mirror of
git://sourceware.org/git/glibc.git
synced 2025-01-06 12:00:24 +08:00
e44acb2063
Similar to the changes that were made to call sqrt functions directly in glibc, instead of __ieee754_sqrt variants, so that the compiler could inline them automatically without needing special inline definitions in lots of math_private.h headers, this patch makes libm code call floor functions directly instead of __floor variants, removing the inlines / macros for x86_64 (SSE4.1) and powerpc (POWER5). The redirection used to ensure that __ieee754_sqrt does still get called when the compiler doesn't inline a built-in function expansion is refactored so it can be applied to other functions; the refactoring is arranged so it's not limited to unary functions either (it would be reasonable to use this mechanism for copysign - removing the inline in math_private_calls.h but also eliminating unnecessary local PLT entry use in the cases (powerpc soft-float and e500v1, for IBM long double) where copysign calls don't get inlined). The point of this change is that more architectures can get floor calls inlined where they weren't previously (AArch64, for example), without needing special inline definitions in their math_private.h, and existing such definitions in math_private.h headers can be removed. Note that it's possible that in some cases an inline may be used where an IFUNC call was previously used - this is the case on x86_64, for example. I think the direct calls to floor are still appropriate; if there's any significant performance cost from inline SSE2 floor instead of an IFUNC call ending up with SSE4.1 floor, that indicates that either the function should be doing something else that's faster than using floor at all, or it should itself have IFUNC variants, or that the compiler choice of inlining for generic tuning should change to allow for the possibility that, by not inlining, an SSE4.1 IFUNC might be called at runtime - but not that glibc should avoid calling floor internally. (After all, all the same considerations would apply to any user program calling floor, where it might either be inlined or left as an out-of-line call allowing for a possible IFUNC.) Tested for x86_64, and with build-many-glibcs.py. * include/math.h [!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (MATH_REDIRECT): New macro. [!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (MATH_REDIRECT_LDBL): Likewise. [!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (MATH_REDIRECT_F128): Likewise. [!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (MATH_REDIRECT_UNARY_ARGS): Likewise. [!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (sqrt): Redirect using MATH_REDIRECT. [!