glibc/sysdeps/ieee754/dbl-64/mpa.c
Ulrich Drepper e4d8276142 Update.
2001-03-11  Ulrich Drepper  <drepper@redhat.com>

	Last-bit accurate math library implementation by IBM Haifa.
	Contributed by Abraham Ziv <ziv@il.ibm.com>, Moshe Olshansky
	<olshansk@il.ibm.com>, Ealan Henis <ealan@il.ibm.com>, and
	Anna Reitman <reitman@il.ibm.com>.
	* math/Makefile (dbl-only-routines): New variable.
	(libm-routines): Add $(dbl-only-routines).
	* sysdeps/ieee754/dbl-64/e_acos.c: Empty, definition is in e_asin.c.
	* sysdeps/ieee754/dbl-64/e_asin.c: Replaced with accurate asin
	implementation.
	* sysdeps/ieee754/dbl-64/e_atan2.c: Replaced with accurate atan2
	implementation.
	* sysdeps/ieee754/dbl-64/e_exp.c: Replaced with accurate exp
	implementation.
	* sysdeps/ieee754/dbl-64/e_lgamma_r.c: Don't use __kernel_sin and
	__kernel_cos.
	* sysdeps/ieee754/dbl-64/e_log.c: Replaced with accurate log
	implementation.
	* sysdeps/ieee754/dbl-64/e_remainder.c: Replaced with accurate
	remainder implementation.
	* sysdeps/ieee754/dbl-64/e_pow.c: Replaced with accurate pow
	implementation.
	* sysdeps/ieee754/dbl-64/e_sqrt.c: Replaced with accurate sqrt
	implementation.
	* sysdeps/ieee754/dbl-64/k_cos.c: Empty, definition is in s_sin.c.
	* sysdeps/ieee754/dbl-64/k_sin.c: Empty, definition is in s_sin.c.
	* sysdeps/ieee754/dbl-64/s_atan.c: Replaced with accurate atan
	implementation.
	* sysdeps/ieee754/dbl-64/s_cos.c: Empty, definition is in s_sin.c.
	* sysdeps/ieee754/dbl-64/s_sin.c: Replaced with accurate sin/cos
	implementation.
	* sysdeps/ieee754/dbl-64/s_sincos.c: Rewritten to not use __kernel_sin
	and __kernel_cos.
	* sysdeps/ieee754/dbl-64/s_tan.c: Replaced with accurate tan
	implementation.
	* sysdeps/ieee754/dbl-64/Dist: Add new non-code files.
	* sysdeps/ieee754/dbl-64/MathLib.h: New file.
	* sysdeps/ieee754/dbl-64/asincos.tbl: New file.
	* sysdeps/ieee754/dbl-64/atnat.h: New file.
	* sysdeps/ieee754/dbl-64/atnat2.h: New file.
	* sysdeps/ieee754/dbl-64/branred.c: New file.
	* sysdeps/ieee754/dbl-64/branred.h: New file.
	* sysdeps/ieee754/dbl-64/dla.h: New file.
	* sysdeps/ieee754/dbl-64/doasin.c: New file.
	* sysdeps/ieee754/dbl-64/doasin.h: New file.
	* sysdeps/ieee754/dbl-64/dosincos.c: New file.
	* sysdeps/ieee754/dbl-64/dosincos.h: New file.
	* sysdeps/ieee754/dbl-64/endian.h: New file.
	* sysdeps/ieee754/dbl-64/halfulp.c: New file.
	* sysdeps/ieee754/dbl-64/mpa.c: New file.
	* sysdeps/ieee754/dbl-64/mpa.h: New file.
	* sysdeps/ieee754/dbl-64/mpa2.h: New file.
	* sysdeps/ieee754/dbl-64/mpatan.c: New file.
	* sysdeps/ieee754/dbl-64/mpatan.h: New file.
	* sysdeps/ieee754/dbl-64/mpatan2.c: New file.
	* sysdeps/ieee754/dbl-64/mpexp.c: New file.
	* sysdeps/ieee754/dbl-64/mpexp.h: New file.
	* sysdeps/ieee754/dbl-64/mplog.c: New file.
	* sysdeps/ieee754/dbl-64/mplog.h: New file.
	* sysdeps/ieee754/dbl-64/mpsqrt.c: New file.
	* sysdeps/ieee754/dbl-64/mpsqrt.h: New file.
	* sysdeps/ieee754/dbl-64/mptan.c: New file.
	* sysdeps/ieee754/dbl-64/mydefs.h: New file.
