mirror of
git://sourceware.org/git/glibc.git
synced 2024-12-15 04:20:28 +08:00
48b12ed54c
As in https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86113 for __builtin_nan, bits/mathcalls.h wrongly declares the nan function with the __const__ attribute. Because the function reads memory pointed to by an argument, it's only pure, not const. This patch removes the incorrect attribute and adds a testcase for the bug. No __pure__ attribute is added to replace the incorrect __const__ one, since that would introduce problems when using GCC versions that have the incorrect built-in __const__ attribute and warn for the combination of those two attributes. Tested for x86_64. [BZ #23277] * math/bits/mathcalls.h [__USE_ISOC99] (nan): Do not use __const__ attribute. * math/test-nan-const.c: New file. * math/Makefile (tests): Add test-nan-const. (CFLAGS-test-nan-const.c): New variable.
398 lines
13 KiB
C
398 lines
13 KiB
C
/* Prototype declarations for math functions; helper file for <math.h>.
|
|
Copyright (C) 1996-2018 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* NOTE: Because of the special way this file is used by <math.h>, this
|
|
file must NOT be protected from multiple inclusion as header files
|
|
usually are.
|
|
|
|
This file provides prototype declarations for the math functions.
|
|
Most functions are declared using the macro:
|
|
|
|
__MATHCALL (NAME,[_r], (ARGS...));
|
|
|
|
This means there is a function `NAME' returning `double' and a function
|
|
`NAMEf' returning `float'. Each place `_Mdouble_' appears in the
|
|
prototype, that is actually `double' in the prototype for `NAME' and
|
|
`float' in the prototype for `NAMEf'. Reentrant variant functions are
|
|
called `NAME_r' and `NAMEf_r'.
|
|
|
|
Functions returning other types like `int' are declared using the macro:
|
|
|
|
__MATHDECL (TYPE, NAME,[_r], (ARGS...));
|
|
|
|
This is just like __MATHCALL but for a function returning `TYPE'
|
|
instead of `_Mdouble_'. In all of these cases, there is still
|
|
both a `NAME' and a `NAMEf' that takes `float' arguments.
|
|
|
|
Note that there must be no whitespace before the argument passed for
|
|
NAME, to make token pasting work with -traditional. */
|
|
|
|
#ifndef _MATH_H
|
|
# error "Never include <bits/mathcalls.h> directly; include <math.h> instead."
|
|
#endif
|
|
|
|
|
|
/* Trigonometric functions. */
|
|
|
|
/* Arc cosine of X. */
|
|
__MATHCALL (acos,, (_Mdouble_ __x));
|
|
/* Arc sine of X. */
|
|
__MATHCALL (asin,, (_Mdouble_ __x));
|
|
/* Arc tangent of X. */
|
|
__MATHCALL (atan,, (_Mdouble_ __x));
|
|
/* Arc tangent of Y/X. */
|
|
__MATHCALL (atan2,, (_Mdouble_ __y, _Mdouble_ __x));
|
|
|
|
/* Cosine of X. */
|
|
__MATHCALL_VEC (cos,, (_Mdouble_ __x));
|
|
/* Sine of X. */
|
|
__MATHCALL_VEC (sin,, (_Mdouble_ __x));
|
|
/* Tangent of X. */
|
|
__MATHCALL (tan,, (_Mdouble_ __x));
|
|
|
|
/* Hyperbolic functions. */
|
|
|
|
