glibc/manual
Adhemerval Zanella 03bf8357e8 stdlib: Remove use of mergesort on qsort (BZ 21719)
This patch removes the mergesort optimization on qsort implementation
and uses the introsort instead.  The mergesort implementation has some
issues:

  - It is as-safe only for certain types sizes (if total size is less
    than 1 KB with large element sizes also forcing memory allocation)
    which contradicts the function documentation.  Although not required
    by the C standard, it is preferable and doable to have an O(1) space
    implementation.

  - The malloc for certain element size and element number adds
    arbitrary latency (might even be worse if malloc is interposed).

  - To avoid trigger swap from memory allocation the implementation
    relies on system information that might be virtualized (for instance
    VMs with overcommit memory) which might lead to potentially use of
    swap even if system advertise more memory than actually has.  The
    check also have the downside of issuing syscalls where none is
    expected (although only once per execution).

  - The mergesort is suboptimal on an already sorted array (BZ#21719).

The introsort implementation is already optimized to use constant extra
space (due to the limit of total number of elements from maximum VM
size) and thus can be used to avoid the malloc usage issues.

Resulting performance is slower due the usage of qsort, specially in the
worst-case scenario (partialy or sorted arrays) and due the fact
mergesort uses a slight improved swap operations.

This change also renders the BZ#21719 fix unrequired (since it is meant
to fix the sorted input performance degradation for mergesort).  The
manual is also updated to indicate the function is now async-cancel
safe.

Checked on x86_64-linux-gnu.
Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
2023-10-31 14:18:05 -03:00
..
examples crypt: Remove libcrypt support 2023-10-30 13:03:59 -03:00
argp.texi stdlib: Remove use of mergesort on qsort (BZ 21719) 2023-10-31 14:18:05 -03:00
arith.texi
charset.texi
check-safety.sh
conf.texi
contrib.texi crypt: Remove libcrypt support 2023-10-30 13:03:59 -03:00
creature.texi
crypt.texi crypt: Remove libcrypt support 2023-10-30 13:03:59 -03:00
ctype.texi
debug.texi
dir
dynlink.texi manual: Fix ld.so diagnostics menu/section structure 2023-09-06 18:37:21 +02:00
errno.texi
fdl-1.3.texi
filesys.texi
freemanuals.texi
getopt.texi
header.texi
install-plain.texi
install.texi crypt: Remove manul entry for --enable-crypt 2023-10-31 10:59:04 -03:00
intro.texi
io.texi
ipc.texi
job.texi manual/jobs.texi: Add missing @item EPERM for getpgid 2023-08-25 11:43:30 +02:00
lang.texi
lgpl-2.1.texi
libc-texinfo.sh
libc.texinfo
libcbook.texi
llio.texi
locale.texi stdlib: Remove use of mergesort on qsort (BZ 21719) 2023-10-31 14:18:05 -03:00
macros.texi
maint.texi
Makefile
math.texi
memory.texi
message.texi
nss.texi
nsswitch.texi
pattern.texi
pipe.texi
platform.texi x86: Add support for AVX10 preset and vec size in cpu-features 2023-09-29 14:18:42 -05:00
probes.texi
process.texi linux: Add pidfd_getpid 2023-09-05 13:08:59 -03:00
README.pretty-printers
README.tunables
resource.texi
search.texi stdlib: Remove use of mergesort on qsort (BZ 21719) 2023-10-31 14:18:05 -03:00
setjmp.texi
signal.texi
socket.texi
startup.texi
stdio-fp.c
stdio.texi C2x scanf %wN, %wfN support 2023-09-28 17:28:15 +00:00
string.texi
summary.pl
sysinfo.texi
syslog.texi
terminal.texi
texinfo.tex
texis.awk
threads.texi
time.texi
tsort.awk
tunables.texi PowerPC: Influence cpu/arch hwcap features via GLIBC_TUNABLES 2023-08-01 07:41:17 -05:00
users.texi crypt: Remove libcrypt support 2023-10-30 13:03:59 -03:00
xtract-typefun.awk

			TUNABLE FRAMEWORK
			=================

Tunables is a feature in the GNU C Library that allows application authors and
distribution maintainers to alter the runtime library behaviour to match their
workload.

The tunable framework allows modules within glibc to register variables that
may be tweaked through an environment variable.  It aims to enforce a strict
namespace rule to bring consistency to naming of these tunable environment
variables across the project.  This document is a guide for glibc developers to
add tunables to the framework.