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (floor): Likewise. * sysdeps/aarch64/fpu/s_floor.c: Define NO_MATH_REDIRECT before header inclusion. * sysdeps/aarch64/fpu/s_floorf.c: Likewise. * sysdeps/ieee754/dbl-64/s_floor.c: Likewise. * sysdeps/ieee754/dbl-64/wordsize-64/s_floor.c: Likewise. * sysdeps/ieee754/float128/s_floorf128.c: Likewise. * sysdeps/ieee754/flt-32/s_floorf.c: Likewise. * sysdeps/ieee754/ldbl-128/s_floorl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_floorl.c: Likewise. * sysdeps/m68k/m680x0/fpu/s_floor_template.c: Likewise. * sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_floor.c: Likewise. * sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_floorf.c: Likewise. * sysdeps/powerpc/powerpc64/fpu/multiarch/s_floor.c: Likewise. * sysdeps/powerpc/powerpc64/fpu/multiarch/s_floorf.c: Likewise. * sysdeps/riscv/rv64/rvd/s_floor.c: Likewise. * sysdeps/riscv/rvf/s_floorf.c: Likewise. * sysdeps/sparc/sparc64/fpu/multiarch/s_floor.c: Likewise. * sysdeps/sparc/sparc64/fpu/multiarch/s_floorf.c: Likewise. * sysdeps/x86_64/fpu/multiarch/s_floor.c: Likewise. * sysdeps/x86_64/fpu/multiarch/s_floorf.c: Likewise. * sysdeps/powerpc/fpu/math_private.h [_ARCH_PWR5X] (__floor): Remove macro. [_ARCH_PWR5X] (__floorf): Likewise. * sysdeps/x86_64/fpu/math_private.h [__SSE4_1__] (__floor): Remove inline function. [__SSE4_1__] (__floorf): Likewise. * math/w_lgamma_main.c (LGFUNC (__lgamma)): Use floor functions instead of __floor variants. * math/w_lgamma_r_compat.c (__lgamma_r): Likewise. * math/w_lgammaf_main.c (LGFUNC (__lgammaf)): Likewise. * math/w_lgammaf_r_compat.c (__lgammaf_r): Likewise. * math/w_lgammal_main.c (LGFUNC (__lgammal)): Likewise. * math/w_lgammal_r_compat.c (__lgammal_r): Likewise. * math/w_tgamma_compat.c (__tgamma): Likewise. * math/w_tgamma_template.c (M_DECL_FUNC (__tgamma)): Likewise. * math/w_tgammaf_compat.c (__tgammaf): Likewise. * math/w_tgammal_compat.c (__tgammal): Likewise. * sysdeps/ieee754/dbl-64/e_lgamma_r.c (sin_pi): Likewise. * sysdeps/ieee754/dbl-64/k_rem_pio2.c (__kernel_rem_pio2): Likewise. * sysdeps/ieee754/dbl-64/lgamma_neg.c (__lgamma_neg): Likewise. * sysdeps/ieee754/flt-32/e_lgammaf_r.c (sin_pif): Likewise. * sysdeps/ieee754/flt-32/lgamma_negf.c (__lgamma_negf): Likewise. * sysdeps/ieee754/ldbl-128/e_lgammal_r.c (__ieee754_lgammal_r): Likewise. * sysdeps/ieee754/ldbl-128/e_powl.c (__ieee754_powl): Likewise. * sysdeps/ieee754/ldbl-128/lgamma_negl.c (__lgamma_negl): Likewise. * sysdeps/ieee754/ldbl-128/s_expm1l.c (__expm1l): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_lgammal_r.c (__ieee754_lgammal_r): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Likewise. * sysdeps/ieee754/ldbl-128ibm/lgamma_negl.c (__lgamma_negl): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_expm1l.c (__expm1l): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_truncl.c (__truncl): Likewise. * sysdeps/ieee754/ldbl-96/e_lgammal_r.c (sin_pi): Likewise. * sysdeps/ieee754/ldbl-96/lgamma_negl.c (__lgamma_negl): Likewise. * sysdeps/powerpc/power5+/fpu/s_modf.c (__modf): Likewise. * sysdeps/powerpc/power5+/fpu/s_modff.c (__modff): Likewise.
386 lines