/* Hyperbolic cosine of X. */
|
|
__MATHCALL (cosh,, (_Mdouble_ __x));
|
|
/* Hyperbolic sine of X. */
|
|
__MATHCALL (sinh,, (_Mdouble_ __x));
|
|
/* Hyperbolic tangent of X. */
|
|
__MATHCALL (tanh,, (_Mdouble_ __x));
|
|
|
|
#ifdef __USE_GNU
|
|
/* Cosine and sine of X. */
|
|
__MATHDECL_VEC (void,sincos,,
|
|
(_Mdouble_ __x, _Mdouble_ *__sinx, _Mdouble_ *__cosx));
|
|
#endif
|
|
|
|
#if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99
|
|
/* Hyperbolic arc cosine of X. */
|
|
__MATHCALL (acosh,, (_Mdouble_ __x));
|
|
/* Hyperbolic arc sine of X. */
|
|
__MATHCALL (asinh,, (_Mdouble_ __x));
|
|
/* Hyperbolic arc tangent of X. */
|
|
__MATHCALL (atanh,, (_Mdouble_ __x));
|
|
#endif
|
|
|
|
/* Exponential and logarithmic functions. */
|
|
|
|
/* Exponential function of X. */
|
|
__MATHCALL_VEC (exp,, (_Mdouble_ __x));
|
|
|
|
/* Break VALUE into a normalized fraction and an integral power of 2. */
|
|
__MATHCALL (frexp,, (_Mdouble_ __x, int *__exponent));
|
|
|
|
/* X times (two to the EXP power). */
|
|
__MATHCALL (ldexp,, (_Mdouble_ __x, int __exponent));
|
|
|
|
/* Natural logarithm of X. */
|
|
__MATHCALL_VEC (log,, (_Mdouble_ __x));
|
|
|
|
/* Base-ten logarithm of X. */
|
|
__MATHCALL (log10,, (_Mdouble_ __x));
|
|
|
|
/* Break VALUE into integral and fractional parts. */
|
|
__MATHCALL (modf,, (_Mdouble_ __x, _Mdouble_ *__iptr)) __nonnull ((2));
|
|
|
|
#if __GLIBC_USE (IEC_60559_FUNCS_EXT)
|
|
/* Compute exponent to base ten. */
|
|
__MATHCALL (exp10,, (_Mdouble_ __x));
|
|
#endif
|
|
|
|
#if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99
|
|
/* Return exp(X) - 1. */
|
|
__MATHCALL (expm1,, (_Mdouble_ __x));
|
|
|
|
/* Return log(1 + X). */
|
|
__MATHCALL (log1p,, (_Mdouble_ __x));
|
|
|
|
/* Return the base 2 signed integral exponent of X. */
|
|
__MATHCALL (logb,, (_Mdouble_ __x));
|
|
#endif
|
|
|
|
#ifdef __USE_ISOC99
|
|
/* Compute base-2 exponential of X. */
|
|
__MATHCALL (exp2,, (_Mdouble_ __x));
|
|
|
|
/* Compute base-2 logarithm of X. */
|
|
__MATHCALL (log2,, (_Mdouble_ __x));
|
|
#endif
|
|
|
|
|
|
/* Power functions. */
|
|
|
|
/* Return X to the Y power. */
|
|
__MATHCALL_VEC (pow,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
|
|
/* Return the square root of X. */
|
|
__MATHCALL (sqrt,, (_Mdouble_ __x));
|
|
|
|
#if defined __USE_XOPEN || defined __USE_ISOC99
|
|
/* Return `sqrt(X*X + Y*Y)'. */
|
|
__MATHCALL (hypot,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
#endif
|
|
|
|
#if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99
|
|
/* Return the cube root of X. */
|
|
__MATHCALL (cbrt,, (_Mdouble_ __x));
|
|
#endif
|
|
|
|
|
|
/* Nearest integer, absolute value, and remainder functions. */
|
|
|
|
/* Smallest integral value not less than X. */
|
|
__MATHCALLX (ceil,, (_Mdouble_ __x), (__const__));
|
|
|
|
/* Absolute value of X. */
|
|
__MATHCALLX (fabs,, (_Mdouble_ __x), (__const__));
|
|
|
|
/* Largest integer not greater than X. */
