mirror of
git://sourceware.org/git/glibc.git
synced 2024-11-27 03:41:23 +08:00
bf7997b65c
1998-06-09 Ulrich Drepper <drepper@cygnus.com> * sysdeps/unix/sysv/linux/netinet/ip.h (struct ip_options): Define __data member only for gcc. Reported by ak@muc.de. * misc/mntent.h: Undo last patch. * sysdeps/unix/sysv/linux/fstatvfs.c (fstatvfs): Undo last patch. * misc/tst/mntent.c: Adjust code for this change. * io/fts.c: Updated from a slightly more recent BSD version. * io/fts.h: Likewise. * libc.map: Add __libc_stack_end. * db2/Makefile (routines): Add lock_region. * db2/config.h: Update from db-2.4.14. * db2/db.h: Likewise. * db2/db_185.h: Likewise. * db2/db_int.h: Likewise. * db2/bt_close.c: Likewise. * db2/bt_compare.c: Likewise. * db2/bt_conv.c: Likewise. * db2/bt_cursor.c: Likewise. * db2/bt_delete.c: Likewise. * db2/bt_open.c: Likewise. * db2/bt_page.c: Likewise. * db2/bt_put.c: Likewise. * db2/bt_rec.c: Likewise. * db2/bt_recno.c: Likewise. * db2/bt_rsearch.c: Likewise. * db2/bt_search.c: Likewise. * db2/bt_split.c: Likewise. * db2/bt_stat.c: Likewise. * db2/btree.src: Likewise. * db2/btree_auto.c: Likewise. * db2/getlong.c: Likewise. * db2/db_appinit.c: Likewise. * db2/db_apprec.c: Likewise. * db2/db_byteorder.c: Likewise. * db2/db_err.c: Likewise. * db2/db_log2.c: Likewise. * db2/db_region.c: Likewise. * db2/db_salloc.c: Likewise. * db2/db_shash.c: Likewise. * db2/db.c: Likewise. * db2/db.src: Likewise. * db2/db_auto.c: Likewise. * db2/db_conv.c: Likewise. * db2/db_dispatch.c: Likewise. * db2/db_dup.c: Likewise. * db2/db_overflow.c: Likewise. * db2/db_pr.c: Likewise. * db2/db_rec.c: Likewise. * db2/db_ret.c: Likewise. * db2/db_thread.c: Likewise. * db2/db185.c: Likewise. * db2/db185_int.h: Likewise. * db2/dbm.c: Likewise. * db2/hash.c: Likewise. * db2/hash.src: Likewise. * db2/hash_auto.c: Likewise. * db2/hash_conv.c: Likewise. * db2/hash_debug.c: Likewise. * db2/hash_dup.c: Likewise. * db2/hash_func.c: Likewise. * db2/hash_page.c: Likewise. * db2/hash_rec.c: Likewise. * db2/hash_stat.c: Likewise. * db2/btree.h: Likewise. * db2/btree_ext.h: Likewise. * db2/clib_ext.h: Likewise. * db2/common_ext.h: Likewise. * db2/cxx_int.h: Likewise. * db2/db.h.src: Likewise. * db2/db_185.h.src: Likewise. * db2/db_am.h: Likewise. * db2/db_auto.h: Likewise. * db2/db_cxx.h: Likewise. * db2/db_dispatch.h: Likewise. * db2/db_ext.h: Likewise. * db2/db_int.h.src: Likewise. * db2/db_page.h: Likewise. * db2/db_shash.h: Likewise. * db2/db_swap.h: Likewise. * db2/hash.h: Likewise. * db2/hash_ext.h: Likewise. * db2/lock.h: Likewise. * db2/lock_ext.h: Likewise. * db2/log.h: Likewise. * db2/log_ext.h: Likewise. * db2/mp.h: Likewise. * db2/mp_ext.h: Likewise. * db2/mutex_ext.h: Likewise. * db2/os_ext.h: Likewise. * db2/os_func.h: Likewise. * db2/queue.h: Likewise. * db2/shqueue.h: Likewise. * db2/txn.h: Likewise. * db2/lock.c: Likewise. * db2/lock_conflict.c: Likewise. * db2/lock_deadlock.c: Likewise. * db2/lock_region.c: Likewise. * db2/lock_util.c: Likewise. * db2/log.c: Likewise. * db2/log.src: Likewise. * db2/log_archive.c: Likewise. * db2/log_auto.c: Likewise. * db2/log_compare.c: Likewise. * db2/log_findckp.c: Likewise. * db2/log_get.c: Likewise. * db2/log_put.c: Likewise. * db2/log_rec.c: Likewise. * db2/log_register.c: Likewise. * db2/mp_bh.c: Likewise. * db2/mp_fget.c: Likewise. * db2/mp_fopen.c: Likewise. * db2/mp_fput.c: Likewise. * db2/mp_fset.c: Likewise. * db2/mp_open.c: Likewise. * db2/mp_pr.c: Likewise. * db2/mp_region.c: Likewise. * db2/mp_sync.c: Likewise. * db2/68020.gcc: Likewise. * db2/mutex.c: Likewise. * db2/parisc.gcc: Likewise. * db2/parisc.hp: Likewise. * db2/sco.cc: Likewise. * db2/os_abs.c: Likewise. * db2/os_alloc.c: Likewise. * db2/os_config.c: Likewise. * db2/os_dir.c: Likewise. * db2/os_fid.c: Likewise. * db2/os_fsync.c: Likewise. * db2/os_map.c: Likewise. * db2/os_oflags.c: Likewise. * db2/os_open.c: Likewise. * db2/os_rpath.c: Likewise. * db2/os_rw.c: Likewise. * db2/os_seek.c: Likewise. * db2/os_sleep.c: Likewise. * db2/os_spin.c: Likewise. * db2/os_stat.c: Likewise. * db2/os_unlink.c: Likewise. * db2/db_archive.c: Likewise. * db2/db_checkpoint.c: Likewise. * db2/db_deadlock.c: Likewise. * db2/db_dump.c: Likewise. * db2/db_dump185.c: Likewise. * db2/db_load.c: Likewise. * db2/db_printlog.c: Likewise. * db2/db_recover.c: Likewise. * db2/db_stat.c: Likewise. * db2/txn.c: Likewise. * db2/txn.src: Likewise. * db2/txn_auto.c: Likewise. * db2/txn_rec.c: Likewise. * elf/rtld.c: Move definition of __libc_stack_end to ... * sysdeps/generic/dl-sysdep.h: ...here. * sysdeps/unix/sysv/linux/fstatvfs.c: Handle nodiratime option. * sysdeps/unix/sysv/linux/bits/statvfs.h: Define ST_NODIRATIME. * sysdeps/unix/sysv/linux/sys/mount.h: Define MS_NODIRATIME. 1998-06-08 21:44 Ulrich Drepper <drepper@cygnus.com> * sysdeps/unix/sysv/linux/fstatvfs.c: Handle constant option string from mntent correctly. 1998-06-06 Andreas Jaeger <aj@arthur.rhein-neckar.de> * sunrpc/Makefile (generated): Correct typo. 1998-06-04 Philip Blundell <philb@gnu.org> * elf/elf.h (EM_ARM, et al.): New definitions. * sysdeps/arm/dl-machine.h: Update for new draft ARM ELF ABI.