12 KiB
C
386 lines
12 KiB
C
/* lgamma expanding around zeros.
|
|
Copyright (C) 2015-2018 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <math-narrow-eval.h>
|
|
#include <math_private.h>
|
|
#include <fenv_private.h>
|
|
|
|
static const double lgamma_zeros[][2] =
|
|
{
|
|
{ -0x2.74ff92c01f0d8p+0, -0x2.abec9f315f1ap-56 },
|
|
{ -0x2.bf6821437b202p+0, 0x6.866a5b4b9be14p-56 },
|
|
{ -0x3.24c1b793cb35ep+0, -0xf.b8be699ad3d98p-56 },
|
|
{ -0x3.f48e2a8f85fcap+0, -0x1.70d4561291237p-56 },
|
|
{ -0x4.0a139e1665604p+0, 0xf.3c60f4f21e7fp-56 },
|
|
{ -0x4.fdd5de9bbabf4p+0, 0xa.ef2f55bf89678p-56 },
|
|
{ -0x5.021a95fc2db64p+0, -0x3.2a4c56e595394p-56 },
|
|
{ -0x5.ffa4bd647d034p+0, -0x1.7dd4ed62cbd32p-52 },
|
|
{ -0x6.005ac9625f234p+0, 0x4.9f83d2692e9c8p-56 },
|
|
{ -0x6.fff2fddae1bcp+0, 0xc.29d949a3dc03p-60 },
|
|
{ -0x7.000cff7b7f87cp+0, 0x1.20bb7d2324678p-52 },
|
|
{ -0x7.fffe5fe05673cp+0, -0x3.ca9e82b522b0cp-56 },
|
|
{ -0x8.0001a01459fc8p+0, -0x1.f60cb3cec1cedp-52 },
|
|
{ -0x8.ffffd1c425e8p+0, -0xf.fc864e9574928p-56 },
|
|
{ -0x9.00002e3bb47d8p+0, -0x6.d6d843fedc35p-56 },
|
|
{ -0x9.fffffb606bep+0, 0x2.32f9d51885afap-52 },
|
|
{ -0xa.0000049f93bb8p+0, -0x1.927b45d95e154p-52 },
|
|
{ -0xa.ffffff9466eap+0, 0xe.4c92532d5243p-56 },
|
|
{ -0xb.0000006b9915p+0, -0x3.15d965a6ffea4p-52 },
|
|
{ -0xb.fffffff708938p+0, -0x7.387de41acc3d4p-56 },
|
|
{ -0xc.00000008f76c8p+0, 0x8.cea983f0fdafp-56 },
|
|
{ -0xc.ffffffff4f6ep+0, 0x3.09e80685a0038p-52 },
|
|
{ -0xd.00000000b092p+0, -0x3.09c06683dd1bap-52 },
|
|
{ -0xd.fffffffff3638p+0, 0x3.a5461e7b5c1f6p-52 },
|
|
{ -0xe.000000000c9c8p+0, -0x3.a545e94e75ec6p-52 },
|
|
{ -0xe.ffffffffff29p+0, 0x3.f9f399fb10cfcp-52 },
|
|
{ -0xf.0000000000d7p+0, -0x3.f9f399bd0e42p-52 },
|
|
{ -0xf.fffffffffff28p+0, -0xc.060c6621f513p-56 },
|
|
{ -0x1.000000000000dp+4, -0x7.3f9f399da1424p-52 },
|
|
{ -0x1.0ffffffffffffp+4, -0x3.569c47e7a93e2p-52 },
|
|
{ -0x1.1000000000001p+4, 0x3.569c47e7a9778p-52 },
|
|
{ -0x1.2p+4, 0xb.413c31dcbecdp-56 },
|
|
{ -0x1.2p+4, -0xb.413c31dcbeca8p-56 },
|
|
{ -0x1.3p+4, 0x9.7a4da340a0ab8p-60 },
|
|
{ -0x1.3p+4, -0x9.7a4da340a0ab8p-60 },
|
|
{ -0x1.4p+4, 0x7.950ae90080894p-64 },
|
|
{ -0x1.4p+4, -0x7.950ae90080894p-64 },
|
|
{ -0x1.5p+4, 0x5.c6e3bdb73d5c8p-68 },
|
|
{ -0x1.5p+4, -0x5.c6e3bdb73d5c8p-68 },
|
|
{ -0x1.6p+4, 0x4.338e5b6dfe14cp-72 },
|
|
{ -0x1.6p+4, -0x4.338e5b6dfe14cp-72 },
|
|
{ -0x1.7p+4, 0x2.ec368262c7034p-76 },
|
|
{ -0x1.7p+4, -0x2.ec368262c7034p-76 },
|
|
{ -0x1.8p+4, 0x1.f2cf01972f578p-80 },
|
|
{ -0x1.8p+4, -0x1.f2cf01972f578p-80 },
|
|
{ -0x1.9p+4, 0x1.3f3ccdd165fa9p-84 },
|
|
{ -0x1.9p+4, -0x1.3f3ccdd165fa9p-84 },
|
|
{ -0x1.ap+4, 0xc.4742fe35272dp-92 },
|
|
{ -0x1.ap+4, -0xc.4742fe35272dp-92 },
|
|
{ -0x1.bp+4, 0x7.46ac70b733a8cp-96 },
|
|
{ -0x1.bp+4, -0x7.46ac70b733a8cp-96 },
|
|
{ -0x1.cp+4, 0x4.2862898d42174p-100 },
|
|
};
|
|
|
|
static const double e_hi = 0x2.b7e151628aed2p+0, e_lo = 0xa.6abf7158809dp-56;