|
|
__MATHCALLX (floor,, (_Mdouble_ __x), (__const__));
|
|
|
|
/* Floating-point modulo remainder of X/Y. */
|
|
__MATHCALL (fmod,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
|
|
#ifdef __USE_MISC
|
|
# if ((!defined __cplusplus \
|
|
|| __cplusplus < 201103L /* isinf conflicts with C++11. */ \
|
|
|| __MATH_DECLARING_DOUBLE == 0)) /* isinff or isinfl don't. */ \
|
|
&& !__MATH_DECLARING_FLOATN
|
|
/* Return 0 if VALUE is finite or NaN, +1 if it
|
|
is +Infinity, -1 if it is -Infinity. */
|
|
__MATHDECL_1 (int,isinf,, (_Mdouble_ __value)) __attribute__ ((__const__));
|
|
# endif
|
|
|
|
# if !__MATH_DECLARING_FLOATN
|
|
/* Return nonzero if VALUE is finite and not NaN. */
|
|
__MATHDECL_1 (int,finite,, (_Mdouble_ __value)) __attribute__ ((__const__));
|
|
|
|
/* Return the remainder of X/Y. */
|
|
__MATHCALL (drem,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
|
|
|
|
/* Return the fractional part of X after dividing out `ilogb (X)'. */
|
|
__MATHCALL (significand,, (_Mdouble_ __x));
|
|
# endif
|
|
|
|
#endif /* Use misc. */
|
|
|
|
#ifdef __USE_ISOC99
|
|
/* Return X with its signed changed to Y's. */
|
|
__MATHCALLX (copysign,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
|
|
#endif
|
|
|
|
#ifdef __USE_ISOC99
|
|
/* Return representation of qNaN for double type. */
|
|
__MATHCALL (nan,, (const char *__tagb));
|
|
#endif
|
|
|
|
|
|
#if defined __USE_MISC || (defined __USE_XOPEN && !defined __USE_XOPEN2K)
|
|
# if ((!defined __cplusplus \
|
|
|| __cplusplus < 201103L /* isnan conflicts with C++11. */ \
|
|
|| __MATH_DECLARING_DOUBLE == 0)) /* isnanf or isnanl don't. */ \
|
|
&& !__MATH_DECLARING_FLOATN
|
|
/* Return nonzero if VALUE is not a number. */
|
|
__MATHDECL_1 (int,isnan,, (_Mdouble_ __value)) __attribute__ ((__const__));
|
|
# endif
|
|
#endif
|
|
|
|
#if defined __USE_MISC || (defined __USE_XOPEN && __MATH_DECLARING_DOUBLE)
|
|
/* Bessel functions. */
|
|
__MATHCALL (j0,, (_Mdouble_));
|
|
__MATHCALL (j1,, (_Mdouble_));
|
|
__MATHCALL (jn,, (int, _Mdouble_));
|
|
__MATHCALL (y0,, (_Mdouble_));
|
|
__MATHCALL (y1,, (_Mdouble_));
|
|
__MATHCALL (yn,, (int, _Mdouble_));
|
|
#endif
|
|
|
|
|
|
#if defined __USE_XOPEN || defined __USE_ISOC99
|
|
/* Error and gamma functions. */
|
|
__MATHCALL (erf,, (_Mdouble_));
|
|
__MATHCALL (erfc,, (_Mdouble_));
|
|
__MATHCALL (lgamma,, (_Mdouble_));
|
|
#endif
|
|
|
|
#ifdef __USE_ISOC99
|
|
/* True gamma function. */
|
|
__MATHCALL (tgamma,, (_Mdouble_));
|
|
#endif
|
|
|
|
#if defined __USE_MISC || (defined __USE_XOPEN && !defined __USE_XOPEN2K)
|
|
# if !__MATH_DECLARING_FLOATN
|
|
/* Obsolete alias for `lgamma'. */
|
|
__MATHCALL (gamma,, (_Mdouble_));
|
|
# endif
|
|
#endif
|
|
|
|
#ifdef __USE_MISC
|
|
/* Reentrant version of lgamma. This function uses the global variable
|
|
`signgam'. The reentrant version instead takes a pointer and stores
|
|
the value through it. */