951 lines
27 KiB
C
951 lines
27 KiB
C
/*-
|
|
* See the file LICENSE for redistribution information.
|
|
*
|
|
* Copyright (c) 1996, 1997, 1998
|
|
* Sleepycat Software. All rights reserved.
|
|
*/
|
|
/*
|
|
* Copyright (c) 1990, 1993, 1994, 1995, 1996
|
|
* Keith Bostic. All rights reserved.
|
|
*/
|
|
/*
|
|
* Copyright (c) 1990, 1993, 1994, 1995
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#ifndef lint
|
|
static const char sccsid[] = "@(#)bt_split.c 10.23 (Sleepycat) 5/23/98";
|
|
#endif /* not lint */
|
|
|
|
#ifndef NO_SYSTEM_INCLUDES
|
|
#include <sys/types.h>
|
|
|
|
#include <errno.h>
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
#endif
|
|
|
|
#include "db_int.h"
|
|
#include "db_page.h"
|
|
#include "btree.h"
|
|
|
|
static int __bam_page __P((DB *, EPG *, EPG *));
|
|
static int __bam_pinsert __P((DB *, EPG *, PAGE *, PAGE *));
|
|
static int __bam_psplit __P((DB *, EPG *, PAGE *, PAGE *, int));
|
|
static int __bam_root __P((DB *, EPG *));
|
|
|
|
/*
|
|
* __bam_split --
|
|
* Split a page.
|
|
*
|
|
* PUBLIC: int __bam_split __P((DB *, void *));
|
|
*/
|
|
int
|
|
__bam_split(dbp, arg)
|
|
DB *dbp;
|
|
void *arg;
|
|
{
|
|
BTREE *t;
|
|
enum { UP, DOWN } dir;
|
|
int exact, level, ret;
|
|
|
|
t = dbp->internal;
|
|
|
|
/*
|
|
* The locking protocol we use to avoid deadlock to acquire locks by
|
|
* walking down the tree, but we do it as lazily as possible, locking
|
|
* the root only as a last resort. We expect all stack pages to have
|
|
* been discarded before we're called; we discard all short-term locks.
|
|
*
|
|
* When __bam_split is first called, we know that a leaf page was too
|
|
* full for an insert. We don't know what leaf page it was, but we
|
|
* have the key/recno that caused the problem. We call XX_search to
|
|
* reacquire the leaf page, but this time get both the leaf page and
|
|
* its parent, locked. We then split the leaf page and see if the new
|
|
* internal key will fit into the parent page. If it will, we're done.
|
|
*
|
|
* If it won't, we discard our current locks and repeat the process,
|
|
* only this time acquiring the parent page and its parent, locked.
|
|
* This process repeats until we succeed in the split, splitting the
|
|
* root page as the final resort. The entire process then repeats,
|
|
* as necessary, until we split a leaf page.
|
|
*
|
|
* XXX
|
|
* A traditional method of speeding this up is to maintain a stack of
|
|
* the pages traversed in the original search. You can detect if the
|
|
* stack is correct by storing the page's LSN when it was searched and
|
|
* comparing that LSN with the current one when it's locked during the
|
|
* split. This would be an easy change for this code, but I have no
|
|
* numbers that indicate it's worthwhile.
|
|
*/
|
|
for (dir = UP, level = LEAFLEVEL;; dir == UP ? ++level : --level) {
|
|
/*
|
|
* Acquire a page and its parent, locked.
|
|
*/
|
|
if ((ret = (dbp->type == DB_BTREE ?
|
|
__bam_search(dbp, arg, S_WRPAIR, level, NULL, &exact) :
|
|
__bam_rsearch(dbp,
|
|
(db_recno_t *)arg, S_WRPAIR, level, &exact))) != 0)
|
|
return (ret);
|
|
|
|
/* Split the page. */
|
|
ret = t->bt_csp[0].page->pgno == PGNO_ROOT ?
|
|
__bam_root(dbp, &t->bt_csp[0]) :
|
|
__bam_page(dbp, &t->bt_csp[-1], &t->bt_csp[0]);
|
|
|
|
switch (ret) {
|
|
case 0:
|
|
/* Once we've split the leaf page, we're done. */
|
|
if (level == LEAFLEVEL)
|
|
return (0);
|
|
|
|
/* Switch directions. */
|
|
if (dir == UP)
|
|
dir = DOWN;
|
|
break;
|
|
case DB_NEEDSPLIT:
|
|
/*
|
|
* It's possible to fail to split repeatedly, as other
|
|
* threads may be modifying the tree, or the page usage
|
|
* is sufficiently bad that we don't get enough space
|
|
* the first time.
|
|
*/
|
|
if (dir == DOWN)
|
|
dir = UP;
|
|
break;
|
|
default:
|
|
return (ret);
|
|
}
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* __bam_root --
|
|
* Split the root page of a btree.
