mirror of
git://sourceware.org/git/glibc.git
synced 2024-12-21 04:31:04 +08:00
122 lines
3.4 KiB
C
122 lines
3.4 KiB
C
/* Complex tangent function for long double. IBM extended format version.
|
|
Copyright (C) 1997-2013 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <complex.h>
|
|
#include <fenv.h>
|
|
#include <math.h>
|
|
#include <math_ldbl_opt.h>
|
|
#include <float.h>
|
|
|
|
#include <math_private.h>
|
|
|
|
/* IBM long double GCC builtin sets LDBL_EPSILON == LDBL_DENORM_MIN */
|
|
static const long double ldbl_eps = 0x1p-106L;
|
|
|
|
__complex__ long double
|
|
__ctanl (__complex__ long double x)
|
|
{
|
|
__complex__ long double res;
|
|
|
|
if (!isfinite (__real__ x) || !isfinite (__imag__ x))
|
|
{
|
|
if (__isinfl (__imag__ x))
|
|
{
|
|
__real__ res = __copysignl (0.0, __real__ x);
|
|
__imag__ res = __copysignl (1.0, __imag__ x);
|
|
}
|
|
else if (__real__ x == 0.0)
|
|
{
|
|
res = x;
|
|
}
|
|
else
|
|
{
|
|
__real__ res = __nanl ("");
|
|
__imag__ res = __nanl ("");
|
|
|
|
if (__isinf_nsl (__real__ x))
|
|
feraiseexcept (FE_INVALID);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
long double sinrx, cosrx;
|
|
long double den;
|
|
const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l / 2.0L);
|
|
|
|
/* tan(x+iy) = (sin(2x) + i*sinh(2y))/(cos(2x) + cosh(2y))
|
|
= (sin(x)*cos(x) + i*sinh(y)*cosh(y)/(cos(x)^2 + sinh(y)^2). */
|
|
|
|
__sincosl (__real__ x, &sinrx, &cosrx);
|
|
|
|
if (fabsl (__imag__ x) > t)
|
|
{
|
|
/* Avoid intermediate overflow when the real part of the
|
|
result may be subnormal. Ignoring negligible terms, the
|
|
imaginary part is +/- 1, the real part is
|
|
sin(x)*cos(x)/sinh(y)^2 = 4*sin(x)*cos(x)/exp(2y). */
|
|
long double exp_2t = __ieee754_expl (2 * t);
|
|
|
|
__imag__ res = __copysignl (1.0L, __imag__ x);
|
|
__real__ res = 4 * sinrx * cosrx;
|
|
__imag__ x = fabsl (__imag__ x);
|
|
__imag__ x -= t;
|
|
__real__ res /= exp_2t;
|
|
if (__imag__ x > t)
|
|
{
|
|
/* Underflow (original imaginary part of x has absolute
|
|
value > 2t). */
|
|
__real__ res /= exp_2t;
|
|
}
|
|
else
|
|
__real__ res /= __ieee754_expl (2.0L * __imag__ x);
|
|
}
|
|
else
|
|
{
|
|
long double sinhix, coshix;
|
|
if (fabsl (__imag__ x) > LDBL_MIN)
|
|
{
|
|
sinhix = __ieee754_sinhl (__imag__ x);
|
|
coshix = __ieee754_coshl (__imag__ x);
|
|
}
|
|
else
|
|
{
|
|
sinhix = __imag__ x;
|
|
coshix = 1.0L;
|
|
}
|
|
|
|
if (fabsl (sinhix) > fabsl (cosrx) * ldbl_eps)
|
|
den = cosrx * cosrx + sinhix * sinhix;
|
|
else
|
|
den = cosrx * cosrx;
|
|
__real__ res = sinrx * (cosrx / den);
|
|
__imag__ res = sinhix * (coshix / den);
|
|
}
|
|
|
|
/* __gcc_qmul does not respect -0.0 so we need the following fixup. */
|
|
if ((__real__ res == 0.0L) && (__real__ x == 0.0L))
|
|
__real__ res = __real__ x;
|
|
|
|
if ((__real__ res == 0.0L) && (__imag__ x == 0.0L))
|
|
__imag__ res = __imag__ x;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
long_double_symbol (libm, __ctanl, ctanl);
|