation_smoothing"),&FollowCamera::get_rotation_smoothing);
ObjectTypeDB::bind_method(_MD("set_translation_smoothing","amount"),&FollowCamera::set_translation_smoothing);
ObjectTypeDB::bind_method(_MD("get_translation_smoothing"),&FollowCamera::get_translation_smoothing);
ObjectTypeDB::bind_method(_MD("set_use_lookat_target","use","lookat"),&FollowCamera::set_use_lookat_target, DEFVAL(Vector3()));
ObjectTypeDB::bind_method(_MD("set_up_vector","vector"),&FollowCamera::set_up_vector);
ObjectTypeDB::bind_method(_MD("get_up_vector"),&FollowCamera::get_up_vector);
ObjectTypeDB::bind_method(_MD("_ray_collision"),&FollowCamera::_ray_collision);
ADD_PROPERTY( PropertyInfo( Variant::VECTOR2, "orbit" ), _SCS("_set_initial_orbit"),_SCS("get_orbit") );
ADD_PROPERTY( PropertyInfo( Variant::REAL, "height", PROPERTY_HINT_RANGE,"-1024,1024,0.01" ), _SCS("set_height"), _SCS("get_height") );
ADD_PROPERTY( PropertyInfo( Variant::REAL, "inclination", PROPERTY_HINT_RANGE,"-90,90,0.01" ), _SCS("set_inclination"), _SCS("get_inclination") );
ADD_PROPERTY( PropertyInfo( Variant::REAL, "max_orbit_x", PROPERTY_HINT_RANGE,"-90,90,0.01" ), _SCS("set_max_orbit_x"), _SCS("get_max_orbit_x") );
ADD_PROPERTY( PropertyInfo( Variant::REAL, "min_orbit_x", PROPERTY_HINT_RANGE,"-90,90,0.01" ), _SCS("set_min_orbit_x"), _SCS("get_min_orbit_x") );
ADD_PROPERTY( PropertyInfo( Variant::REAL, "min_distance", PROPERTY_HINT_RANGE,"0,100,0.01" ), _SCS("set_min_distance"), _SCS("get_min_distance") );
ADD_PROPERTY( PropertyInfo( Variant::REAL, "max_distance", PROPERTY_HINT_RANGE,"0,100,0.01" ), _SCS("set_max_distance"), _SCS("get_max_distance") );
ADD_PROPERTY( PropertyInfo( Variant::REAL, "distance", PROPERTY_HINT_RANGE,"0.01,1024,0,01"), _SCS("set_distance"), _SCS("get_distance") );
ADD_PROPERTY( PropertyInfo( Variant::BOOL, "clip"), _SCS("set_clip"), _SCS("has_clip") );
ADD_PROPERTY( PropertyInfo( Variant::BOOL, "autoturn"), _SCS("set_autoturn"), _SCS("has_autoturn") );
ADD_PROPERTY( PropertyInfo( Variant::REAL, "autoturn_tolerance", PROPERTY_HINT_RANGE,"1,90,0.01") , _SCS("set_autoturn_tolerance"), _SCS("get_autoturn_tolerance") );
ADD_PROPERTY( PropertyInfo( Variant::REAL, "autoturn_speed", PROPERTY_HINT_RANGE,"1,90,0.01"), _SCS("set_autoturn_speed"), _SCS("get_autoturn_speed") );
ADD_PROPERTY( PropertyInfo( Variant::BOOL, "smoothing"), _SCS("set_smoothing"), _SCS("has_smoothing") );
ADD_PROPERTY( PropertyInfo( Variant::REAL, "translation_smooth", PROPERTY_HINT_RANGE,"0.01,128,0.01"), _SCS("set_translation_smoothing"), _SCS("get_translation_smoothing") );
ADD_PROPERTY( PropertyInfo( Variant::REAL, "rotation_smooth", PROPERTY_HINT_RANGE,"0.01,128,0.01"), _SCS("set_rotation_smoothing"), _SCS("get_rotation_smoothing") );
}
void FollowCamera::_ray_collision(Vector3 p_point, Vector3 p_normal, int p_subindex, ObjectID p_against,int p_idx) {
clip_ray[p_idx].clip_pos=p_point;
clip_ray[p_idx].clipped=true;
};
Transform FollowCamera::get_camera_transform() const {
return final;
}
void FollowCamera::set_smoothing(bool p_enable) {
smooth=p_enable;
}
bool FollowCamera::has_smoothing() const {
return smooth;
}
void FollowCamera::set_translation_smoothing(float p_amount) {
smooth_pos_ratio=p_amount;
}
float FollowCamera::get_translation_smoothing() const {
return smooth_pos_ratio;
}
void FollowCamera::set_rotation_smoothing(float p_amount) {
smooth_rot_ratio=p_amount;
}
void FollowCamera::set_up_vector(const Vector3& p_up) {
up_vector=p_up;
}
Vector3 FollowCamera::get_up_vector() const{
return up_vector;
}
float FollowCamera::get_rotation_smoothing() const {
return smooth_pos_ratio;
}
FollowCamera::FollowCamera() {
height=1;
orbit=Vector2(0,0);
up_vector=Vector3(0,1,0);
distance=3;
min_distance=2;
max_distance=5;
autoturn=true;
autoturn_tolerance=10;
autoturn_speed=80;
min_orbit_x=-50;
max_orbit_x=70;
inclination=0;
target_width=0.3;
clip=true;
use_lookat_target = false;
extraclip=0.3;
fullclip=false;
smooth=true;
smooth_rot_ratio=10;
smooth_pos_ratio=10;
for(int i=0;i<3;i++) {
// clip_ray[i].query=PhysicsServer::get_singleton()->query_create(this, "_ray_collision", i, true);
clip_ray[i].clipped=false;
}
queries_active=false;
}
FollowCamera::~FollowCamera() {
for(int i=0;i<3;i++) {
PhysicsServer::get_singleton()->free(clip_ray[i].query);
}
}