glibc/sysdeps/sparc/sparc64/dl-machine.h
Ulrich Drepper f420344cef Update.
* elf/dynamic-link.h (elf_get_dynamic_info): Take new argument with
	load address.  Relocate d_ptr in DT_DTRTAB, DT_SYMTAB, DT_RELA, DT_REL,
	DT_JMPREL, DT_PLTGOT, and DT_VERSYM l_info entry.
	(_ELF_DYNAMIC_DO_RELOC): Take extra argument which specifies whether
	rel and rela relocations can both happen and skip one test if this
	is not possible.
	(ELF_DYNAMIC_DO_RELA, ELF_DYNAMIC_DO_REL): Call _ELF_DYNAMIC_DO_RELOC
	appropriately.
	* elf/dl-addr.c (_dl_addr): DT_SYMTAB and DT_STRTAB entries are
	already relocated.
	* elf/dl-deps.c (_dl_map_object_deps): DT_STRTAB entry is already
	relocated.
	* elf/dl-load.c (_dl_init_paths): DT_STRTAB entry is already relocated.
	(_dl_map_object_from_fd): Call elf_get_dynamic_info with new argument.
	(_dl_map_object): DT_STRTAB entry is already relocated.
	* elf/dl-lookup.c (do_lookup): DT_STRTAB and DT_SYMTAB entries are
	already relocated.
	* elf/dl-reloc.c (_dl_relocate_object): DT_STRTAB entry is already
	relocated.
	* elf/dl-runtime.c (fixup): DT_SYMTAB, DT_STRTAB, DT_JMPREL, and
	DT_VERSYM entries are already relocated.
	(profile_fixup): Likewise.
	* elf/dl-version.c: Rename VERSTAG macro into VERSYMIDX.  Replace
	all users.
	(match_symbol): DT_STRTAB entry is already relocated.
	(_dl_check_map_versions): Likewise.  Also fo DT_VERSYM.
	* elf/do-rel.h (elf_dynamic_do_rel): reladdr is now assumed to be
	relocated already.  DT_SYMTAB and DT_VERSYM entries are also relocated.
	* elf/rtld.c (_dl_start): Pass extra argument to elf_get_dynamic_info.
	(find_needed): DT_STRTAB entry is already relocated.
	(dl_main): Pass extra argument to elf_get_dynamic_info.
	DT_STRTAB entry is already relocated.
	* sysdeps/alpha/dl-machine.h (elf_machine_fixup_plt): DT_JMPREL and
	DT_PLTGOT entries are already relocated.
	(elf_machine_rela): Likewise for DT_SYMTAB.
	* sysdeps/arm/dl-machine.h (elf_machine_rel): DT_STRTAB is already
	relocated.
	* sysdeps/i386/dl-machine.h (elf_machine_rel): Likewise.
	* sysdeps/m68k/dl-machine.h (elf_machine_rela): Likewise.
	* sysdeps/sparc/sparc32/dl-machine.h (elf_machine_rela): Likewise.
	* sysdeps/sparc/sparc64/dl-machine.h (elf_machine_rela): Likewise.
	* sysdeps/powerpc/dl-machine.c (__process_machine_rela): Likewise.
	* sysdeps/mips/dl-machine.h (elf_machine_got_rel): Likewise.
	(elf_machine_got_rel): Likewise for DT_SYMTAB and DT_STRTAB.

	* grp/initgroups.c (initgroups): If function in current module was
	successful don't stop but continue to process to get all the groups.
1999-02-20 15:02:24 +00:00

576 lines
16 KiB
C

/* Machine-dependent ELF dynamic relocation inline functions. Sparc64 version.
Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#define ELF_MACHINE_NAME "sparc64"
#include <assert.h>
#include <string.h>
#include <sys/param.h>
#include <elf/ldsodefs.h>
#include <sysdep.h>
/* Return nonzero iff E_MACHINE is compatible with the running host. */
static inline int
elf_machine_matches_host (Elf64_Half e_machine)
{
return e_machine == EM_SPARCV9;
}
/* Return the link-time address of _DYNAMIC. Conveniently, this is the
first element of the GOT. This must be inlined in a function which
uses global data. */
static inline Elf64_Addr
elf_machine_dynamic (void)
{
register Elf64_Addr *elf_pic_register __asm__("%l7");
return *elf_pic_register;
}
/* Return the run-time load address of the shared object. */
static inline Elf64_Addr
elf_machine_load_address (void)
{
register Elf64_Addr elf_pic_register __asm__("%l7");
Elf64_Addr pc, la;
/* Utilize the fact that a local .got entry will be partially
initialized at startup awaiting its RELATIVE fixup. */
__asm("sethi %%hi(.Load_address), %1\n"
".Load_address:\n\t"
"rd %%pc, %0\n\t"
"or %1, %%lo(.Load_address), %1\n\t"
: "=r"(pc), "=r"(la));
return pc - *(Elf64_Addr *)(elf_pic_register + la);
}
/* We have 3 cases to handle. And we code different code sequences
for each one. I love V9 code models... */
static inline void
elf_machine_fixup_plt(struct link_map *map, const Elf64_Rela *reloc,
Elf64_Addr *reloc_addr, Elf64_Addr value)
{
unsigned int *insns = (unsigned int *) reloc_addr;
Elf64_Addr plt_vaddr = (Elf64_Addr) reloc_addr;
/* Now move plt_vaddr up to the call instruction. */
plt_vaddr += (2 * 4);
/* 32-bit Sparc style, the target is in the lower 32-bits of
address space. */
if ((value >> 32) == 0)
{
/* sethi %hi(target), %g1
jmpl %g1 + %lo(target), %g0 */
insns[2] = 0x81c06000 | (value & 0x3ff);
__asm __volatile ("flush %0 + 8" : : "r" (insns));
insns[1] = 0x03000000 | ((unsigned int)(value >> 10));
__asm __volatile ("flush %0 + 4" : : "r" (insns));
}
/* We can also get somewhat simple sequences if the distance between
the target and the PLT entry is within +/- 2GB. */
else if ((plt_vaddr > value
&& ((plt_vaddr - value) >> 32) == 0)
|| (value > plt_vaddr
&& ((value - plt_vaddr) >> 32) == 0))
{
unsigned int displacement;
if (plt_vaddr > value)
displacement = (0 - (plt_vaddr - value));
else
displacement = value - plt_vaddr;
/* mov %o7, %g1
call displacement
mov %g1, %o7 */
insns[3] = 0x9e100001;
__asm __volatile ("flush %0 + 12" : : "r" (insns));
insns[2] = 0x40000000 | (displacement >> 2);
__asm __volatile ("flush %0 + 8" : : "r" (insns));
insns[1] = 0x8210000f;
__asm __volatile ("flush %0 + 4" : : "r" (insns));
}
/* Worst case, ho hum... */
else
{
unsigned int high32 = (value >> 32);
unsigned int low32 = (unsigned int) value;
/* ??? Some tricks can be stolen from the sparc64 egcs backend
constant formation code I wrote. -DaveM */
/* sethi %hh(value), %g1
sethi %lm(value), %g2
or %g1, %hl(value), %g1
or %g2, %lo(value), %g2
sllx %g1, 32, %g1
jmpl %g1 + %g2, %g0
nop */
insns[6] = 0x81c04002;
__asm __volatile ("flush %0 + 24" : : "r" (insns));
insns[5] = 0x83287020;
__asm __volatile ("flush %0 + 20" : : "r" (insns));
insns[4] = 0x8410a000 | (low32 & 0x3ff);
__asm __volatile ("flush %0 + 16" : : "r" (insns));
insns[3] = 0x82106000 | (high32 & 0x3ff);
__asm __volatile ("flush %0 + 12" : : "r" (insns));
insns[2] = 0x05000000 | (low32 >> 10);
__asm __volatile ("flush %0 + 8" : : "r" (insns));
insns[1] = 0x03000000 | (high32 >> 10);
__asm __volatile ("flush %0 + 4" : : "r" (insns));
}
}
/* Return the final value of a plt relocation. */
static inline Elf64_Addr
elf_machine_plt_value (struct link_map *map, const Elf64_Rela *reloc,
Elf64_Addr value)
{
return value + reloc->r_addend;
}
#ifdef RESOLVE
/* Perform the relocation specified by RELOC and SYM (which is fully resolved).