	* sysdeps/ieee754/dbl-64/powtwo.tbl: New file.
	* sysdeps/ieee754/dbl-64/root.tbl: New file.
	* sysdeps/ieee754/dbl-64/sincos.tbl: New file.
	* sysdeps/ieee754/dbl-64/sincos32.c: New file.
	* sysdeps/ieee754/dbl-64/sincos32.h: New file.
	* sysdeps/ieee754/dbl-64/slowexp.c: New file.
	* sysdeps/ieee754/dbl-64/slowpow.c: New file.
	* sysdeps/ieee754/dbl-64/uasncs.h: New file.
	* sysdeps/ieee754/dbl-64/uatan.tbl: New file.
	* sysdeps/ieee754/dbl-64/uexp.h: New file.
	* sysdeps/ieee754/dbl-64/uexp.tbl: New file.
	* sysdeps/ieee754/dbl-64/ulog.h: New file.
	* sysdeps/ieee754/dbl-64/ulog.tbl: New file.
	* sysdeps/ieee754/dbl-64/upow.h: New file.
	* sysdeps/ieee754/dbl-64/upow.tbl: New file.
	* sysdeps/ieee754/dbl-64/urem.h: New file.
	* sysdeps/ieee754/dbl-64/uroot.h: New file.
	* sysdeps/ieee754/dbl-64/usncs.h: New file.
	* sysdeps/ieee754/dbl-64/utan.h: New file.
	* sysdeps/ieee754/dbl-64/utan.tbl: New file.
	* sysdeps/i386/fpu/branred.c: New file.
	* sysdeps/i386/fpu/doasin.c: New file.
	* sysdeps/i386/fpu/dosincos.c: New file.
	* sysdeps/i386/fpu/halfulp.c: New file.
	* sysdeps/i386/fpu/mpa.c: New file.
	* sysdeps/i386/fpu/mpatan.c: New file.
	* sysdeps/i386/fpu/mpatan2.c: New file.
	* sysdeps/i386/fpu/mpexp.c: New file.
	* sysdeps/i386/fpu/mplog.c: New file.
	* sysdeps/i386/fpu/mpsqrt.c: New file.
	* sysdeps/i386/fpu/mptan.c: New file.
	* sysdeps/i386/fpu/sincos32.c: New file.
	* sysdeps/i386/fpu/slowexp.c: New file.
	* sysdeps/i386/fpu/slowpow.c: New file.
	* sysdeps/ia64/fpu/branred.c: New file.
	* sysdeps/ia64/fpu/doasin.c: New file.
	* sysdeps/ia64/fpu/dosincos.c: New file.
	* sysdeps/ia64/fpu/halfulp.c: New file.
	* sysdeps/ia64/fpu/mpa.c: New file.
	* sysdeps/ia64/fpu/mpatan.c: New file.
	* sysdeps/ia64/fpu/mpatan2.c: New file.
	* sysdeps/ia64/fpu/mpexp.c: New file.
	* sysdeps/ia64/fpu/mplog.c: New file.
	* sysdeps/ia64/fpu/mpsqrt.c: New file.
	* sysdeps/ia64/fpu/mptan.c: New file.
	* sysdeps/ia64/fpu/sincos32.c: New file.
	* sysdeps/ia64/fpu/slowexp.c: New file.
	* sysdeps/ia64/fpu/slowpow.c: New file.
	* sysdeps/m68k/fpu/branred.c: New file.
	* sysdeps/m68k/fpu/doasin.c: New file.
	* sysdeps/m68k/fpu/dosincos.c: New file.
	* sysdeps/m68k/fpu/halfulp.c: New file.
	* sysdeps/m68k/fpu/mpa.c: New file.
	* sysdeps/m68k/fpu/mpatan.c: New file.
	* sysdeps/m68k/fpu/mpatan2.c: New file.
	* sysdeps/m68k/fpu/mpexp.c: New file.
	* sysdeps/m68k/fpu/mplog.c: New file.
	* sysdeps/m68k/fpu/mpsqrt.c: New file.
	* sysdeps/m68k/fpu/mptan.c: New file.
	* sysdeps/m68k/fpu/sincos32.c: New file.
	* sysdeps/m68k/fpu/slowexp.c: New file.
	* sysdeps/m68k/fpu/slowpow.c: New file.

	* iconvdata/gconv-modules: Add a number of alias, mostly for IBM
	codepages.
