godot/doc/classes/Vector2i.xml

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

298 lines
13 KiB
XML
Raw Normal View History

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Vector2i" version="4.1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
<brief_description>
Vector used for 2D math using integer coordinates.
</brief_description>
<description>
2-element structure that can be used to represent positions in 2D space or any other pair of numeric values.
It uses integer coordinates and is therefore preferable to [Vector2] when exact precision is required. Note that the values are limited to 32 bits, and unlike [Vector2] this cannot be configured with an engine build option. Use [int] or [PackedInt64Array] if 64-bit values are needed.
[b]Note:[/b] In a boolean context, a Vector2i will evaluate to [code]false[/code] if it's equal to [code]Vector2i(0, 0)[/code]. Otherwise, a Vector2i will always evaluate to [code]true[/code].
</description>
<tutorials>
<link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link>
<link title="Vector math">$DOCS_URL/tutorials/math/vector_math.html</link>
<link title="3Blue1Brown Essence of Linear Algebra">https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab</link>
</tutorials>
<constructors>
<constructor name="Vector2i">
<return type="Vector2i" />
<description>
Constructs a default-initialized [Vector2i] with all components set to [code]0[/code].
</description>
</constructor>
<constructor name="Vector2i">
<return type="Vector2i" />
<param index="0" name="from" type="Vector2i" />
<description>
Constructs a [Vector2i] as a copy of the given [Vector2i].
</description>
</constructor>
<constructor name="Vector2i">
<return type="Vector2i" />
<param index="0" name="from" type="Vector2" />
<description>
Constructs a new [Vector2i] from [Vector2]. The floating point coordinates will be truncated.
</description>
</constructor>
<constructor name="Vector2i">
<return type="Vector2i" />
<param index="0" name="x" type="int" />
<param index="1" name="y" type="int" />
<description>
Constructs a new [Vector2i] from the given [param x] and [param y].
</description>
</constructor>
</constructors>
<methods>
<method name="abs" qualifiers="const">
<return type="Vector2i" />
<description>
Returns a new vector with all components in absolute values (i.e. positive).
</description>
</method>
<method name="aspect" qualifiers="const">
<return type="float" />
<description>
Returns the aspect ratio of this vector, the ratio of [member x] to [member y].
</description>
</method>
2021-02-01 13:10:52 +08:00
<method name="clamp" qualifiers="const">
<return type="Vector2i" />
<param index="0" name="min" type="Vector2i" />
<param index="1" name="max" type="Vector2i" />
2021-02-01 13:10:52 +08:00
<description>
Returns a new vector with all components clamped between the components of [param min] and [param max], by running [method @GlobalScope.clamp] on each component.
2021-02-01 13:10:52 +08:00
</description>
</method>
<method name="length" qualifiers="const">
<return type="float" />
<description>
Returns the length (magnitude) of this vector.
</description>
</method>
<method name="length_squared" qualifiers="const">
<return type="int" />
<description>
Returns the squared length (squared magnitude) of this vector.
This method runs faster than [method length], so prefer it if you need to compare vectors or need the squared distance for some formula.
</description>
</method>
<method name="max_axis_index" qualifiers="const">
<return type="int" />
<description>
Returns the axis of the vector's highest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_X].
</description>
</method>
<method name="min_axis_index" qualifiers="const">
<return type="int" />
<description>
Returns the axis of the vector's lowest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_Y].
</description>
</method>
<method name="sign" qualifiers="const">
<return type="Vector2i" />
<description>
Returns a new vector with each component set to [code]1[/code] if it's positive, [code]-1[/code] if it's negative, and [code]0[/code] if it's zero. The result is identical to calling [method @GlobalScope.sign] on each component.
</description>
</method>
<method name="snapped" qualifiers="const">
<return type="Vector2i" />
<param index="0" name="step" type="Vector2i" />
<description>
Returns a new vector with each component snapped to the closest multiple of the corresponding component in [param step].
</description>
</method>
</methods>
<members>
<member name="x" type="int" setter="" getter="" default="0">
The vector's X component. Also accessible by using the index position [code][0][/code].
</member>
<member name="y" type="int" setter="" getter="" default="0">
The vector's Y component. Also accessible by using the index position [code][1][/code].
</member>
</members>
<constants>
<constant name="AXIS_X" value="0">
Enumerated value for the X axis. Returned by [method max_axis_index] and [method min_axis_index].
</constant>
<constant name="AXIS_Y" value="1">
Enumerated value for the Y axis. Returned by [method max_axis_index] and [method min_axis_index].
</constant>
<constant name="ZERO" value="Vector2i(0, 0)">
Zero vector, a vector with all components set to [code]0[/code].
</constant>
<constant name="ONE" value="Vector2i(1, 1)">
One vector, a vector with all components set to [code]1[/code].
</constant>
<constant name="LEFT" value="Vector2i(-1, 0)">
Left unit vector. Represents the direction of left.
</constant>
<constant name="RIGHT" value="Vector2i(1, 0)">
Right unit vector. Represents the direction of right.
</constant>
<constant name="UP" value="Vector2i(0, -1)">
Up unit vector. Y is down in 2D, so this vector points -Y.
</constant>
<constant name="DOWN" value="Vector2i(0, 1)">
Down unit vector. Y is down in 2D, so this vector points +Y.