MAP is the object containing the reloc. */
static inline void
elf_machine_rela (struct link_map *map, const Elf64_Rela *reloc,
const Elf64_Sym *sym, const struct r_found_version *version,
Elf64_Addr *const reloc_addr)
{
#ifndef RTLD_BOOTSTRAP
/* This is defined in rtld.c, but nowhere in the static libc.a; make the
reference weak so static programs can still link. This declaration
cannot be done when compiling rtld.c (i.e. #ifdef RTLD_BOOTSTRAP)
because rtld.c contains the common defn for _dl_rtld_map, which is
incompatible with a weak decl in the same file. */
weak_extern (_dl_rtld_map);
#endif
if (ELF64_R_TYPE (reloc->r_info) == R_SPARC_RELATIVE)
{
#ifndef RTLD_BOOTSTRAP
if (map != &_dl_rtld_map) /* Already done in rtld itself. */
#endif
*reloc_addr = map->l_addr + reloc->r_addend;
}
else if (ELF64_R_TYPE (reloc->r_info) != R_SPARC_NONE) /* Who is Wilbur? */
{
const Elf64_Sym *const refsym = sym;
Elf64_Addr value;
if (sym->st_shndx != SHN_UNDEF &&
ELF64_ST_BIND (sym->st_info) == STB_LOCAL)
value = map->l_addr;
else
{
value = RESOLVE (&sym, version, ELF64_R_TYPE (reloc->r_info));
if (sym)
value += sym->st_value;
}
value += reloc->r_addend; /* Assume copy relocs have zero addend. */
switch (ELF64_R_TYPE (reloc->r_info))
{
case R_SPARC_COPY:
if (sym == NULL)
/* This can happen in trace mode if an object could not be
found. */
break;
if (sym->st_size > refsym->st_size
|| (_dl_verbose && sym->st_size < refsym->st_size))
{
extern char **_dl_argv;
const char *strtab;
strtab = (const void *) map->l_info[DT_STRTAB]->d_un.d_ptr;
_dl_sysdep_error (_dl_argv[0] ?: "<program name unknown>",
": Symbol `", strtab + refsym->st_name,
"' has different size in shared object, "
"consider re-linking\n", NULL);
}
memcpy (reloc_addr, (void *) value, MIN (sym->st_size,
refsym->st_size));
break;
case R_SPARC_64:
case R_SPARC_GLOB_DAT:
*reloc_addr = value;
break;
case R_SPARC_8:
*(char *) reloc_addr = value;
break;
case R_SPARC_16:
*(short *) reloc_addr = value;
break;
case R_SPARC_32:
*(unsigned int *) reloc_addr = value;
break;
case R_SPARC_DISP8:
*(char *) reloc_addr = (value - (Elf64_Addr) reloc_addr);
break;
case R_SPARC_DISP16:
*(short *) reloc_addr = (value - (Elf64_Addr) reloc_addr);
break;
case R_SPARC_DISP32:
*(unsigned int *) reloc_addr = (value - (Elf64_Addr) reloc_addr);
break;
case R_SPARC_WDISP30:
*(unsigned int *) reloc_addr =
((*(unsigned int *)reloc_addr & 0xc0000000) |
((value - (Elf64_Addr) reloc_addr) >> 2));
break;
/* MEDLOW code model relocs */
case R_SPARC_LO10:
*(unsigned int *) reloc_addr =
((*(unsigned int *)reloc_addr & ~0x3ff) |
(value & 0x3ff));
break;
case R_SPARC_HI22:
*(unsigned int *) reloc_addr =