2001-03-12 00:04:52 +00:00

498 lines
14 KiB
C

/*
* IBM Accurate Mathematical Library
* Copyright (c) International Business Machines Corp., 2001
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/************************************************************************/
/* MODULE_NAME: mpa.c */
/* */
/* FUNCTIONS: */
/* mcr */
/* acr */
/* cr */
/* cpy */
/* cpymn */
/* norm */
/* denorm */
/* mp_dbl */
/* dbl_mp */
/* add_magnitudes */
/* sub_magnitudes */
/* add */
/* sub */
/* mul */
/* inv */
/* dvd */
/* */
/* Arithmetic functions for multiple precision numbers. */
/* Relative errors are bounded */
/************************************************************************/
#include "endian.h"
#include "mpa.h"
#include "mpa2.h"
/* mcr() compares the sizes of the mantissas of two multiple precision */
/* numbers. Mantissas are compared regardless of the signs of the */
/* numbers, even if x->d[0] or y->d[0] are zero. Exponents are also */
/* disregarded. */
static int mcr(const mp_no *x, const mp_no *y, int p) {
int i;
for (i=1; i<=p; i++) {
if (X[i] == Y[i]) continue;
else if (X[i] > Y[i]) return 1;
else return -1; }
return 0;
}
/* acr() compares the absolute values of two multiple precision numbers */
int acr(const mp_no *x, const mp_no *y, int p) {
int i;
if (X[0] == ZERO) {
if (Y[0] == ZERO) i= 0;
else i=-1;
}
else if (Y[0] == ZERO) i= 1;
else {
if (EX > EY) i= 1;
else if (EX < EY) i=-1;
else i= mcr(x,y,p);
}
return i;
}
/* cr90 compares the values of two multiple precision numbers */
int cr(const mp_no *x, const mp_no *y, int p) {
int i;
if (X[0] > Y[0]) i= 1;
else if (X[0] < Y[0]) i=-1;
else if (X[0] < ZERO ) i= acr(y,x,p);
else i= acr(x,y,p);
return i;
}
/* Copy a multiple precision number. Set *y=*x. x=y is permissible. */
void cpy(const mp_no *x, mp_no *y, int p) {
int i;
EY = EX;
for (i=0; i <= p; i++) Y[i] = X[i];
return;
}
/* Copy a multiple precision number x of precision m into a */
/* multiple precision number y of precision n. In case n>m, */
/* the digits of y beyond the m'th are set to zero. In case */
/* n<m, the digits of x beyond the n'th are ignored. */
/* x=y is permissible. */
void cpymn(const mp_no *x, int m, mp_no *y, int n) {
int i,k;
EY = EX; k=MIN(m,n);
for (i=0; i <= k; i++) Y[i] = X[i];
for ( ; i <= n; i++) Y[i] = ZERO;
return;
}
/* Convert a multiple precision number *x into a double precision */
/* number *y, normalized case (|x| >= 2**(-1022))) */
static void norm(const mp_no *x, double *y, int p)
{
#define R radixi.d
int i,k;
double a,c,u,v,z[5];
if (p<5) {
if (p==1) c = X[1];
else if (p==2) c = X[1] + R* X[2];
else if (p==3) c = X[1] + R*(X[2] + R* X[3]);
else if (p==4) c =(X[1] + R* X[2]) + R*R*(X[3] + R*X[4]);
}
else {
for (a=ONE, z[1]=X[1]; z[1] < TWO23; )
{a *= TWO; z[1] *= TWO; }
for (i=2; i<5; i++) {
z[i] = X[i]*a;
u = (z[i] + CUTTER)-CUTTER;
if (u > z[i]) u -= RADIX;
z[i] -= u;
z[i-1] += u*RADIXI;
}
u = (z[3] + TWO71) - TWO71;
if (u > z[3]) u -= TWO19;
v = z[3]-u;
if (v == TWO18) {
if (z[4] == ZERO) {
for (i=5; i <= p; i++) {
if (X[i] == ZERO) continue;
else {z[3] += ONE; break; }
}
}
else z[3] += ONE;
}
c = (z[1] + R *(z[2] + R * z[3]))/a;
}
c *= X[0];
for (i=1; i<EX; i++) c *= RADIX;
for (i=1; i>EX; i--) c *= RADIXI;
*y = c;
return;
#undef R
}
/* Convert a multiple precision number *x into a double precision */
/* number *y, denormalized case (|x| < 2**(-1022))) */
static void denorm(const mp_no *x, double *y, int p)
{