|
|
*/
|
|
static int
|
|
__bam_root(dbp, cp)
|
|
DB *dbp;
|
|
EPG *cp;
|
|
{
|
|
BTREE *t;
|
|
PAGE *lp, *rp;
|
|
int ret;
|
|
|
|
t = dbp->internal;
|
|
|
|
/* Yeah, right. */
|
|
if (cp->page->level >= MAXBTREELEVEL) {
|
|
ret = ENOSPC;
|
|
goto err;
|
|
}
|
|
|
|
/* Create new left and right pages for the split. */
|
|
lp = rp = NULL;
|
|
if ((ret = __bam_new(dbp, TYPE(cp->page), &lp)) != 0 ||
|
|
(ret = __bam_new(dbp, TYPE(cp->page), &rp)) != 0)
|
|
goto err;
|
|
P_INIT(lp, dbp->pgsize, lp->pgno,
|
|
PGNO_INVALID, ISINTERNAL(cp->page) ? PGNO_INVALID : rp->pgno,
|
|
cp->page->level, TYPE(cp->page));
|
|
P_INIT(rp, dbp->pgsize, rp->pgno,
|
|
ISINTERNAL(cp->page) ? PGNO_INVALID : lp->pgno, PGNO_INVALID,
|
|
cp->page->level, TYPE(cp->page));
|
|
|
|
/* Split the page. */
|
|
if ((ret = __bam_psplit(dbp, cp, lp, rp, 1)) != 0)
|
|
goto err;
|
|
|
|
/* Log the change. */
|
|
if (DB_LOGGING(dbp)) {
|
|
DBT __a;
|
|
DB_LSN __lsn;
|
|
memset(&__a, 0, sizeof(__a));
|
|
__a.data = cp->page;
|
|
__a.size = dbp->pgsize;
|
|
ZERO_LSN(__lsn);
|
|
if ((ret = __bam_split_log(dbp->dbenv->lg_info, dbp->txn,
|
|
&LSN(cp->page), 0, dbp->log_fileid, PGNO(lp), &LSN(lp),
|
|
PGNO(rp), &LSN(rp), (u_int32_t)NUM_ENT(lp), 0, &__lsn,
|
|
&__a)) != 0)
|
|
goto err;
|
|
LSN(lp) = LSN(rp) = LSN(cp->page);
|
|
}
|
|
|
|
/* Clean up the new root page. */
|
|
if ((ret = (dbp->type == DB_RECNO ?
|
|
__ram_root(dbp, cp->page, lp, rp) :
|
|
__bam_broot(dbp, cp->page, lp, rp))) != 0)
|
|
goto err;
|
|
|
|
/* Success -- write the real pages back to the store. */
|
|
(void)memp_fput(dbp->mpf, cp->page, DB_MPOOL_DIRTY);
|
|
(void)__BT_TLPUT(dbp, cp->lock);
|
|
(void)memp_fput(dbp->mpf, lp, DB_MPOOL_DIRTY);
|
|
(void)memp_fput(dbp->mpf, rp, DB_MPOOL_DIRTY);
|
|
|
|
++t->lstat.bt_split;
|
|
++t->lstat.bt_rootsplit;
|
|
return (0);
|
|
|
|
err: if (lp != NULL)
|
|
(void)__bam_free(dbp, lp);
|
|
if (rp != NULL)
|
|
(void)__bam_free(dbp, rp);
|
|
(void)memp_fput(dbp->mpf, cp->page, 0);
|
|
(void)__BT_TLPUT(dbp, cp->lock);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* __bam_page --
|
|
* Split the non-root page of a btree.
|
|
*/
|
|
static int
|
|
__bam_page(dbp, pp, cp)
|
|
DB *dbp;
|
|
EPG *pp, *cp;
|
|
{
|
|
DB_LOCK tplock;
|
|
PAGE *lp, *rp, *tp;
|
|
int ret;
|
|
|
|
lp = rp = tp = NULL;
|
|
ret = -1;
|
|
|
|
/* Create new right page for the split. */
|
|
if ((ret = __bam_new(dbp, TYPE(cp->page), &rp)) != 0)
|
|
goto err;
|
|
P_INIT(rp, dbp->pgsize, rp->pgno,
|
|
ISINTERNAL(cp->page) ? PGNO_INVALID : cp->page->pgno,
|
|
ISINTERNAL(cp->page) ? PGNO_INVALID : cp->page->next_pgno,
|
|
cp->page->level, TYPE(cp->page));
|
|
|
|
/* Create new left page for the split. */
|
|
if ((lp = (PAGE *)__db_malloc(dbp->pgsize)) == NULL) {
|
|
ret = ENOMEM;
|
|
goto err;
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
memset(lp, 0xff, dbp->pgsize);
|
|
#endif
|
|
P_INIT(lp, dbp->pgsize, cp->page->pgno,
|
|
ISINTERNAL(cp->page) ? PGNO_INVALID : cp->page->prev_pgno,
|
|
ISINTERNAL(cp->page) ? PGNO_INVALID : rp->pgno,
|
|
cp->page->level, TYPE(cp->page));
|
|
ZERO_LSN(lp->lsn);
|
|
|
|
/*
|
|
* Split right.
|
|
*
|
|
* Only the indices are sorted on the page, i.e., the key/data pairs
|
|
* aren't, so it's simpler to copy the data from the split page onto
|
|
* two new pages instead of copying half the data to the right page
|
|
* and compacting the left page in place. Since the left page can't
|
|
* change, we swap the original and the allocated left page after the
|
|
* split.
|
|
*/
|
|
if ((ret = __bam_psplit(dbp, cp, lp, rp, 0)) != 0)
|
|
goto err;
|
|
|
|
/*
|
|
* Fix up the previous pointer of any leaf page following the split
|
|
* page.
|
|
*
|
|
* !!!
|
|
* There are interesting deadlock situations here as we write-lock a
|
|
* page that's not in our direct ancestry. Consider a cursor walking
|
|
* through the leaf pages, that has the previous page read-locked and
|
|
* is waiting on a lock for the page we just split. It will deadlock
|
|
* here. If this is a problem, we can fail in the split; it's not a
|
|
* problem as the split will succeed after the cursor passes through
|
|
* the page we're splitting.