((*(unsigned int *)reloc_addr & 0xffc00000) |
(value >> 10));
break;
/* MEDMID code model relocs */
case R_SPARC_H44:
*(unsigned int *) reloc_addr =
((*(unsigned int *)reloc_addr & 0xffc00000) |
(value >> 22));
break;
case R_SPARC_M44:
*(unsigned int *) reloc_addr =
((*(unsigned int *)reloc_addr & ~0x3ff) |
((value >> 12) & 0x3ff));
break;
case R_SPARC_L44:
*(unsigned int *) reloc_addr =
((*(unsigned int *)reloc_addr & ~0xfff) |
(value & 0xfff));
break;
/* MEDANY code model relocs */
case R_SPARC_HH22:
*(unsigned int *) reloc_addr =
((*(unsigned int *)reloc_addr & 0xffc00000) |
(value >> 42));
break;
case R_SPARC_HM10:
*(unsigned int *) reloc_addr =
((*(unsigned int *)reloc_addr & ~0x3ff) |
((value >> 32) & 0x3ff));
break;
case R_SPARC_LM22:
*(unsigned int *) reloc_addr =
((*(unsigned int *)reloc_addr & 0xffc00000) |
((value >> 10) & 0x003fffff));
break;
case R_SPARC_JMP_SLOT:
elf_machine_fixup_plt(map, reloc, reloc_addr, value);
break;
default:
assert (! "unexpected dynamic reloc type");
break;
}
}
}
static inline void
elf_machine_lazy_rel (Elf64_Addr l_addr, const Elf64_Rela *reloc)
{
switch (ELF64_R_TYPE (reloc->r_info))
{
case R_SPARC_NONE:
break;
case R_SPARC_JMP_SLOT:
break;
default:
assert (! "unexpected PLT reloc type");
break;
}
}
#endif /* RESOLVE */
/* Nonzero iff TYPE should not be allowed to resolve to one of
the main executable's symbols, as for a COPY reloc. */
#define elf_machine_lookup_noexec_p(type) ((type) == R_SPARC_COPY)
/* Nonzero iff TYPE describes relocation of a PLT entry, so
PLT entries should not be allowed to define the value. */
#define elf_machine_lookup_noplt_p(type) ((type) == R_SPARC_JMP_SLOT)
/* A reloc type used for ld.so cmdline arg lookups to reject PLT entries. */
#define ELF_MACHINE_JMP_SLOT R_SPARC_JMP_SLOT
/* The SPARC never uses Elf64_Rel relocations. */
#define ELF_MACHINE_NO_REL 1
/* The SPARC overlaps DT_RELA and DT_PLTREL. */
#define ELF_MACHINE_PLTREL_OVERLAP 1
/* Set up the loaded object described by L so its unrelocated PLT
entries will jump to the on-demand fixup code in dl-runtime.c. */
static inline int
elf_machine_runtime_setup (struct link_map *l, int lazy, int profile)
{
if (l->l_info[DT_JMPREL] && lazy)
{
extern void _dl_runtime_resolve_0 (void);
extern void _dl_runtime_resolve_1 (void);
extern void _dl_runtime_profile_0 (void);
extern void _dl_runtime_profile_1 (void);
Elf64_Addr res0_addr, res1_addr;
unsigned int *plt = (unsigned int *)
(l->l_addr + l->l_info[DT_PLTGOT]->d_un.d_ptr);
if (! profile)
{
res0_addr = (Elf64_Addr) &_dl_runtime_resolve_0;
res1_addr = (Elf64_Addr) &_dl_runtime_resolve_1;
}
else
{
res0_addr = (Elf64_Addr) &_dl_runtime_profile_0;
res1_addr = (Elf64_Addr) &_dl_runtime_profile_1;