|
|
__MATHCALL (lgamma,_r, (_Mdouble_, int *__signgamp));
|
|
#endif
|
|
|
|
|
|
#if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99
|
|
/* Return the integer nearest X in the direction of the
|
|
prevailing rounding mode. */
|
|
__MATHCALL (rint,, (_Mdouble_ __x));
|
|
|
|
/* Return X + epsilon if X < Y, X - epsilon if X > Y. */
|
|
__MATHCALL (nextafter,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
# if defined __USE_ISOC99 && !defined __LDBL_COMPAT && !__MATH_DECLARING_FLOATN
|
|
__MATHCALL (nexttoward,, (_Mdouble_ __x, long double __y));
|
|
# endif
|
|
|
|
# if __GLIBC_USE (IEC_60559_BFP_EXT) || __MATH_DECLARING_FLOATN
|
|
/* Return X - epsilon. */
|
|
__MATHCALL (nextdown,, (_Mdouble_ __x));
|
|
/* Return X + epsilon. */
|
|
__MATHCALL (nextup,, (_Mdouble_ __x));
|
|
# endif
|
|
|
|
/* Return the remainder of integer divison X / Y with infinite precision. */
|
|
__MATHCALL (remainder,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
|
|
# ifdef __USE_ISOC99
|
|
/* Return X times (2 to the Nth power). */
|
|
__MATHCALL (scalbn,, (_Mdouble_ __x, int __n));
|
|
# endif
|
|
|
|
/* Return the binary exponent of X, which must be nonzero. */
|
|
__MATHDECL (int,ilogb,, (_Mdouble_ __x));
|
|
#endif
|
|
|
|
#if __GLIBC_USE (IEC_60559_BFP_EXT) || __MATH_DECLARING_FLOATN
|
|
/* Like ilogb, but returning long int. */
|
|
__MATHDECL (long int, llogb,, (_Mdouble_ __x));
|
|
#endif
|
|
|
|
#ifdef __USE_ISOC99
|
|
/* Return X times (2 to the Nth power). */
|
|
__MATHCALL (scalbln,, (_Mdouble_ __x, long int __n));
|
|
|
|
/* Round X to integral value in floating-point format using current
|
|
rounding direction, but do not raise inexact exception. */
|
|
__MATHCALL (nearbyint,, (_Mdouble_ __x));
|
|
|
|
/* Round X to nearest integral value, rounding halfway cases away from
|
|
zero. */
|
|
__MATHCALLX (round,, (_Mdouble_ __x), (__const__));
|
|
|
|
/* Round X to the integral value in floating-point format nearest but
|
|
not larger in magnitude. */
|
|
__MATHCALLX (trunc,, (_Mdouble_ __x), (__const__));
|
|
|
|
/* Compute remainder of X and Y and put in *QUO a value with sign of x/y
|
|
and magnitude congruent `mod 2^n' to the magnitude of the integral
|
|
quotient x/y, with n >= 3. */
|
|
__MATHCALL (remquo,, (_Mdouble_ __x, _Mdouble_ __y, int *__quo));
|
|
|
|
|
|
/* Conversion functions. */
|
|
|
|
/* Round X to nearest integral value according to current rounding
|
|
direction. */
|
|
__MATHDECL (long int,lrint,, (_Mdouble_ __x));
|
|
__extension__
|
|
__MATHDECL (long long int,llrint,, (_Mdouble_ __x));
|
|
|
|
/* Round X to nearest integral value, rounding halfway cases away from
|
|
zero. */
|
|
__MATHDECL (long int,lround,, (_Mdouble_ __x));
|
|
__extension__
|
|
__MATHDECL (long long int,llround,, (_Mdouble_ __x));
|
|
|
|
|
|
/* Return positive difference between X and Y. */
|
|
__MATHCALL (fdim,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
|
