2014-02-10 09:10:30 +08:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
|
|
|
|
*
|
|
|
|
* This software is provided 'as-is', without any express or implied
|
|
|
|
* warranty. In no event will the authors be held liable for any damages
|
|
|
|
* arising from the use of this software.
|
|
|
|
* Permission is granted to anyone to use this software for any purpose,
|
|
|
|
* including commercial applications, and to alter it and redistribute it
|
|
|
|
* freely, subject to the following restrictions:
|
|
|
|
* 1. The origin of this software must not be misrepresented; you must not
|
|
|
|
* claim that you wrote the original software. If you use this software
|
|
|
|
* in a product, an acknowledgment in the product documentation would be
|
|
|
|
* appreciated but is not required.
|
|
|
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
|
|
|
* misrepresented as being the original software.
|
|
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef B2GLUE_H
|
|
|
|
#define B2GLUE_H
|
|
|
|
|
|
|
|
#include "math_2d.h"
|
2015-09-11 07:30:46 +08:00
|
|
|
#include <limits.h>
|
|
|
|
|
2014-02-10 09:10:30 +08:00
|
|
|
namespace b2ConvexDecomp {
|
|
|
|
|
|
|
|
typedef real_t float32;
|
|
|
|
typedef int32_t int32;
|
|
|
|
|
|
|
|
static inline float32 b2Sqrt(float32 val) { return Math::sqrt(val); }
|
|
|
|
#define b2_maxFloat FLT_MAX
|
|
|
|
#define b2_epsilon CMP_EPSILON
|
|
|
|
#define b2_pi 3.14159265359f
|
|
|
|
#define b2_maxPolygonVertices 16
|
|
|
|
#define b2Max MAX
|
|
|
|
#define b2Min MIN
|
|
|
|
#define b2Clamp CLAMP
|
|
|
|
#define b2Abs ABS
|
|
|
|
/// A small length used as a collision and constraint tolerance. Usually it is
|
|
|
|
/// chosen to be numerically significant, but visually insignificant.
|
|
|
|
#define b2_linearSlop 0.005f
|
|
|
|
|
|
|
|
/// A small angle used as a collision and constraint tolerance. Usually it is
|
|
|
|
/// chosen to be numerically significant, but visually insignificant.
|
|
|
|
#define b2_angularSlop (2.0f / 180.0f * b2_pi)
|
|
|
|
|
|
|
|
/// A 2D column vector.
|
|
|
|
struct b2Vec2
|
|
|
|
{
|
|
|
|
/// Default constructor does nothing (for performance).
|
|
|
|
b2Vec2() {}
|
|
|
|
|
|
|
|
/// Construct using coordinates.
|
|
|
|
b2Vec2(float32 x, float32 y) : x(x), y(y) {}
|
|
|
|
|
|
|
|
/// Set this vector to all zeros.
|
|
|
|
void SetZero() { x = 0.0f; y = 0.0f; }
|
|
|
|
|
|
|
|
/// Set this vector to some specified coordinates.
|
|
|
|
void Set(float32 x_, float32 y_) { x = x_; y = y_; }
|
|
|
|
|
|
|
|
/// Negate this vector.
|
|
|
|
b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; }
|
|
|
|
|
|
|
|
/// Read from and indexed element.
|
|
|
|
float32 operator () (int32 i) const
|
|
|
|
{
|
|
|
|
return (&x)[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Write to an indexed element.
|
|
|
|
float32& operator () (int32 i)
|
|
|
|
{
|
|
|
|
return (&x)[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Add a vector to this vector.
|
|
|
|
void operator += (const b2Vec2& v)
|
|
|
|
{
|
|
|
|
x += v.x; y += v.y;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Subtract a vector from this vector.
|
|
|
|
void operator -= (const b2Vec2& v)
|
|
|
|
{
|
|
|
|
x -= v.x; y -= v.y;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Multiply this vector by a scalar.
|
|
|
|
void operator *= (float32 a)
|
|
|
|
{
|
|
|
|
x *= a; y *= a;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Get the length of this vector (the norm).
|
|
|
|
float32 Length() const
|
|
|
|
{
|
|
|
|
return b2Sqrt(x * x + y * y);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Get the length squared. For performance, use this instead of
|
|
|
|
/// b2Vec2::Length (if possible).
|
|
|
|
float32 LengthSquared() const
|
|
|
|
{
|
|
|
|
return x * x + y * y;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool operator==(const b2Vec2& p_v) const {
|
|
|
|
return x==p_v.x && y==p_v.y;
|
|
|
|
}
|
|
|
|
b2Vec2 operator+(const b2Vec2& p_v) const {
|
|
|
|
return b2Vec2(x+p_v.x,y+p_v.y);
|
|
|
|
}
|
|
|
|
b2Vec2 operator-(const b2Vec2& p_v) const {
|
|
|
|
return b2Vec2(x-p_v.x,y-p_v.y);
|
|
|
|
}
|
|
|
|
|
|
|
|
b2Vec2 operator*(float32 f) const {
|
|
|
|
return b2Vec2(f*x,f*y);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Convert this vector into a unit vector. Returns the length.
|
|
|
|
float32 Normalize()
|
|
|
|
{
|
|
|
|
float32 length = Length();
|
|
|
|
if (length < b2_epsilon)
|
|
|
|
{
|
|
|
|
return 0.0f;
|
|
|
|
}
|
|
|
|
float32 invLength = 1.0f / length;
|
|
|
|
x *= invLength;
|
|
|
|
y *= invLength;
|
|
|
|
|
|
|
|
return length;
|
|
|
|
}
|
|
|
|
|
|
|
|
///// Does this vector contain finite coordinates?
|
|
|
|
//bool IsValid() const
|
|
|
|
//{
|
|
|
|
// return b2IsValid(x) && b2IsValid(y);
|
|
|
|
//}
|
|
|
|
|
|
|
|
float32 x, y;
|
|
|
|
};
|
|
|
|
|
|
|
|
inline b2Vec2 operator*(float32 f,const b2Vec2& p_v) {
|
|
|
|
return b2Vec2(f*p_v.x,f*p_v.y);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Perform the dot product on two vectors.
|
|
|
|
inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b)
|
|
|
|
{
|
|
|
|
return a.x * b.x + a.y * b.y;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Perform the cross product on two vectors. In 2D this produces a scalar.
|
|
|
|
inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b)
|
|
|
|
{
|
|
|
|
return a.x * b.y - a.y * b.x;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Perform the cross product on a vector and a scalar. In 2D this produces
|
|
|
|
/// a vector.
|
|
|
|
inline b2Vec2 b2Cross(const b2Vec2& a, float32 s)
|
|
|
|
{
|
|
|
|
return b2Vec2(s * a.y, -s * a.x);
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|