if (_dl_name_match_p (_dl_profile, l))
_dl_profile_map = l;
}
/* PLT0 looks like:
save %sp, -192, %sp
sethi %hh(_dl_runtime_{resolve,profile}_0), %g3
sethi %lm(_dl_runtime_{resolve,profile}_0), %g4
or %g3, %hm(_dl_runtime_{resolve,profile}_0), %g3
or %g4, %lo(_dl_runtime_{resolve,profile}_0), %g4
sllx %g3, 32, %g3
jmpl %g3 + %g4, %o0
nop
PLT1 is similar except we jump to _dl_runtime_{resolve,profile}_1. */
plt[0] = 0x9de3bf40;
plt[1] = 0x07000000 | (res0_addr >> (64 - 22));
plt[2] = 0x09000000 | ((res0_addr >> 10) & 0x003fffff);
plt[3] = 0x8610e000 | ((res0_addr >> 32) & 0x3ff);
plt[4] = 0x88112000 | (res0_addr & 0x3ff);
plt[5] = 0x8728f020;
plt[6] = 0x91c0c004;
plt[7] = 0x01000000;
plt[8 + 0] = 0x9de3bf40;
plt[8 + 1] = 0x07000000 | (res1_addr >> (64 - 22));
plt[8 + 2] = 0x09000000 | ((res1_addr >> 10) & 0x003fffff);
plt[8 + 3] = 0x8610e000 | ((res1_addr >> 32) & 0x3ff);
plt[8 + 4] = 0x88112000 | (res1_addr & 0x3ff);
plt[8 + 5] = 0x8728f020;
plt[8 + 6] = 0x91c0c004;
plt[8 + 7] = 0x01000000;
/* Now put the magic cookie at the beginning of .PLT3
Entry .PLT4 is unused by this implementation. */
*((struct link_map **)(&plt[16 + 0])) = l;
}
return lazy;
}
/* This code is used in dl-runtime.c to call the `fixup' function
and then redirect to the address it returns. */
#define TRAMPOLINE_TEMPLATE(tramp_name, fixup_name) \
asm ("\
.text
.globl " #tramp_name "_0
.type " #tramp_name "_0, @function
.align 32
" #tramp_name "_0:
ldx [%o0 + 32 + 8], %l0
sethi %hi(1048576), %g2
sub %g1, %o0, %o0
xor %g2, -20, %g2
sethi %hi(5120), %g3
add %o0, %g2, %o0
sethi %hi(32768), %o2
udivx %o0, %g3, %g3
sllx %g3, 2, %g1
add %g1, %g3, %g1
sllx %g1, 10, %g2
sllx %g1, 5, %g1
sub %o0, %g2, %o0
udivx %o0, 24, %o0
add %o0, %o2, %o0
add %g1, %o0, %g1
sllx %g1, 1, %o1
mov %l0, %o0
add %o1, %g1, %o1
mov %i7, %o2
call " #fixup_name "
sllx %o1, 3, %o1
jmp %o0
restore
.size " #tramp_name "_0, . - " #tramp_name "_0
.globl " #tramp_name "_1
.type " #tramp_name "_1, @function
.align 32
" #tramp_name "_1:
srlx %g1, 15, %o1
ldx [%o0 + 8], %o0
sllx %o1, 1, %o3
add %o1, %o3, %o1
mov %i7, %o2
call " #fixup_name "
sllx %o1, 3, %o1
jmp %o0
restore
.size " #tramp_name "_1, . - " #tramp_name "_1
.previous");
#ifndef PROF
#define ELF_MACHINE_RUNTIME_TRAMPOLINE \
TRAMPOLINE_TEMPLATE (_dl_runtime_resolve, fixup); \
TRAMPOLINE_TEMPLATE (_dl_runtime_profile, profile_fixup);
#else
#define ELF_MACHINE_RUNTIME_TRAMPOLINE \
TRAMPOLINE_TEMPLATE (_dl_runtime_resolve, fixup); \
TRAMPOLINE_TEMPLATE (_dl_runtime_profile, fixup);
#endif
/* The PLT uses Elf64_Rela relocs. */
#define elf_machine_relplt elf_machine_rela
/* Initial entry point code for the dynamic linker.