int i,k;
double a,c,u,v,z[5];
#define R radixi.d
if (EX<-44 || (EX==-44 && X[1]<TWO5))
{ *y=ZERO; return; }
if (p==1) {
if (EX==-42) {z[1]=X[1]+TWO10; z[2]=ZERO; z[3]=ZERO; k=3;}
else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=ZERO; k=2;}
else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;}
}
else if (p==2) {
if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; z[3]=ZERO; k=3;}
else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=X[2]; k=2;}
else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;}
}
else {
if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; k=3;}
else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; k=2;}
else {z[1]= TWO10; z[2]=ZERO; k=1;}
z[3] = X[k];
}
u = (z[3] + TWO57) - TWO57;
if (u > z[3]) u -= TWO5;
if (u==z[3]) {
for (i=k+1; i <= p; i++) {
if (X[i] == ZERO) continue;
else {z[3] += ONE; break; }
}
}
c = X[0]*((z[1] + R*(z[2] + R*z[3])) - TWO10);
*y = c*TWOM1032;
return;
#undef R
}
/* Convert a multiple precision number *x into a double precision number *y. */
/* The result is correctly rounded to the nearest/even. *x is left unchanged */
void mp_dbl(const mp_no *x, double *y, int p) {
int i,k;
double a,c,u,v,z[5];
if (X[0] == ZERO) {*y = ZERO; return; }
if (EX> -42) norm(x,y,p);
else if (EX==-42 && X[1]>=TWO10) norm(x,y,p);
else denorm(x,y,p);
}
/* dbl_mp() converts a double precision number x into a multiple precision */
/* number *y. If the precision p is too small the result is truncated. x is */
/* left unchanged. */
void dbl_mp(double x, mp_no *y, int p) {
int i,n;
double u;
/* Sign */
if (x == ZERO) {Y[0] = ZERO; return; }
else if (x > ZERO) Y[0] = ONE;
else {Y[0] = MONE; x=-x; }
/* Exponent */
for (EY=ONE; x >= RADIX; EY += ONE) x *= RADIXI;
for ( ; x < ONE; EY -= ONE) x *= RADIX;
/* Digits */
n=MIN(p,4);
for (i=1; i<=n; i++) {
u = (x + TWO52) - TWO52;
if (u>x) u -= ONE;
Y[i] = u; x -= u; x *= RADIX; }
for ( ; i<=p; i++) Y[i] = ZERO;
return;
}
/* add_magnitudes() adds the magnitudes of *x & *y assuming that */
/* abs(*x) >= abs(*y) > 0. */
/* The sign of the sum *z is undefined. x&y may overlap but not x&z or y&z. */
/* No guard digit is used. The result equals the exact sum, truncated. */
/* *x & *y are left unchanged. */
static void add_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
int i,j,k;
EZ = EX;
i=p; j=p+ EY - EX; k=p+1;
if (j<1)
{cpy(x,z,p); return; }
else Z[k] = ZERO;
for (; j>0; i--,j--) {
Z[k] += X[i] + Y[j];
if (Z[k] >= RADIX) {
Z[k] -= RADIX;
Z[--k] = ONE; }
else
Z[--k] = ZERO;
}
for (; i>0; i--) {
Z[k] += X[i];
if (Z[k] >= RADIX) {
Z[k] -= RADIX;
Z[--k] = ONE; }
else
Z[--k] = ZERO;
}
if (Z[1] == ZERO) {
for (i=1; i<=p; i++) Z[i] = Z[i+1]; }
else EZ += ONE;
}
/* sub_magnitudes() subtracts the magnitudes of *x & *y assuming that */
/* abs(*x) > abs(*y) > 0. */
/* The sign of the difference *z is undefined. x&y may overlap but not x&z */
/* or y&z. One guard digit is used. The error is less than one ulp. */
/* *x & *y are left unchanged. */
static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
int i,j,k;
EZ = EX;
if (EX == EY) {
i=j=k=p;
Z[k] = Z[k+1] = ZERO; }
else {
j= EX - EY;
if (j > p) {cpy(x,z,p); return; }
else {
i=p; j=p+1-j; k=p;
if (Y[j] > ZERO) {
Z[k+1] = RADIX - Y[j--];
Z[k] = MONE; }
else {
Z[k+1] = ZERO;
Z[k] = ZERO; j--;}
}
}
for (; j>0; i--,j--) {
Z[k] += (X[i] - Y[j]);
if (Z[k] < ZERO) {
Z[k] += RADIX;
Z[--k] = MONE; }
else
Z[--k] = ZERO;
}
for (; i>0; i--) {