</constant>
</constants>
<operators>
<operator name="operator !=">
<return type="bool" />
<param index="0" name="right" type="Vector2i" />
<description>
Returns [code]true[/code] if the vectors are not equal.
</description>
</operator>
<operator name="operator %">
<return type="Vector2i" />
<param index="0" name="right" type="Vector2i" />
<description>
Gets the remainder of each component of the [Vector2i] with the components of the given [Vector2i]. This operation uses truncated division, which is often not desired as it does not work well with negative numbers. Consider using [method @GlobalScope.posmod] instead if you want to handle negative numbers.
[codeblock]
print(Vector2i(10, -20) % Vector2i(7, 8)) # Prints "(3, -4)"
[/codeblock]
</description>
</operator>
<operator name="operator %">
<return type="Vector2i" />
<param index="0" name="right" type="int" />
<description>
Gets the remainder of each component of the [Vector2i] with the the given [int]. This operation uses truncated division, which is often not desired as it does not work well with negative numbers. Consider using [method @GlobalScope.posmod] instead if you want to handle negative numbers.
[codeblock]
print(Vector2i(10, -20) % 7) # Prints "(3, -6)"
[/codeblock]
</description>
</operator>
<operator name="operator *">
<return type="Vector2i" />
<param index="0" name="right" type="Vector2i" />
<description>
Multiplies each component of the [Vector2i] by the components of the given [Vector2i].
[codeblock]
print(Vector2i(10, 20) * Vector2i(3, 4)) # Prints "(30, 80)"
[/codeblock]
</description>
</operator>
<operator name="operator *">
<return type="Vector2" />
<param index="0" name="right" type="float" />
<description>
Multiplies each component of the [Vector2i] by the given [float]. Returns a [Vector2].
[codeblock]
print(Vector2i(10, 15) * 0.9) # Prints "(9, 13.5)"
[/codeblock]
</description>
</operator>
<operator name="operator *">
<return type="Vector2i" />
<param index="0" name="right" type="int" />
<description>
Multiplies each component of the [Vector2i] by the given [int].
</description>
</operator>
<operator name="operator +">
<return type="Vector2i" />
<param index="0" name="right" type="Vector2i" />
<description>
Adds each component of the [Vector2i] by the components of the given [Vector2i].
[codeblock]
print(Vector2i(10, 20) + Vector2i(3, 4)) # Prints "(13, 24)"
[/codeblock]
</description>
</operator>
<operator name="operator -">
<return type="Vector2i" />
<param index="0" name="right" type="Vector2i" />
<description>
Subtracts each component of the [Vector2i] by the components of the given [Vector2i].
[codeblock]
print(Vector2i(10, 20) - Vector2i(3, 4)) # Prints "(7, 16)"
[/codeblock]
</description>
</operator>
<operator name="operator /">
<return type="Vector2i" />
<param index="0" name="right" type="Vector2i" />
<description>
Divides each component of the [Vector2i] by the components of the given [Vector2i].
[codeblock]
print(Vector2i(10, 20) / Vector2i(2, 5)) # Prints "(5, 4)"
[/codeblock]
</description>
</operator>
<operator name="operator /">
<return type="Vector2" />
<param index="0" name="right" type="float" />
<description>
Divides each component of the [Vector2i] by the given [float]. Returns a [Vector2].
[codeblock]
print(Vector2i(10, 20) / 2.9) # Prints "(5, 10)"
[/codeblock]
</description>
</operator>
<operator name="operator /">
<return type="Vector2i" />
<param index="0" name="right" type="int" />
<description>
Divides each component of the [Vector2i] by the given [int].
</description>
</operator>
<operator name="operator &lt;">
<return type="bool" />
<param index="0" name="right" type="Vector2i" />
<description>
Compares two [Vector2i] vectors by first checking if the X value of the left vector is less than the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
</description>
</operator>
<operator name="operator &lt;=">
<return type="bool" />
<param index="0" name="right" type="Vector2i" />
<description>
Compares two [Vector2i] vectors by first checking if the X value of the left vector is less than or equal to the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
</description>
</operator>
<operator name="operator ==">
<return type="bool" />
<param index="0" name="right" type="Vector2i" />
<description>
Returns [code]true[/code] if the vectors are equal.
</description>
</operator>
<operator name="operator &gt;">
<return type="bool" />
<param index="0" name="right" type="Vector2i" />
<description>
Compares two [Vector2i] vectors by first checking if the X value of the left vector is greater than the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
</description>
</operator>
<operator name="operator &gt;=">
<return type="bool" />
<param index="0" name="right" type="Vector2i" />
<description>
Compares two [Vector2i] vectors by first checking if the X value of the left vector is greater than or equal to the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
</description>
</operator>
<operator name="operator []">
<return type="int" />
<param index="0" name="index" type="int" />
<description>
Access vector components using their [param index]. [code]v[0][/code] is equivalent to [code]v.x[/code], and [code]v[1][/code] is equivalent to [code]v.y[/code].
</description>
</operator>
<operator name="operator unary+">
<return type="Vector2i" />
<description>
Returns the same value as if the [code]+[/code] was not there. Unary [code]+[/code] does nothing, but sometimes it can make your code more readable.
</description>
</operator>
<operator name="operator unary-">
<return type="Vector2i" />
<description>
Returns the negative value of the [Vector2i]. This is the same as writing [code]Vector2i(-v.x, -v.y)[/code]. This operation flips the direction of the vector while keeping the same magnitude.
</description>
</operator>
</operators>
</class>