godot/tests/test_rect2.h

468 lines
20 KiB
C++
Raw Normal View History

2020-11-12 07:39:58 +08:00
/*************************************************************************/
/* test_rect2.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
2020-11-12 07:39:58 +08:00
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef TEST_RECT2_H
#define TEST_RECT2_H
#include "core/math/rect2.h"
#include "thirdparty/doctest/doctest.h"
namespace TestRect2 {
// We also test Rect2i here, for consistency with the source code where Rect2
// and Rect2i are defined in the same file.
// Rect2
TEST_CASE("[Rect2] Constructor methods") {
const Rect2 rect = Rect2(0, 100, 1280, 720);
const Rect2 rect_vector = Rect2(Vector2(0, 100), Vector2(1280, 720));
const Rect2 rect_copy_rect = Rect2(rect);
const Rect2 rect_copy_recti = Rect2(Rect2i(0, 100, 1280, 720));
CHECK_MESSAGE(
rect == rect_vector,
"Rect2s created with the same dimensions but by different methods should be equal.");
CHECK_MESSAGE(
rect == rect_copy_rect,
"Rect2s created with the same dimensions but by different methods should be equal.");
CHECK_MESSAGE(
rect == rect_copy_recti,
"Rect2s created with the same dimensions but by different methods should be equal.");
}
TEST_CASE("[Rect2] String conversion") {
// Note: This also depends on the Vector2 string representation.
CHECK_MESSAGE(
String(Rect2(0, 100, 1280, 720)) == "[P: (0, 100), S: (1280, 720)]",
2020-11-12 07:39:58 +08:00
"The string representation should match the expected value.");
}
TEST_CASE("[Rect2] Basic getters") {
const Rect2 rect = Rect2(0, 100, 1280, 720);
CHECK_MESSAGE(
rect.get_position().is_equal_approx(Vector2(0, 100)),
"get_position() should return the expected value.");
CHECK_MESSAGE(
rect.get_size().is_equal_approx(Vector2(1280, 720)),
"get_size() should return the expected value.");
CHECK_MESSAGE(
rect.get_end().is_equal_approx(Vector2(1280, 820)),
"get_end() should return the expected value.");
}
TEST_CASE("[Rect2] Basic setters") {
Rect2 rect = Rect2(0, 100, 1280, 720);
rect.set_end(Vector2(4000, 4000));
CHECK_MESSAGE(
rect.is_equal_approx(Rect2(0, 100, 4000, 3900)),
"set_end() should result in the expected Rect2.");
rect = Rect2(0, 100, 1280, 720);
rect.set_position(Vector2(4000, 4000));
CHECK_MESSAGE(
rect.is_equal_approx(Rect2(4000, 4000, 1280, 720)),
"set_position() should result in the expected Rect2.");
rect = Rect2(0, 100, 1280, 720);
rect.set_size(Vector2(4000, 4000));
CHECK_MESSAGE(
rect.is_equal_approx(Rect2(0, 100, 4000, 4000)),
"set_size() should result in the expected Rect2.");
}
TEST_CASE("[Rect2] Area getters") {
CHECK_MESSAGE(
Math::is_equal_approx(Rect2(0, 100, 1280, 720).get_area(), 921'600),
"get_area() should return the expected value.");
CHECK_MESSAGE(
Math::is_equal_approx(Rect2(0, 100, -1280, -720).get_area(), 921'600),
"get_area() should return the expected value.");
CHECK_MESSAGE(
Math::is_equal_approx(Rect2(0, 100, 1280, -720).get_area(), -921'600),
"get_area() should return the expected value.");
CHECK_MESSAGE(
Math::is_equal_approx(Rect2(0, 100, -1280, 720).get_area(), -921'600),
"get_area() should return the expected value.");
CHECK_MESSAGE(
Math::is_zero_approx(Rect2(0, 100, 0, 720).get_area()),
"get_area() should return the expected value.");
CHECK_MESSAGE(
!Rect2(0, 100, 1280, 720).has_no_area(),
"has_no_area() should return the expected value on Rect2 with an area.");
CHECK_MESSAGE(
Rect2(0, 100, 0, 500).has_no_area(),
"has_no_area() should return the expected value on Rect2 with no area.");
CHECK_MESSAGE(
Rect2(0, 100, 500, 0).has_no_area(),