|
|
*/
|
|
if (TYPE(cp->page) == P_LBTREE && rp->next_pgno != PGNO_INVALID) {
|
|
if ((ret = __bam_lget(dbp,
|
|
0, rp->next_pgno, DB_LOCK_WRITE, &tplock)) != 0)
|
|
goto err;
|
|
if ((ret = __bam_pget(dbp, &tp, &rp->next_pgno, 0)) != 0)
|
|
goto err;
|
|
}
|
|
|
|
/* Insert the new pages into the parent page. */
|
|
if ((ret = __bam_pinsert(dbp, pp, lp, rp)) != 0)
|
|
goto err;
|
|
|
|
/* Log the change. */
|
|
if (DB_LOGGING(dbp)) {
|
|
DBT __a;
|
|
DB_LSN __lsn;
|
|
memset(&__a, 0, sizeof(__a));
|
|
__a.data = cp->page;
|
|
__a.size = dbp->pgsize;
|
|
if (tp == NULL)
|
|
ZERO_LSN(__lsn);
|
|
if ((ret = __bam_split_log(dbp->dbenv->lg_info, dbp->txn,
|
|
&cp->page->lsn, 0, dbp->log_fileid, PGNO(cp->page),
|
|
&LSN(cp->page), PGNO(rp), &LSN(rp), (u_int32_t)NUM_ENT(lp),
|
|
tp == NULL ? 0 : PGNO(tp),
|
|
tp == NULL ? &__lsn : &LSN(tp), &__a)) != 0)
|
|
goto err;
|
|
|
|
LSN(lp) = LSN(rp) = LSN(cp->page);
|
|
if (tp != NULL)
|
|
LSN(tp) = LSN(cp->page);
|
|
}
|
|
|
|
/* Copy the allocated page into place. */
|
|
memcpy(cp->page, lp, LOFFSET(lp));
|
|
memcpy((u_int8_t *)cp->page + HOFFSET(lp),
|
|
(u_int8_t *)lp + HOFFSET(lp), dbp->pgsize - HOFFSET(lp));
|
|
FREE(lp, dbp->pgsize);
|
|
lp = NULL;
|
|
|
|
/* Finish the next-page link. */
|
|
if (tp != NULL)
|
|
tp->prev_pgno = rp->pgno;
|
|
|
|
/* Success -- write the real pages back to the store. */
|
|
(void)memp_fput(dbp->mpf, pp->page, DB_MPOOL_DIRTY);
|
|
(void)__BT_TLPUT(dbp, pp->lock);
|
|
(void)memp_fput(dbp->mpf, cp->page, DB_MPOOL_DIRTY);
|
|
(void)__BT_TLPUT(dbp, cp->lock);
|
|
(void)memp_fput(dbp->mpf, rp, DB_MPOOL_DIRTY);
|
|
if (tp != NULL) {
|
|
(void)memp_fput(dbp->mpf, tp, DB_MPOOL_DIRTY);
|
|
(void)__BT_TLPUT(dbp, tplock);
|
|
}
|
|
return (0);
|
|
|
|
err: if (lp != NULL)
|
|
FREE(lp, dbp->pgsize);
|
|
if (rp != NULL)
|
|
(void)__bam_free(dbp, rp);
|
|
if (tp != NULL) {
|
|
(void)memp_fput(dbp->mpf, tp, 0);
|
|
(void)__BT_TLPUT(dbp, tplock);
|
|
}
|
|
(void)memp_fput(dbp->mpf, pp->page, 0);
|
|
(void)__BT_TLPUT(dbp, pp->lock);
|
|
(void)memp_fput(dbp->mpf, cp->page, 0);
|
|
(void)__BT_TLPUT(dbp, cp->lock);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* __bam_broot --
|
|
* Fix up the btree root page after it has been split.
|
|
*
|
|
* PUBLIC: int __bam_broot __P((DB *, PAGE *, PAGE *, PAGE *));
|
|
*/
|
|
int
|
|
__bam_broot(dbp, rootp, lp, rp)
|
|
DB *dbp;
|
|
PAGE *rootp, *lp, *rp;
|
|
{
|
|
BINTERNAL bi, *child_bi;
|
|
BKEYDATA *child_bk;
|
|
DBT hdr, data;
|
|
int ret;
|
|
|
|
/*
|
|
* If the root page was a leaf page, change it into an internal page.
|
|
* We copy the key we split on (but not the key's data, in the case of
|
|
* a leaf page) to the new root page.
|
|
*/
|
|
P_INIT(rootp, dbp->pgsize,
|
|
PGNO_ROOT, PGNO_INVALID, PGNO_INVALID, lp->level + 1, P_IBTREE);
|
|
|
|
memset(&data, 0, sizeof(data));
|
|
memset(&hdr, 0, sizeof(hdr));
|
|
|
|
/*
|
|
* The btree comparison code guarantees that the left-most key on any
|
|
* level of the tree is never used, so it doesn't need to be filled in.