|
|
|
|
/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) in Stirling's
|
|
approximation to lgamma function. */
|
|
|
|
static const double lgamma_coeff[] =
|
|
{
|
|
0x1.5555555555555p-4,
|
|
-0xb.60b60b60b60b8p-12,
|
|
0x3.4034034034034p-12,
|
|
-0x2.7027027027028p-12,
|
|
0x3.72a3c5631fe46p-12,
|
|
-0x7.daac36664f1f4p-12,
|
|
0x1.a41a41a41a41ap-8,
|
|
-0x7.90a1b2c3d4e6p-8,
|
|
0x2.dfd2c703c0dp-4,
|
|
-0x1.6476701181f3ap+0,
|
|
0xd.672219167003p+0,
|
|
-0x9.cd9292e6660d8p+4,
|
|
};
|
|
|
|
#define NCOEFF (sizeof (lgamma_coeff) / sizeof (lgamma_coeff[0]))
|
|
|
|
/* Polynomial approximations to (|gamma(x)|-1)(x-n)/(x-x0), where n is
|
|
the integer end-point of the half-integer interval containing x and
|
|
x0 is the zero of lgamma in that half-integer interval. Each
|
|
polynomial is expressed in terms of x-xm, where xm is the midpoint
|
|
of the interval for which the polynomial applies. */
|
|
|
|
static const double poly_coeff[] =
|
|
{
|
|
/* Interval [-2.125, -2] (polynomial degree 10). */
|
|
-0x1.0b71c5c54d42fp+0,
|
|
-0xc.73a1dc05f3758p-4,
|
|
-0x1.ec84140851911p-4,
|
|
-0xe.37c9da23847e8p-4,
|
|
-0x1.03cd87cdc0ac6p-4,
|
|
-0xe.ae9aedce12eep-4,
|
|
0x9.b11a1780cfd48p-8,
|
|
-0xe.f25fc460bdebp-4,
|
|
0x2.6e984c61ca912p-4,
|
|
-0xf.83fea1c6d35p-4,
|
|
0x4.760c8c8909758p-4,
|
|
/* Interval [-2.25, -2.125] (polynomial degree 11). */
|
|
-0xf.2930890d7d678p-4,
|
|
-0xc.a5cfde054eaa8p-4,
|
|
0x3.9c9e0fdebd99cp-4,
|
|
-0x1.02a5ad35619d9p+0,
|
|
0x9.6e9b1167c164p-4,
|
|
-0x1.4d8332eba090ap+0,
|
|
0x1.1c0c94b1b2b6p+0,
|
|
-0x1.c9a70d138c74ep+0,
|
|
0x1.d7d9cf1d4c196p+0,
|
|
-0x2.91fbf4cd6abacp+0,
|
|
0x2.f6751f74b8ff8p+0,
|
|
-0x3.e1bb7b09e3e76p+0,
|
|
/* Interval [-2.375, -2.25] (polynomial degree 12). */
|
|
-0xd.7d28d505d618p-4,
|
|
-0xe.69649a3040958p-4,
|
|
0xb.0d74a2827cd6p-4,
|
|
-0x1.924b09228a86ep+0,
|
|
0x1.d49b12bcf6175p+0,
|
|
-0x3.0898bb530d314p+0,
|
|
0x4.207a6be8fda4cp+0,
|
|
-0x6.39eef56d4e9p+0,
|
|
0x8.e2e42acbccec8p+0,
|
|
-0xd.0d91c1e596a68p+0,
|
|
0x1.2e20d7099c585p+4,
|
|
-0x1.c4eb6691b4ca9p+4,
|
|
0x2.96a1a11fd85fep+4,
|
|
/* Interval [-2.5, -2.375] (polynomial degree 13). */
|
|
-0xb.74ea1bcfff948p-4,
|
|
-0x1.2a82bd590c376p+0,
|
|
0x1.88020f828b81p+0,
|
|
-0x3.32279f040d7aep+0,
|
|
0x5.57ac8252ce868p+0,
|
|
-0x9.c2aedd093125p+0,
|
|
0x1.12c132716e94cp+4,
|
|
-0x1.ea94dfa5c0a6dp+4,
|
|
0x3.66b61abfe858cp+4,
|
|
-0x6.0cfceb62a26e4p+4,
|
|
0xa.beeba09403bd8p+4,
|
|
-0x1.3188d9b1b288cp+8,
|
|
0x2.37f774dd14c44p+8,
|
|
-0x3.fdf0a64cd7136p+8,
|
|
/* Interval [-2.625, -2.5] (polynomial degree 13). */
|
|
-0x3.d10108c27ebbp-4,
|
|
0x1.cd557caff7d2fp+0,
|
|
0x3.819b4856d36cep+0,
|
|
0x6.8505cbacfc42p+0,
|
|
0xb.c1b2e6567a4dp+0,
|
|
0x1.50a53a3ce6c73p+4,
|
|
0x2.57adffbb1ec0cp+4,
|
|
0x4.2b15549cf400cp+4,
|
|
0x7.698cfd82b3e18p+4,
|
|
0xd.2decde217755p+4,
|
|
0x1.7699a624d07b9p+8,
|
|
0x2.98ecf617abbfcp+8,
|
|
0x4.d5244d44d60b4p+8,
|
|