"has_no_area() should return the expected value on Rect2 with no area.");
CHECK_MESSAGE(
Rect2(0, 100, 0, 0).has_no_area(),
"has_no_area() should return the expected value on Rect2 with no area.");
}
TEST_CASE("[Rect2] Absolute coordinates") {
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).abs().is_equal_approx(Rect2(0, 100, 1280, 720)),
"abs() should return the expected Rect2.");
CHECK_MESSAGE(
Rect2(0, -100, 1280, 720).abs().is_equal_approx(Rect2(0, -100, 1280, 720)),
"abs() should return the expected Rect2.");
CHECK_MESSAGE(
Rect2(0, -100, -1280, -720).abs().is_equal_approx(Rect2(-1280, -820, 1280, 720)),
"abs() should return the expected Rect2.");
CHECK_MESSAGE(
Rect2(0, 100, -1280, 720).abs().is_equal_approx(Rect2(-1280, 100, 1280, 720)),
"abs() should return the expected Rect2.");
}
TEST_CASE("[Rect2] Intersection") {
2020-11-12 07:39:58 +08:00
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).intersection(Rect2(0, 300, 100, 100)).is_equal_approx(Rect2(0, 300, 100, 100)),
"intersection() with fully enclosed Rect2 should return the expected result.");
2020-11-12 07:39:58 +08:00
// The resulting Rect2 is 100 pixels high because the first Rect2 is vertically offset by 100 pixels.
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).intersection(Rect2(1200, 700, 100, 100)).is_equal_approx(Rect2(1200, 700, 80, 100)),
"intersection() with partially enclosed Rect2 should return the expected result.");
2020-11-12 07:39:58 +08:00
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).intersection(Rect2(-4000, -4000, 100, 100)).is_equal_approx(Rect2()),
"intersection() with non-enclosed Rect2 should return the expected result.");
2020-11-12 07:39:58 +08:00
}
TEST_CASE("[Rect2] Enclosing") {
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).encloses(Rect2(0, 300, 100, 100)),
"encloses() with fully contained Rect2 should return the expected result.");
2020-11-12 07:39:58 +08:00
CHECK_MESSAGE(
!Rect2(0, 100, 1280, 720).encloses(Rect2(1200, 700, 100, 100)),
"encloses() with partially contained Rect2 should return the expected result.");
2020-11-12 07:39:58 +08:00
CHECK_MESSAGE(
!Rect2(0, 100, 1280, 720).encloses(Rect2(-4000, -4000, 100, 100)),
"encloses() with non-contained Rect2 should return the expected result.");
2020-11-12 07:39:58 +08:00
}
TEST_CASE("[Rect2] Expanding") {
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).expand(Vector2(500, 600)).is_equal_approx(Rect2(0, 100, 1280, 720)),
"expand() with contained Vector2 should return the expected result.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).expand(Vector2(0, 0)).is_equal_approx(Rect2(0, 0, 1280, 820)),
"expand() with non-contained Vector2 should return the expected result.");
}
TEST_CASE("[Rect2] Growing") {
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).grow(100).is_equal_approx(Rect2(-100, 0, 1480, 920)),
"grow() with positive value should return the expected Rect2.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).grow(-100).is_equal_approx(Rect2(100, 200, 1080, 520)),
"grow() with negative value should return the expected Rect2.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).grow(-4000).is_equal_approx(Rect2(4000, 4100, -6720, -7280)),
"grow() with large negative value should return the expected Rect2.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).grow_individual(100, 200, 300, 400).is_equal_approx(Rect2(-100, -100, 1680, 1320)),
"grow_individual() with positive values should return the expected Rect2.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).grow_individual(-100, 200, 300, -400).is_equal_approx(Rect2(100, -100, 1480, 520)),