|
|
*/
|
|
memset(&bi, 0, sizeof(bi));
|
|
bi.len = 0;
|
|
B_TSET(bi.type, B_KEYDATA, 0);
|
|
bi.pgno = lp->pgno;
|
|
if (F_ISSET(dbp, DB_BT_RECNUM)) {
|
|
bi.nrecs = __bam_total(lp);
|
|
RE_NREC_SET(rootp, bi.nrecs);
|
|
}
|
|
hdr.data = &bi;
|
|
hdr.size = SSZA(BINTERNAL, data);
|
|
if ((ret =
|
|
__db_pitem(dbp, rootp, 0, BINTERNAL_SIZE(0), &hdr, NULL)) != 0)
|
|
return (ret);
|
|
|
|
switch (TYPE(rp)) {
|
|
case P_IBTREE:
|
|
/* Copy the first key of the child page onto the root page. */
|
|
child_bi = GET_BINTERNAL(rp, 0);
|
|
|
|
bi.len = child_bi->len;
|
|
B_TSET(bi.type, child_bi->type, 0);
|
|
bi.pgno = rp->pgno;
|
|
if (F_ISSET(dbp, DB_BT_RECNUM)) {
|
|
bi.nrecs = __bam_total(rp);
|
|
RE_NREC_ADJ(rootp, bi.nrecs);
|
|
}
|
|
hdr.data = &bi;
|
|
hdr.size = SSZA(BINTERNAL, data);
|
|
data.data = child_bi->data;
|
|
data.size = child_bi->len;
|
|
if ((ret = __db_pitem(dbp, rootp, 1,
|
|
BINTERNAL_SIZE(child_bi->len), &hdr, &data)) != 0)
|
|
return (ret);
|
|
|
|
/* Increment the overflow ref count. */
|
|
if (B_TYPE(child_bi->type) == B_OVERFLOW)
|
|
if ((ret = __db_ovref(dbp,
|
|
((BOVERFLOW *)(child_bi->data))->pgno, 1)) != 0)
|
|
return (ret);
|
|
break;
|
|
case P_LBTREE:
|
|
/* Copy the first key of the child page onto the root page. */
|
|
child_bk = GET_BKEYDATA(rp, 0);
|
|
switch (B_TYPE(child_bk->type)) {
|
|
case B_KEYDATA:
|
|
bi.len = child_bk->len;
|
|
B_TSET(bi.type, child_bk->type, 0);
|
|
bi.pgno = rp->pgno;
|
|
if (F_ISSET(dbp, DB_BT_RECNUM)) {
|
|
bi.nrecs = __bam_total(rp);
|
|
RE_NREC_ADJ(rootp, bi.nrecs);
|
|
}
|
|
hdr.data = &bi;
|
|
hdr.size = SSZA(BINTERNAL, data);
|
|
data.data = child_bk->data;
|
|
data.size = child_bk->len;
|
|
if ((ret = __db_pitem(dbp, rootp, 1,
|
|
BINTERNAL_SIZE(child_bk->len), &hdr, &data)) != 0)
|
|
return (ret);
|
|
break;
|
|
case B_DUPLICATE:
|
|
case B_OVERFLOW:
|
|
bi.len = BOVERFLOW_SIZE;
|
|
B_TSET(bi.type, child_bk->type, 0);
|
|
bi.pgno = rp->pgno;
|
|
if (F_ISSET(dbp, DB_BT_RECNUM)) {
|
|
bi.nrecs = __bam_total(rp);
|
|
RE_NREC_ADJ(rootp, bi.nrecs);
|
|
}
|
|
hdr.data = &bi;
|
|
hdr.size = SSZA(BINTERNAL, data);
|
|
data.data = child_bk;
|
|
data.size = BOVERFLOW_SIZE;
|
|
if ((ret = __db_pitem(dbp, rootp, 1,
|
|
BINTERNAL_SIZE(BOVERFLOW_SIZE), &hdr, &data)) != 0)
|
|
return (ret);
|
|
|
|
/* Increment the overflow ref count. */
|
|
if (B_TYPE(child_bk->type) == B_OVERFLOW)
|
|
if ((ret = __db_ovref(dbp,
|
|
((BOVERFLOW *)child_bk)->pgno, 1)) != 0)
|
|
return (ret);
|
|
break;
|
|
default:
|
|
return (__db_pgfmt(dbp, rp->pgno));
|
|
}
|
|
break;
|
|
default:
|
|
return (__db_pgfmt(dbp, rp->pgno));
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* __ram_root --
|
|
* Fix up the recno root page after it has been split.
|
|
*
|
|
* PUBLIC: int __ram_root __P((DB *, PAGE *, PAGE *, PAGE *));
|
|
*/
|
|
int
|
|
__ram_root(dbp, rootp, lp, rp)
|
|
DB *dbp;
|
|
PAGE *rootp, *lp, *rp;
|
|
{
|
|
DBT hdr;
|
|
RINTERNAL ri;
|
|
int ret;
|
|
|
|
/* Initialize the page. */
|
|
P_INIT(rootp, dbp->pgsize,
|
|
PGNO_ROOT, PGNO_INVALID, PGNO_INVALID, lp->level + 1, P_IRECNO);
|
|
|
|
/* Initialize the header. */
|
|
memset(&hdr, 0, sizeof(hdr));
|
|
hdr.data = &ri;
|
|
hdr.size = RINTERNAL_SIZE;
|
|
|
|
/* Insert the left and right keys, set the header information. */
|
|
ri.pgno = lp->pgno;
|
|
ri.nrecs = __bam_total(lp);
|
|
if ((ret = __db_pitem(dbp, rootp, 0, RINTERNAL_SIZE, &hdr, NULL)) != 0)
|
|
return (ret);
|
|
RE_NREC_SET(rootp, ri.nrecs);
|
|
ri.pgno = rp->pgno;
|
|
ri.nrecs = __bam_total(rp);
|
|
if ((ret = __db_pitem(dbp, rootp, 1, RINTERNAL_SIZE, &hdr, NULL)) != 0)
|
|
return (ret);
|
|
RE_NREC_ADJ(rootp, ri.nrecs);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* __bam_pinsert --
|
|
* Insert a new key into a parent page, completing the split.
|
|
*/
|
|
static int
|
|
__bam_pinsert(dbp, parent, lchild, rchild)
|
|
DB *dbp;
|
|
EPG *parent;
|
|
PAGE *lchild, *rchild;
|
|
{
|
|
BINTERNAL bi, *child_bi;
|
|
BKEYDATA *child_bk, *tmp_bk;
|
|
BTREE *t;
|
|
DBT a, b, hdr, data;
|
|
PAGE *ppage;
|
|
RINTERNAL ri;
|
|
db_indx_t off;
|
|
db_recno_t nrecs;
|
|
u_int32_t n, nbytes, nksize;
|
|
int ret;
|
|
|
|
t = dbp->internal;
|
|
ppage = parent->page;
|
|
|
|
/* If handling record numbers, count records split to the right page. */
|
|
nrecs = dbp->type == DB_RECNO || F_ISSET(dbp, DB_BT_RECNUM) ?