The C function `_dl_start' is the real entry point;
its return value is the user program's entry point. */
#define __S1(x) #x
#define __S(x) __S1(x)
#define RTLD_START __asm__ ( "\
.text
.global _start
.type _start, @function
.align 32
_start:
/* Make room for functions to drop their arguments on the stack. */
sub %sp, 6*8, %sp
/* Pass pointer to argument block to _dl_start. */
call _dl_start
add %sp," __S(STACK_BIAS) "+22*8,%o0
/* FALLTHRU */
.size _start, .-_start
.global _dl_start_user
.type _dl_start_user, @function
_dl_start_user:
/* Load the GOT register. */
1: call 11f
sethi %hi(_GLOBAL_OFFSET_TABLE_-(1b-.)),%l7
11: or %l7,%lo(_GLOBAL_OFFSET_TABLE_-(1b-.)),%l7
add %l7,%o7,%l7
/* Save the user entry point address in %l0. */
mov %o0,%l0
/* Store the highest stack address. */
sethi %hi(__libc_stack_end), %g2
or %g2, %lo(__libc_stack_end), %g2
ldx [%l7 + %g2], %l1
add %sp, 6*8, %l2
stx %l2, [%l1]
/* See if we were run as a command with the executable file name as an
extra leading argument. If so, we must shift things around since we
must keep the stack doubleword aligned. */
sethi %hi(_dl_skip_args), %g2
or %g2, %lo(_dl_skip_args), %g2
ldx [%l7+%g2], %i0
ld [%i0], %i0
brz,pt %i0, 2f
nop
/* Find out how far to shift. */
ldx [%sp+" __S(STACK_BIAS) "+22*8], %i1
sub %i1, %i0, %i1
sllx %i0, 3, %i2
stx %i1, [%sp+" __S(STACK_BIAS) "+22*8]
add %sp, " __S(STACK_BIAS) "+23*8, %i1
add %i1, %i2, %i2
/* Copy down argv. */
12: ldx [%i2], %i3
add %i2, 8, %i2
stx %i3, [%i1]
brnz,pt %i3, 12b
add %i1, 8, %i1
/* Copy down envp. */
13: ldx [%i2], %i3
add %i2, 8, %i2
stx %i3, [%i1]
brnz,pt %i3, 13b
add %i1, 8, %i1
/* Copy down auxiliary table. */
14: ldx [%i2], %i3
ldx [%i2+8], %i4
add %i2, 16, %i2
stx %i3, [%i1]
stx %i4, [%i1+8]
brnz,pt %i3, 13b
add %i1, 16, %i1
/* Load searchlist of the main object to pass to _dl_init_next. */
2: sethi %hi(_dl_main_searchlist), %g2
or %g2, %lo(_dl_main_searchlist), %g2
ldx [%l7+%g2], %g2
ldx [%g2], %l1
/* Call _dl_init_next to return the address of an initializer to run. */
3: call _dl_init_next
mov %l1, %o0
brz,pn %o0, 4f
nop
jmpl %o0, %o7
sub %o7, 24, %o7
/* Clear the startup flag. */
4: sethi %hi(_dl_starting_up), %g2
or %g2, %lo(_dl_starting_up), %g2
ldx [%l7+%g2], %g2
st %g0, [%g2]
/* Pass our finalizer function to the user in %g1. */
sethi %hi(_dl_fini), %g1
or %g1, %lo(_dl_fini), %g1
ldx [%l7+%g1], %g1
/* Jump to the user's entry point and deallocate the extra stack we got. */
jmp %l0
add %sp, 6*8, %sp
.size _dl_start_user, . - _dl_start_user
.previous");