"grow_individual() with positive and negative values should return the expected Rect2.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).grow_side(SIDE_TOP, 500).is_equal_approx(Rect2(0, -400, 1280, 1220)),
"grow_side() with positive value should return the expected Rect2.");
2020-11-12 07:39:58 +08:00
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).grow_side(SIDE_TOP, -500).is_equal_approx(Rect2(0, 600, 1280, 220)),
"grow_side() with negative value should return the expected Rect2.");
2020-11-12 07:39:58 +08:00
}
TEST_CASE("[Rect2] Has point") {
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).has_point(Vector2(500, 600)),
"has_point() with contained Vector2 should return the expected result.");
CHECK_MESSAGE(
!Rect2(0, 100, 1280, 720).has_point(Vector2(0, 0)),
"has_point() with non-contained Vector2 should return the expected result.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).has_point(Vector2(0, 110)),
"has_point() with positive Vector2 on left edge should return the expected result.");
CHECK_MESSAGE(
!Rect2(0, 100, 1280, 720).has_point(Vector2(1280, 110)),
"has_point() with positive Vector2 on right edge should return the expected result.");
CHECK_MESSAGE(
Rect2(-4000, 100, 1280, 720).has_point(Vector2(-4000, 110)),
"has_point() with negative Vector2 on left edge should return the expected result.");
CHECK_MESSAGE(
!Rect2(-4000, 100, 1280, 720).has_point(Vector2(-2720, 110)),
"has_point() with negative Vector2 on right edge should return the expected result.");
}
TEST_CASE("[Rect2] Intersection") {
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).intersects(Rect2(0, 300, 100, 100)),
"intersects() with fully enclosed Rect2 should return the expected result.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).intersects(Rect2(1200, 700, 100, 100)),
"intersects() with partially enclosed Rect2 should return the expected result.");
CHECK_MESSAGE(
!Rect2(0, 100, 1280, 720).intersects(Rect2(-4000, -4000, 100, 100)),
"intersects() with non-enclosed Rect2 should return the expected result.");
}
TEST_CASE("[Rect2] Merging") {
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).merge(Rect2(0, 300, 100, 100)).is_equal_approx(Rect2(0, 100, 1280, 720)),
"merge() with fully enclosed Rect2 should return the expected result.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).merge(Rect2(1200, 700, 100, 100)).is_equal_approx(Rect2(0, 100, 1300, 720)),
"merge() with partially enclosed Rect2 should return the expected result.");
CHECK_MESSAGE(
Rect2(0, 100, 1280, 720).merge(Rect2(-4000, -4000, 100, 100)).is_equal_approx(Rect2(-4000, -4000, 5280, 4820)),
"merge() with non-enclosed Rect2 should return the expected result.");
}
// Rect2i
TEST_CASE("[Rect2i] Constructor methods") {
Rect2i recti = Rect2i(0, 100, 1280, 720);
Rect2i recti_vector = Rect2i(Vector2i(0, 100), Vector2i(1280, 720));
Rect2i recti_copy_recti = Rect2i(recti);
Rect2i recti_copy_rect = Rect2i(Rect2(0, 100, 1280, 720));
CHECK_MESSAGE(
recti == recti_vector,
"Rect2is created with the same dimensions but by different methods should be equal.");
CHECK_MESSAGE(
recti == recti_copy_recti,
"Rect2is created with the same dimensions but by different methods should be equal.");
CHECK_MESSAGE(
recti == recti_copy_rect,
"Rect2is created with the same dimensions but by different methods should be equal.");
}
TEST_CASE("[Rect2i] String conversion") {
// Note: This also depends on the Vector2 string representation.