0x8.e962bf7395988p+8,
|
|
/* Interval [-2.75, -2.625] (polynomial degree 12). */
|
|
-0x6.b5d252a56e8a8p-4,
|
|
0x1.28d60383da3a6p+0,
|
|
0x1.db6513ada89bep+0,
|
|
0x2.e217118fa8c02p+0,
|
|
0x4.450112c651348p+0,
|
|
0x6.4af990f589b8cp+0,
|
|
0x9.2db5963d7a238p+0,
|
|
0xd.62c03647da19p+0,
|
|
0x1.379f81f6416afp+4,
|
|
0x1.c5618b4fdb96p+4,
|
|
0x2.9342d0af2ac4ep+4,
|
|
0x3.d9cdf56d2b186p+4,
|
|
0x5.ab9f91d5a27a4p+4,
|
|
/* Interval [-2.875, -2.75] (polynomial degree 11). */
|
|
-0x8.a41b1e4f36ff8p-4,
|
|
0xc.da87d3b69dbe8p-4,
|
|
0x1.1474ad5c36709p+0,
|
|
0x1.761ecb90c8c5cp+0,
|
|
0x1.d279bff588826p+0,
|
|
0x2.4e5d003fb36a8p+0,
|
|
0x2.d575575566842p+0,
|
|
0x3.85152b0d17756p+0,
|
|
0x4.5213d921ca13p+0,
|
|
0x5.55da7dfcf69c4p+0,
|
|
0x6.acef729b9404p+0,
|
|
0x8.483cc21dd0668p+0,
|
|
/* Interval [-3, -2.875] (polynomial degree 11). */
|
|
-0xa.046d667e468f8p-4,
|
|
0x9.70b88dcc006cp-4,
|
|
0xa.a8a39421c94dp-4,
|
|
0xd.2f4d1363f98ep-4,
|
|
0xd.ca9aa19975b7p-4,
|
|
0xf.cf09c2f54404p-4,
|
|
0x1.04b1365a9adfcp+0,
|
|
0x1.22b54ef213798p+0,
|
|
0x1.2c52c25206bf5p+0,
|
|
0x1.4aa3d798aace4p+0,
|
|
0x1.5c3f278b504e3p+0,
|
|
0x1.7e08292cc347bp+0,
|
|
};
|
|
|
|
static const size_t poly_deg[] =
|
|
{
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
13,
|
|
12,
|
|
11,
|
|
11,
|
|
};
|
|
|
|
static const size_t poly_end[] =
|
|
{
|
|
10,
|
|
22,
|
|
35,
|
|
49,
|
|
63,
|
|
76,
|
|
88,
|
|
100,
|
|
};
|
|
|
|
/* Compute sin (pi * X) for -0.25 <= X <= 0.5. */
|
|
|
|
static double
|
|
lg_sinpi (double x)
|
|
{
|
|
if (x <= 0.25)
|
|
return __sin (M_PI * x);
|
|
else
|
|
return __cos (M_PI * (0.5 - x));
|
|
}
|
|
|
|
/* Compute cos (pi * X) for -0.25 <= X <= 0.5. */
|
|
|
|
static double
|
|
lg_cospi (double x)
|
|
{
|
|
if (x <= 0.25)
|
|
return __cos (M_PI * x);
|
|
else
|
|
return __sin (M_PI * (0.5 - x));
|
|
}
|
|
|
|
/* Compute cot (pi * X) for -0.25 <= X <= 0.5. */
|
|
|
|
static double
|
|
lg_cotpi (double x)
|
|
{
|
|
return lg_cospi (x) / lg_sinpi (x);
|
|
}
|
|
|
|
/* Compute lgamma of a negative argument -28 < X < -2, setting
|
|
*SIGNGAMP accordingly. */
|
|
|
|
double
|
|
__lgamma_neg (double x, int *signgamp)
|
|
{
|
|
/* Determine the half-integer region X lies in, handle exact
|
|
integers and determine the sign of the result. */
|
|
int i = floor (-2 * x);
|
|
if ((i & 1) == 0 && i == -2 * x)
|
|
return 1.0 / 0.0;
|
|
double xn = ((i & 1) == 0 ? -i / 2 : (-i - 1) / 2);
|
|
i -= 4;
|
|
*signgamp = ((i & 2) == 0 ? -1 : 1);
|
|
|
|
SET_RESTORE_ROUND (FE_TONEAREST);
|
|
|
|
/* Expand around the zero X0 = X0_HI + X0_LO. */
|
|
double x0_hi = lgamma_zeros[i][0], x0_lo = lgamma_zeros[i][1];
|
|
double xdiff = x - x0_hi - x0_lo;
|
|
|
|
/* For arguments in the range -3 to -2, use polynomial
|
|
approximations to an adjusted version of the gamma function. */
|
|
if (i < 2)
|
|
{
|
|
int j = floor (-8 * x) - 16;
|
|
double xm = (-33 - 2 * j) * 0.0625;
|
|
double x_adj = x - xm;
|
|