Z[k] += X[i];
if (Z[k] < ZERO) {
Z[k] += RADIX;
Z[--k] = MONE; }
else
Z[--k] = ZERO;
}
for (i=1; Z[i] == ZERO; i++) ;
EZ = EZ - i + 1;
for (k=1; i <= p+1; )
Z[k++] = Z[i++];
for (; k <= p; )
Z[k++] = ZERO;
return;
}
/* Add two multiple precision numbers. Set *z = *x + *y. x&y may overlap */
/* but not x&z or y&z. One guard digit is used. The error is less than */
/* one ulp. *x & *y are left unchanged. */
void add(const mp_no *x, const mp_no *y, mp_no *z, int p) {
int n;
if (X[0] == ZERO) {cpy(y,z,p); return; }
else if (Y[0] == ZERO) {cpy(x,z,p); return; }
if (X[0] == Y[0]) {
if (acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; }
else {add_magnitudes(y,x,z,p); Z[0] = Y[0]; }
}
else {
if ((n=acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; }
else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = Y[0]; }
else Z[0] = ZERO;
}
return;
}
/* Subtract two multiple precision numbers. *z is set to *x - *y. x&y may */
/* overlap but not x&z or y&z. One guard digit is used. The error is */
/* less than one ulp. *x & *y are left unchanged. */
void sub(const mp_no *x, const mp_no *y, mp_no *z, int p) {
int n;
if (X[0] == ZERO) {cpy(y,z,p); Z[0] = -Z[0]; return; }
else if (Y[0] == ZERO) {cpy(x,z,p); return; }
if (X[0] != Y[0]) {
if (acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; }
else {add_magnitudes(y,x,z,p); Z[0] = -Y[0]; }
}
else {
if ((n=acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; }
else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = -Y[0]; }
else Z[0] = ZERO;
}
return;
}
/* Multiply two multiple precision numbers. *z is set to *x * *y. x&y */
/* may overlap but not x&z or y&z. In case p=1,2,3 the exact result is */
/* truncated to p digits. In case p>3 the error is bounded by 1.001 ulp. */
/* *x & *y are left unchanged. */
void mul(const mp_no *x, const mp_no *y, mp_no *z, int p) {
int i, i1, i2, j, k, k2;
double u;
/* Is z=0? */
if (X[0]*Y[0]==ZERO)
{ Z[0]=ZERO; return; }
/* Multiply, add and carry */
k2 = (p<3) ? p+p : p+3;
Z[k2]=ZERO;
for (k=k2; k>1; ) {
if (k > p) {i1=k-p; i2=p+1; }
else {i1=1; i2=k; }
for (i=i1,j=i2-1; i<i2; i++,j--) Z[k] += X[i]*Y[j];
u = (Z[k] + CUTTER)-CUTTER;
if (u > Z[k]) u -= RADIX;
Z[k] -= u;
Z[--k] = u*RADIXI;
}
/* Is there a carry beyond the most significant digit? */
if (Z[1] == ZERO) {
for (i=1; i<=p; i++) Z[i]=Z[i+1];
EZ = EX + EY - 1; }
else
EZ = EX + EY;
Z[0] = X[0] * Y[0];
return;
}
/* Invert a multiple precision number. Set *y = 1 / *x. */
/* Relative error bound = 1.001*r**(1-p) for p=2, 1.063*r**(1-p) for p=3, */
/* 2.001*r**(1-p) for p>3. */
/* *x=0 is not permissible. *x is left unchanged. */
void inv(const mp_no *x, mp_no *y, int p) {
int i,l;
double t;
mp_no z,w;
static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};
const mp_no mptwo = {1,1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,};
cpy(x,&z,p); z.e=0; mp_dbl(&z,&t,p);
t=ONE/t; dbl_mp(t,y,p); EY -= EX;
for (i=0; i<np1[p]; i++) {
cpy(y,&w,p);
mul(x,&w,y,p);
sub(&mptwo,y,&z,p);
mul(&w,&z,y,p);
}
return;
}
/* Divide one multiple precision number by another.Set *z = *x / *y. *x & *y */
/* are left unchanged. x&y may overlap but not x&z or y&z. */
/* Relative error bound = 2.001*r**(1-p) for p=2, 2.063*r**(1-p) for p=3 */
/* and 3.001*r**(1-p) for p>3. *y=0 is not permissible. */
void dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) {
mp_no w;
if (X[0] == ZERO) Z[0] = ZERO;
else {inv(y,&w,p); mul(x,&w,z,p);}
return;
}