CHECK_MESSAGE(
String(Rect2i(0, 100, 1280, 720)) == "[P: (0, 100), S: (1280, 720)]",
2020-11-12 07:39:58 +08:00
"The string representation should match the expected value.");
}
TEST_CASE("[Rect2i] Basic getters") {
const Rect2i rect = Rect2i(0, 100, 1280, 720);
CHECK_MESSAGE(
rect.get_position() == Vector2i(0, 100),
"get_position() should return the expected value.");
CHECK_MESSAGE(
rect.get_size() == Vector2i(1280, 720),
"get_size() should return the expected value.");
CHECK_MESSAGE(
rect.get_end() == Vector2i(1280, 820),
"get_end() should return the expected value.");
}
TEST_CASE("[Rect2i] Basic setters") {
Rect2i rect = Rect2i(0, 100, 1280, 720);
rect.set_end(Vector2i(4000, 4000));
CHECK_MESSAGE(
rect == Rect2i(0, 100, 4000, 3900),
"set_end() should result in the expected Rect2i.");
rect = Rect2i(0, 100, 1280, 720);
rect.set_position(Vector2i(4000, 4000));
CHECK_MESSAGE(
rect == Rect2i(4000, 4000, 1280, 720),
"set_position() should result in the expected Rect2i.");
rect = Rect2i(0, 100, 1280, 720);
rect.set_size(Vector2i(4000, 4000));
CHECK_MESSAGE(
rect == Rect2i(0, 100, 4000, 4000),
"set_size() should result in the expected Rect2i.");
}
TEST_CASE("[Rect2i] Area getters") {
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).get_area() == 921'600,
2020-11-12 07:39:58 +08:00
"get_area() should return the expected value.");
CHECK_MESSAGE(
Rect2i(0, 100, -1280, -720).get_area() == 921'600,
2020-11-12 07:39:58 +08:00
"get_area() should return the expected value.");
CHECK_MESSAGE(
Rect2i(0, 100, 1280, -720).get_area() == -921'600,
2020-11-12 07:39:58 +08:00
"get_area() should return the expected value.");
CHECK_MESSAGE(
Rect2i(0, 100, -1280, 720).get_area() == -921'600,
2020-11-12 07:39:58 +08:00
"get_area() should return the expected value.");
CHECK_MESSAGE(
Rect2i(0, 100, 0, 720).get_area() == 0,
2020-11-12 07:39:58 +08:00
"get_area() should return the expected value.");
CHECK_MESSAGE(
!Rect2i(0, 100, 1280, 720).has_no_area(),
"has_no_area() should return the expected value on Rect2i with an area.");
CHECK_MESSAGE(
Rect2i(0, 100, 0, 500).has_no_area(),
"has_no_area() should return the expected value on Rect2i with no area.");
CHECK_MESSAGE(
Rect2i(0, 100, 500, 0).has_no_area(),
"has_no_area() should return the expected value on Rect2i with no area.");
CHECK_MESSAGE(
Rect2i(0, 100, 0, 0).has_no_area(),
"has_no_area() should return the expected value on Rect2i with no area.");
}
TEST_CASE("[Rect2i] Absolute coordinates") {
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).abs() == Rect2i(0, 100, 1280, 720),
"abs() should return the expected Rect2i.");
CHECK_MESSAGE(
Rect2i(0, -100, 1280, 720).abs() == Rect2i(0, -100, 1280, 720),
"abs() should return the expected Rect2i.");
CHECK_MESSAGE(
Rect2i(0, -100, -1280, -720).abs() == Rect2i(-1280, -820, 1280, 720),
"abs() should return the expected Rect2i.");
CHECK_MESSAGE(
Rect2i(0, 100, -1280, 720).abs() == Rect2i(-1280, 100, 1280, 720),
"abs() should return the expected Rect2i.");
}
TEST_CASE("[Rect2i] Intersection") {
2020-11-12 07:39:58 +08:00
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).intersection(Rect2i(0, 300, 100, 100)) == Rect2i(0, 300, 100, 100),
"intersection() with fully enclosed Rect2i should return the expected result.");
2020-11-12 07:39:58 +08:00
// The resulting Rect2i is 100 pixels high because the first Rect2i is vertically offset by 100 pixels.