|
/* Return maximum numeric value from X and Y. */
|
|
__MATHCALLX (fmax,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
|
|
|
|
/* Return minimum numeric value from X and Y. */
|
|
__MATHCALLX (fmin,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
|
|
|
|
/* Multiply-add function computed as a ternary operation. */
|
|
__MATHCALL (fma,, (_Mdouble_ __x, _Mdouble_ __y, _Mdouble_ __z));
|
|
#endif /* Use ISO C99. */
|
|
|
|
#if __GLIBC_USE (IEC_60559_BFP_EXT) || __MATH_DECLARING_FLOATN
|
|
/* Round X to nearest integer value, rounding halfway cases to even. */
|
|
__MATHCALLX (roundeven,, (_Mdouble_ __x), (__const__));
|
|
|
|
/* Round X to nearest signed integer value, not raising inexact, with
|
|
control of rounding direction and width of result. */
|
|
__MATHDECL (__intmax_t, fromfp,, (_Mdouble_ __x, int __round,
|
|
unsigned int __width));
|
|
|
|
/* Round X to nearest unsigned integer value, not raising inexact,
|
|
with control of rounding direction and width of result. */
|
|
__MATHDECL (__uintmax_t, ufromfp,, (_Mdouble_ __x, int __round,
|
|
unsigned int __width));
|
|
|
|
/* Round X to nearest signed integer value, raising inexact for
|
|
non-integers, with control of rounding direction and width of
|
|
result. */
|
|
__MATHDECL (__intmax_t, fromfpx,, (_Mdouble_ __x, int __round,
|
|
unsigned int __width));
|
|
|
|
/* Round X to nearest unsigned integer value, raising inexact for
|
|
non-integers, with control of rounding direction and width of
|
|
result. */
|
|
__MATHDECL (__uintmax_t, ufromfpx,, (_Mdouble_ __x, int __round,
|
|
unsigned int __width));
|
|
|
|
/* Return value with maximum magnitude. */
|
|
__MATHCALLX (fmaxmag,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
|
|
|
|
/* Return value with minimum magnitude. */
|
|
__MATHCALLX (fminmag,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
|
|
|
|
/* Total order operation. */
|
|
__MATHDECL_1 (int, totalorder,, (_Mdouble_ __x, _Mdouble_ __y))
|
|
__attribute__ ((__const__));
|
|
|
|
/* Total order operation on absolute values. */
|
|
__MATHDECL_1 (int, totalordermag,, (_Mdouble_ __x, _Mdouble_ __y))
|
|
__attribute__ ((__const__));
|
|
|
|
/* Canonicalize floating-point representation. */
|
|
__MATHDECL_1 (int, canonicalize,, (_Mdouble_ *__cx, const _Mdouble_ *__x));
|
|
|
|
/* Get NaN payload. */
|
|
__MATHCALL (getpayload,, (const _Mdouble_ *__x));
|
|
|
|
/* Set quiet NaN payload. */
|
|
__MATHDECL_1 (int, setpayload,, (_Mdouble_ *__x, _Mdouble_ __payload));
|
|
|
|
/* Set signaling NaN payload. */
|
|
__MATHDECL_1 (int, setpayloadsig,, (_Mdouble_ *__x, _Mdouble_ __payload));
|
|
#endif
|
|
|
|
#if (defined __USE_MISC || (defined __USE_XOPEN_EXTENDED \
|
|
&& __MATH_DECLARING_DOUBLE \
|
|
&& !defined __USE_XOPEN2K8)) \
|
|
&& !__MATH_DECLARING_FLOATN
|
|
/* Return X times (2 to the Nth power). */
|
|
__MATHCALL (scalb,, (_Mdouble_ __x, _Mdouble_ __n));
|
|
#endif
|