|
|
__bam_total(rchild) : 0;
|
|
|
|
/*
|
|
* Now we insert the new page's first key into the parent page, which
|
|
* completes the split. The parent points to a PAGE and a page index
|
|
* offset, where the new key goes ONE AFTER the index, because we split
|
|
* to the right.
|
|
*
|
|
* XXX
|
|
* Some btree algorithms replace the key for the old page as well as
|
|
* the new page. We don't, as there's no reason to believe that the
|
|
* first key on the old page is any better than the key we have, and,
|
|
* in the case of a key being placed at index 0 causing the split, the
|
|
* key is unavailable.
|
|
*/
|
|
off = parent->indx + O_INDX;
|
|
|
|
/*
|
|
* Calculate the space needed on the parent page.
|
|
*
|
|
* Prefix trees: space hack used when inserting into BINTERNAL pages.
|
|
* Retain only what's needed to distinguish between the new entry and
|
|
* the LAST entry on the page to its left. If the keys compare equal,
|
|
* retain the entire key. We ignore overflow keys, and the entire key
|
|
* must be retained for the next-to-leftmost key on the leftmost page
|
|
* of each level, or the search will fail. Applicable ONLY to internal
|
|
* pages that have leaf pages as children. Further reduction of the
|
|
* key between pairs of internal pages loses too much information.
|
|
*/
|
|
switch (TYPE(rchild)) {
|
|
case P_IBTREE:
|
|
child_bi = GET_BINTERNAL(rchild, 0);
|
|
nbytes = BINTERNAL_PSIZE(child_bi->len);
|
|
|
|
if (P_FREESPACE(ppage) < nbytes)
|
|
return (DB_NEEDSPLIT);
|
|
|
|
/* Add a new record for the right page. */
|
|
memset(&bi, 0, sizeof(bi));
|
|
bi.len = child_bi->len;
|
|
B_TSET(bi.type, child_bi->type, 0);
|
|
bi.pgno = rchild->pgno;
|
|
bi.nrecs = nrecs;
|
|
memset(&hdr, 0, sizeof(hdr));
|
|
hdr.data = &bi;
|
|
hdr.size = SSZA(BINTERNAL, data);
|
|
memset(&data, 0, sizeof(data));
|
|
data.data = child_bi->data;
|
|
data.size = child_bi->len;
|
|
if ((ret = __db_pitem(dbp, ppage, off,
|
|
BINTERNAL_SIZE(child_bi->len), &hdr, &data)) != 0)
|
|
return (ret);
|
|
|
|
/* Increment the overflow ref count. */
|
|
if (B_TYPE(child_bi->type) == B_OVERFLOW)
|
|
if ((ret = __db_ovref(dbp,
|
|
((BOVERFLOW *)(child_bi->data))->pgno, 1)) != 0)
|
|
return (ret);
|
|
break;
|
|
case P_LBTREE:
|
|
child_bk = GET_BKEYDATA(rchild, 0);
|
|
switch (B_TYPE(child_bk->type)) {
|
|
case B_KEYDATA:
|
|
nbytes = BINTERNAL_PSIZE(child_bk->len);
|
|
nksize = child_bk->len;
|
|
if (t->bt_prefix == NULL)
|
|
goto noprefix;
|
|
if (ppage->prev_pgno == PGNO_INVALID && off <= 1)
|
|
goto noprefix;
|
|
tmp_bk = GET_BKEYDATA(lchild, NUM_ENT(lchild) - P_INDX);
|
|
if (B_TYPE(tmp_bk->type) != B_KEYDATA)
|
|
goto noprefix;
|
|
memset(&a, 0, sizeof(a));
|
|
a.size = tmp_bk->len;
|
|
a.data = tmp_bk->data;
|
|
memset(&b, 0, sizeof(b));
|
|
b.size = child_bk->len;
|
|
b.data = child_bk->data;
|
|
nksize = t->bt_prefix(&a, &b);
|
|
if ((n = BINTERNAL_PSIZE(nksize)) < nbytes) {
|
|
t->lstat.bt_pfxsaved += nbytes - n;
|
|
nbytes = n;
|
|
} else
|
|
noprefix: nksize = child_bk->len;
|
|
|
|
if (P_FREESPACE(ppage) < nbytes)
|
|
return (DB_NEEDSPLIT);
|
|
|
|
memset(&bi, 0, sizeof(bi));
|
|
bi.len = nksize;
|
|
B_TSET(bi.type, child_bk->type, 0);
|
|
bi.pgno = rchild->pgno;
|
|
bi.nrecs = nrecs;
|
|
memset(&hdr, 0, sizeof(hdr));
|
|
hdr.data = &bi;
|
|
hdr.size = SSZA(BINTERNAL, data);
|
|
memset(&data, 0, sizeof(data));
|
|
data.data = child_bk->data;
|
|
data.size = nksize;
|
|
if ((ret = __db_pitem(dbp, ppage, off,
|
|
BINTERNAL_SIZE(nksize), &hdr, &data)) != 0)
|
|
return (ret);
|
|
break;
|
|
case B_DUPLICATE:
|
|
case B_OVERFLOW:
|
|
nbytes = BINTERNAL_PSIZE(BOVERFLOW_SIZE);
|
|
|
|
if (P_FREESPACE(ppage) < nbytes)
|
|
return (DB_NEEDSPLIT);
|
|
|
|
memset(&bi, 0, sizeof(bi));
|
|
bi.len = BOVERFLOW_SIZE;
|
|
B_TSET(bi.type, child_bk->type, 0);
|
|
bi.pgno = rchild->pgno;
|
|
bi.nrecs = nrecs;
|
|
memset(&hdr, 0, sizeof(hdr));
|
|
hdr.data = &bi;
|
|
hdr.size = SSZA(BINTERNAL, data);
|
|
memset(&data, 0, sizeof(data));
|
|
data.data = child_bk;
|
|
data.size = BOVERFLOW_SIZE;
|
|
if ((ret = __db_pitem(dbp, ppage, off,
|
|
BINTERNAL_SIZE(BOVERFLOW_SIZE), &hdr, &data)) != 0)
|
|
return (ret);
|
|
|
|
/* Increment the overflow ref count. */
|
|
if (B_TYPE(child_bk->type) == B_OVERFLOW)
|
|
if ((ret = __db_ovref(dbp,
|
|
((BOVERFLOW *)child_bk)->pgno, 1)) != 0)
|
|
return (ret);
|
|
break;
|
|
default:
|
|
return (__db_pgfmt(dbp, rchild->pgno));
|
|
}
|
|
break;
|
|
case P_IRECNO:
|
|
case P_LRECNO:
|
|
nbytes = RINTERNAL_PSIZE;
|
|
|
|
if (P_FREESPACE(ppage) < nbytes)
|
|
return (DB_NEEDSPLIT);
|
|
|
|
/* Add a new record for the right page. */
|
|
memset(&hdr, 0, sizeof(hdr));
|
|
hdr.data = &ri;
|
|
hdr.size = RINTERNAL_SIZE;
|
|
ri.pgno = rchild->pgno;
|
|
ri.nrecs = nrecs;
|
|
if ((ret = __db_pitem(dbp,
|
|
ppage, off, RINTERNAL_SIZE, &hdr, NULL)) != 0)
|
|
return (ret);
|
|
break;
|
|
default:
|
|
return (__db_pgfmt(dbp, rchild->pgno));
|
|
}
|
|
|
|
/* Adjust the parent page's left page record count. */
|
|
if (dbp->type == DB_RECNO || F_ISSET(dbp, DB_BT_RECNUM)) {
|
|
/* Log the change. */
|
|
if (DB_LOGGING(dbp) &&
|
|
(ret = __bam_cadjust_log(dbp->dbenv->lg_info,
|
|
dbp->txn, &LSN(ppage), 0, dbp->log_fileid,
|
|
PGNO(ppage), &LSN(ppage), (u_int32_t)parent->indx,
|
|
-(int32_t)nrecs, (int32_t)0)) != 0)
|
|
return (ret);
|
|
|
|
/* Update the left page count. */
|
|
if (dbp->type == DB_RECNO)
|
|
GET_RINTERNAL(ppage, parent->indx)->nrecs -= nrecs;
|
|
else
|
|
GET_BINTERNAL(ppage, parent->indx)->nrecs -= nrecs;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* __bam_psplit --
|
|
* Do the real work of splitting the page.
|
|
*/
|
|
static int
|
|
__bam_psplit(dbp, cp, lp, rp, cleft)
|
|
DB *dbp;
|
|
EPG *cp;
|
|
PAGE *lp, *rp;
|
|
int cleft;
|
|
{
|
|
BTREE *t;
|
|
PAGE *pp;
|
|
db_indx_t half, nbytes, off, splitp, top;
|
|
int adjust, cnt, isbigkey, ret;
|
|
|
|
t = dbp->internal;
|
|
pp = cp->page;
|
|
adjust = TYPE(pp) == P_LBTREE ? P_INDX : O_INDX;
|
|
|
|
/*
|
|
* If we're splitting the first (last) page on a level because we're
|
|
* inserting (appending) a key to it, it's likely that the data is
|
|
* sorted. Moving a single item to the new page is less work and can
|
|
* push the fill factor higher than normal. If we're wrong it's not
|
|
* a big deal, we'll just do the split the right way next time.
|
|
*/
|
|
off = 0;
|
|
if (NEXT_PGNO(pp) == PGNO_INVALID &&
|
|
((ISINTERNAL(pp) && cp->indx == NUM_ENT(cp->page) - 1) ||
|
|
(!ISINTERNAL(pp) && cp->indx == NUM_ENT(cp->page))))
|
|
off = NUM_ENT(cp->page) - adjust;
|
|
else if (PREV_PGNO(pp) == PGNO_INVALID && cp->indx == 0)
|
|
off = adjust;
|
|
|
|
++t->lstat.bt_split;
|
|
if (off != 0) {
|
|
++t->lstat.bt_fastsplit;
|
|
goto sort;
|
|
}
|
|
|
|
/*
|
|
* Split the data to the left and right pages. Try not to split on
|
|
* an overflow key. (Overflow keys on internal pages will slow down
|
|
* searches.) Refuse to split in the middle of a set of duplicates.
|
|
*
|
|
* First, find the optimum place to split.
|
|
*
|
|
* It's possible to try and split past the last record on the page if
|
|
* there's a very large record at the end of the page. Make sure this
|
|
* doesn't happen by bounding the check at the next-to-last entry on
|
|
* the page.
|
|
*
|
|
* Note, we try and split half the data present on the page. This is
|
|
* because another process may have already split the page and left
|
|
* it half empty. We don't try and skip the split -- we don't know
|
|
* how much space we're going to need on the page, and we may need up
|
|
* to half the page for a big item, so there's no easy test to decide
|
|
* if we need to split or not. Besides, if two threads are inserting
|
|
* data into the same place in the database, we're probably going to
|
|
* need more space soon anyway.
|
|
*/
|
|
top = NUM_ENT(pp) - adjust;
|
|
half = (dbp->pgsize - HOFFSET(pp)) / 2;
|
|
for (nbytes = 0, off = 0; off < top && nbytes < half; ++off)
|
|
switch (TYPE(pp)) {
|
|
case P_IBTREE:
|
|
if (B_TYPE(GET_BINTERNAL(pp, off)->type) == B_KEYDATA)
|
|
nbytes +=
|
|
BINTERNAL_SIZE(GET_BINTERNAL(pp, off)->len);
|
|
else
|
|
nbytes += BINTERNAL_SIZE(BOVERFLOW_SIZE);
|
|
break;
|
|
case P_LBTREE:
|
|
if (B_TYPE(GET_BKEYDATA(pp, off)->type) == B_KEYDATA)
|
|
nbytes +=
|
|
BKEYDATA_SIZE(GET_BKEYDATA(pp, off)->len);
|
|
else
|
|
nbytes += BOVERFLOW_SIZE;
|
|
|
|
++off;
|
|
if (B_TYPE(GET_BKEYDATA(pp, off)->type) == B_KEYDATA)
|
|
nbytes +=
|
|
BKEYDATA_SIZE(GET_BKEYDATA(pp, off)->len);
|
|
else
|
|
nbytes += BOVERFLOW_SIZE;
|
|
break;
|
|
case P_IRECNO:
|
|
nbytes += RINTERNAL_SIZE;
|
|
break;
|
|
case P_LRECNO:
|
|
nbytes += BKEYDATA_SIZE(GET_BKEYDATA(pp, off)->len);
|
|
break;
|
|
default:
|
|
return (__db_pgfmt(dbp, pp->pgno));
|
|
}
|
|
sort: splitp = off;
|
|
|
|
/*
|
|
* Splitp is either at or just past the optimum split point. If
|
|
* it's a big key, try and find something close by that's not.