size_t deg = poly_deg[j];
|
|
size_t end = poly_end[j];
|
|
double g = poly_coeff[end];
|
|
for (size_t j = 1; j <= deg; j++)
|
|
g = g * x_adj + poly_coeff[end - j];
|
|
return __log1p (g * xdiff / (x - xn));
|
|
}
|
|
|
|
/* The result we want is log (sinpi (X0) / sinpi (X))
|
|
+ log (gamma (1 - X0) / gamma (1 - X)). */
|
|
double x_idiff = fabs (xn - x), x0_idiff = fabs (xn - x0_hi - x0_lo);
|
|
double log_sinpi_ratio;
|
|
if (x0_idiff < x_idiff * 0.5)
|
|
/* Use log not log1p to avoid inaccuracy from log1p of arguments
|
|
close to -1. */
|
|
log_sinpi_ratio = __ieee754_log (lg_sinpi (x0_idiff)
|
|
/ lg_sinpi (x_idiff));
|
|
else
|
|
{
|
|
/* Use log1p not log to avoid inaccuracy from log of arguments
|
|
close to 1. X0DIFF2 has positive sign if X0 is further from
|
|
XN than X is from XN, negative sign otherwise. */
|
|
double x0diff2 = ((i & 1) == 0 ? xdiff : -xdiff) * 0.5;
|
|
double sx0d2 = lg_sinpi (x0diff2);
|
|
double cx0d2 = lg_cospi (x0diff2);
|
|
log_sinpi_ratio = __log1p (2 * sx0d2
|
|
* (-sx0d2 + cx0d2 * lg_cotpi (x_idiff)));
|
|
}
|
|
|
|
double log_gamma_ratio;
|
|
double y0 = math_narrow_eval (1 - x0_hi);
|
|
double y0_eps = -x0_hi + (1 - y0) - x0_lo;
|
|
double y = math_narrow_eval (1 - x);
|
|
double y_eps = -x + (1 - y);
|
|
/* We now wish to compute LOG_GAMMA_RATIO
|
|
= log (gamma (Y0 + Y0_EPS) / gamma (Y + Y_EPS)). XDIFF
|
|
accurately approximates the difference Y0 + Y0_EPS - Y -
|
|
Y_EPS. Use Stirling's approximation. First, we may need to
|
|
adjust into the range where Stirling's approximation is
|
|
sufficiently accurate. */
|
|
double log_gamma_adj = 0;
|
|
if (i < 6)
|
|
{
|
|
int n_up = (7 - i) / 2;
|
|
double ny0, ny0_eps, ny, ny_eps;
|
|
ny0 = math_narrow_eval (y0 + n_up);
|
|
ny0_eps = y0 - (ny0 - n_up) + y0_eps;
|
|
y0 = ny0;
|
|
y0_eps = ny0_eps;
|
|
ny = math_narrow_eval (y + n_up);
|
|
ny_eps = y - (ny - n_up) + y_eps;
|
|
y = ny;
|
|
y_eps = ny_eps;
|
|
double prodm1 = __lgamma_product (xdiff, y - n_up, y_eps, n_up);
|
|
log_gamma_adj = -__log1p (prodm1);
|
|
}
|
|
double log_gamma_high
|
|
= (xdiff * __log1p ((y0 - e_hi - e_lo + y0_eps) / e_hi)
|
|
+ (y - 0.5 + y_eps) * __log1p (xdiff / y) + log_gamma_adj);
|
|
/* Compute the sum of (B_2k / 2k(2k-1))(Y0^-(2k-1) - Y^-(2k-1)). */
|
|
double y0r = 1 / y0, yr = 1 / y;
|
|
double y0r2 = y0r * y0r, yr2 = yr * yr;
|
|
double rdiff = -xdiff / (y * y0);
|
|
double bterm[NCOEFF];
|
|
double dlast = rdiff, elast = rdiff * yr * (yr + y0r);
|
|
bterm[0] = dlast * lgamma_coeff[0];
|
|
for (size_t j = 1; j < NCOEFF; j++)
|
|
{
|
|
double dnext = dlast * y0r2 + elast;
|
|
double enext = elast * yr2;
|
|
bterm[j] = dnext * lgamma_coeff[j];
|
|
dlast = dnext;
|
|
elast = enext;
|
|
}
|
|
double log_gamma_low = 0;
|
|
for (size_t j = 0; j < NCOEFF; j++)
|
|
log_gamma_low += bterm[NCOEFF - 1 - j];
|
|
log_gamma_ratio = log_gamma_high + log_gamma_low;
|
|
|
|
return log_sinpi_ratio + log_gamma_ratio;
|
|
}
|