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).intersection(Rect2i(1200, 700, 100, 100)) == Rect2i(1200, 700, 80, 100),
"intersection() with partially enclosed Rect2i should return the expected result.");
2020-11-12 07:39:58 +08:00
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).intersection(Rect2i(-4000, -4000, 100, 100)) == Rect2i(),
"intersection() with non-enclosed Rect2i should return the expected result.");
2020-11-12 07:39:58 +08:00
}
TEST_CASE("[Rect2i] Enclosing") {
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).encloses(Rect2i(0, 300, 100, 100)),
"encloses() with fully contained Rect2i should return the expected result.");
2020-11-12 07:39:58 +08:00
CHECK_MESSAGE(
!Rect2i(0, 100, 1280, 720).encloses(Rect2i(1200, 700, 100, 100)),
"encloses() with partially contained Rect2i should return the expected result.");
2020-11-12 07:39:58 +08:00
CHECK_MESSAGE(
!Rect2i(0, 100, 1280, 720).encloses(Rect2i(-4000, -4000, 100, 100)),
"encloses() with non-contained Rect2i should return the expected result.");
2020-11-12 07:39:58 +08:00
}
TEST_CASE("[Rect2i] Expanding") {
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).expand(Vector2i(500, 600)) == Rect2i(0, 100, 1280, 720),
"expand() with contained Vector2i should return the expected result.");
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).expand(Vector2i(0, 0)) == Rect2i(0, 0, 1280, 820),
"expand() with non-contained Vector2i should return the expected result.");
}
TEST_CASE("[Rect2i] Growing") {
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).grow(100) == Rect2i(-100, 0, 1480, 920),
"grow() with positive value should return the expected Rect2i.");
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).grow(-100) == Rect2i(100, 200, 1080, 520),
"grow() with negative value should return the expected Rect2i.");
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).grow(-4000) == Rect2i(4000, 4100, -6720, -7280),
"grow() with large negative value should return the expected Rect2i.");
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).grow_individual(100, 200, 300, 400) == Rect2i(-100, -100, 1680, 1320),
"grow_individual() with positive values should return the expected Rect2i.");
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).grow_individual(-100, 200, 300, -400) == Rect2i(100, -100, 1480, 520),
"grow_individual() with positive and negative values should return the expected Rect2i.");
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).grow_side(SIDE_TOP, 500) == Rect2i(0, -400, 1280, 1220),
"grow_side() with positive value should return the expected Rect2i.");
2020-11-12 07:39:58 +08:00
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).grow_side(SIDE_TOP, -500) == Rect2i(0, 600, 1280, 220),
"grow_side() with negative value should return the expected Rect2i.");
2020-11-12 07:39:58 +08:00
}
TEST_CASE("[Rect2i] Has point") {
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).has_point(Vector2i(500, 600)),
"has_point() with contained Vector2i should return the expected result.");
CHECK_MESSAGE(
!Rect2i(0, 100, 1280, 720).has_point(Vector2i(0, 0)),
"has_point() with non-contained Vector2i should return the expected result.");
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).has_point(Vector2(0, 110)),
"has_point() with positive Vector2 on left edge should return the expected result.");
CHECK_MESSAGE(
!Rect2i(0, 100, 1280, 720).has_point(Vector2(1280, 110)),
"has_point() with positive Vector2 on right edge should return the expected result.");
CHECK_MESSAGE(
Rect2i(-4000, 100, 1280, 720).has_point(Vector2(-4000, 110)),
"has_point() with negative Vector2 on left edge should return the expected result.");
CHECK_MESSAGE(
!Rect2i(-4000, 100, 1280, 720).has_point(Vector2(-2720, 110)),
"has_point() with negative Vector2 on right edge should return the expected result.");
}
TEST_CASE("[Rect2i] Intersection") {
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).intersects(Rect2i(0, 300, 100, 100)),
"intersects() with fully enclosed Rect2i should return the expected result.");
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).intersects(Rect2i(1200, 700, 100, 100)),
"intersects() with partially enclosed Rect2i should return the expected result.");
CHECK_MESSAGE(
!Rect2i(0, 100, 1280, 720).intersects(Rect2i(-4000, -4000, 100, 100)),
"intersects() with non-enclosed Rect2i should return the expected result.");
}
TEST_CASE("[Rect2i] Merging") {
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).merge(Rect2i(0, 300, 100, 100)) == Rect2i(0, 100, 1280, 720),
"merge() with fully enclosed Rect2i should return the expected result.");
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).merge(Rect2i(1200, 700, 100, 100)) == Rect2i(0, 100, 1300, 720),
"merge() with partially enclosed Rect2i should return the expected result.");
CHECK_MESSAGE(
Rect2i(0, 100, 1280, 720).merge(Rect2i(-4000, -4000, 100, 100)) == Rect2i(-4000, -4000, 5280, 4820),
"merge() with non-enclosed Rect2i should return the expected result.");
}
} // namespace TestRect2
#endif // TEST_RECT2_H