|
|
*/
|
|
if (TYPE(pp) == P_IBTREE)
|
|
isbigkey = B_TYPE(GET_BINTERNAL(pp, off)->type) != B_KEYDATA;
|
|
else if (TYPE(pp) == P_LBTREE)
|
|
isbigkey = B_TYPE(GET_BKEYDATA(pp, off)->type) != B_KEYDATA;
|
|
else
|
|
isbigkey = 0;
|
|
if (isbigkey)
|
|
for (cnt = 1; cnt <= 3; ++cnt) {
|
|
off = splitp + cnt * adjust;
|
|
if (off < (db_indx_t)NUM_ENT(pp) &&
|
|
((TYPE(pp) == P_IBTREE &&
|
|
B_TYPE(GET_BINTERNAL(pp,off)->type) == B_KEYDATA) ||
|
|
B_TYPE(GET_BKEYDATA(pp, off)->type) == B_KEYDATA)) {
|
|
splitp = off;
|
|
break;
|
|
}
|
|
if (splitp <= (db_indx_t)(cnt * adjust))
|
|
continue;
|
|
off = splitp - cnt * adjust;
|
|
if (TYPE(pp) == P_IBTREE ?
|
|
B_TYPE(GET_BINTERNAL(pp, off)->type) == B_KEYDATA :
|
|
B_TYPE(GET_BKEYDATA(pp, off)->type) == B_KEYDATA) {
|
|
splitp = off;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We can't split in the middle a set of duplicates. We know that
|
|
* no duplicate set can take up more than about 25% of the page,
|
|
* because that's the point where we push it off onto a duplicate
|
|
* page set. So, this loop can't be unbounded.
|
|
*/
|
|
if (F_ISSET(dbp, DB_AM_DUP) && TYPE(pp) == P_LBTREE &&
|
|
pp->inp[splitp] == pp->inp[splitp - adjust])
|
|
for (cnt = 1;; ++cnt) {
|
|
off = splitp + cnt * adjust;
|
|
if (off < NUM_ENT(pp) &&
|
|
pp->inp[splitp] != pp->inp[off]) {
|
|
splitp = off;
|
|
break;
|
|
}
|
|
if (splitp <= (db_indx_t)(cnt * adjust))
|
|
continue;
|
|
off = splitp - cnt * adjust;
|
|
if (pp->inp[splitp] != pp->inp[off]) {
|
|
splitp = off + adjust;
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/* We're going to split at splitp. */
|
|
if ((ret = __bam_copy(dbp, pp, lp, 0, splitp)) != 0)
|
|
return (ret);
|
|
if ((ret = __bam_copy(dbp, pp, rp, splitp, NUM_ENT(pp))) != 0)
|
|
return (ret);
|
|
|
|
/* Adjust the cursors. */
|
|
__bam_ca_split(dbp, pp->pgno, lp->pgno, rp->pgno, splitp, cleft);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* __bam_copy --
|
|
* Copy a set of records from one page to another.
|
|
*
|
|
* PUBLIC: int __bam_copy __P((DB *, PAGE *, PAGE *, u_int32_t, u_int32_t));
|
|
*/
|
|
int
|
|
__bam_copy(dbp, pp, cp, nxt, stop)
|
|
DB *dbp;
|
|
PAGE *pp, *cp;
|
|
u_int32_t nxt, stop;
|
|
{
|
|
db_indx_t nbytes, off;
|
|
|
|
/*
|
|
* Copy the rest of the data to the right page. Nxt is the next
|
|
* offset placed on the target page.
|
|
*/
|
|
for (off = 0; nxt < stop; ++nxt, ++NUM_ENT(cp), ++off) {
|
|
switch (TYPE(pp)) {
|
|
case P_IBTREE:
|
|
if (B_TYPE(GET_BINTERNAL(pp, nxt)->type) == B_KEYDATA)
|
|
nbytes =
|
|
BINTERNAL_SIZE(GET_BINTERNAL(pp, nxt)->len);
|
|
else
|
|
nbytes = BINTERNAL_SIZE(BOVERFLOW_SIZE);
|
|
break;
|
|
case P_LBTREE:
|
|
/*
|
|
* If we're on a key and it's a duplicate, just copy
|
|
* the offset.
|
|
*/
|
|
if (off != 0 && (nxt % P_INDX) == 0 &&
|
|
pp->inp[nxt] == pp->inp[nxt - P_INDX]) {
|
|
cp->inp[off] = cp->inp[off - P_INDX];
|
|
continue;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case P_LRECNO:
|
|
if (B_TYPE(GET_BKEYDATA(pp, nxt)->type) == B_KEYDATA)
|
|
nbytes =
|
|
BKEYDATA_SIZE(GET_BKEYDATA(pp, nxt)->len);
|
|
else
|
|
nbytes = BOVERFLOW_SIZE;
|
|
break;
|
|
case P_IRECNO:
|
|
nbytes = RINTERNAL_SIZE;
|
|
break;
|
|
default:
|
|
return (__db_pgfmt(dbp, pp->pgno));
|
|
}
|
|
cp->inp[off] = HOFFSET(cp) -= nbytes;
|
|
memcpy(P_ENTRY(cp, off), P_ENTRY(pp, nxt), nbytes);
|
|
}
|
|
return (0);
|
|
}
|