ADDING A NEW TUNABLE
--------------------

The TOP_NAMESPACE macro is defined by default as 'glibc'.  If distributions
intend to add their own tunables, they should do so in a different top
namespace by overriding the TOP_NAMESPACE macro for that tunable.  Downstream
implementations are discouraged from using the 'glibc' top namespace for
tunables they don't already have consensus to push upstream.

There are three steps to adding a tunable:

1. Add a tunable to the list and fully specify its properties:

For each tunable you want to add, make an entry in elf/dl-tunables.list.  The
format of the file is as follows:

TOP_NAMESPACE {
  NAMESPACE1 {
    TUNABLE1 {
      # tunable attributes, one per line
    }
    # A tunable with default attributes, i.e. string variable.
    TUNABLE2
    TUNABLE3 {
      # its attributes
    }
  }
  NAMESPACE2 {
    ...
  }
}

The list of allowed attributes are:

- type:			Data type.  Defaults to STRING.  Allowed types are:
			INT_32, UINT_64, SIZE_T and STRING.  Numeric types may
			be in octal or hexadecimal format too.

- minval:		Optional minimum acceptable value.  For a string type
			this is the minimum length of the value.

- maxval:		Optional maximum acceptable value.  For a string type
			this is the maximum length of the value.

- default:		Specify an optional default value for the tunable.

- env_alias:		An alias environment variable

- security_level:	Specify security level of the tunable for AT_SECURE
			binaries.  Valid values are:

			SXID_ERASE: (default) Do not read and do not pass on to
			child processes.
			SXID_IGNORE: Do not read, but retain for non-AT_SECURE
			child processes.
			NONE: Read all the time.

2. Use TUNABLE_GET/TUNABLE_SET/TUNABLE_SET_WITH_BOUNDS to get and set tunables.

3. OPTIONAL: If tunables in a namespace are being used multiple times within a
   specific module, set the TUNABLE_NAMESPACE macro to reduce the amount of
   typing.

GETTING AND SETTING TUNABLES
----------------------------

When the TUNABLE_NAMESPACE macro is defined, one may get tunables in that
module using the TUNABLE_GET macro as follows:

  val = TUNABLE_GET (check, int32_t, TUNABLE_CALLBACK (check_callback))

where 'check' is the tunable name, 'int32_t' is the C type of the tunable and
'check_callback' is the function to call if the tunable got initialized to a
non-default value.  The macro returns the value as type 'int32_t'.

The callback function should be defined as follows:

  void
  TUNABLE_CALLBACK (check_callback) (int32_t *valp)
  {
  ...
  }

where it can expect the tunable value to be passed in VALP.

Tunables in the module can be updated using:

  TUNABLE_SET (check, val)

where 'check' is the tunable name and 'val' is a value of same type.

To get and set tunables in a different namespace from that module, use the full
form of the macros as follows:

  val = TUNABLE_GET_FULL (glibc, cpu, hwcap_mask, uint64_t, NULL)

  TUNABLE_SET_FULL (glibc, cpu, hwcap_mask, val)

where 'glibc' is the top namespace, 'cpu' is the tunable namespace and the
remaining arguments are the same as the short form macros.

The minimum and maximum values can updated together with the tunable value
using:

  TUNABLE_SET_WITH_BOUNDS (check, val, min, max)

where 'check' is the tunable name, 'val' is a value of same type, 'min' and
'max' are the minimum and maximum values of the tunable.

To set the minimum and maximum values of tunables in a different namespace
from that module, use the full form of the macros as follows:

  val = TUNABLE_GET_FULL (glibc, cpu, hwcap_mask, uint64_t, NULL)

  TUNABLE_SET_WITH_BOUNDS_FULL (glibc, cpu, hwcap_mask, val, min, max)

where 'glibc' is the top namespace, 'cpu' is the tunable namespace and the
remaining arguments are the same as the short form macros.

When TUNABLE_NAMESPACE is not defined in a module, TUNABLE_GET is equivalent to
TUNABLE_GET_FULL, so you will need to provide full namespace information for
both macros.  Likewise for TUNABLE_SET, TUNABLE_SET_FULL,
TUNABLE_SET_WITH_BOUNDS and TUNABLE_SET_WITH_BOUNDS_FULL.

** IMPORTANT NOTE **

The tunable list is set as read-only after the dynamic linker relocates itself,
so setting tunable values must be limited only to tunables within the dynamic
linker, that too before relocation.

FUTURE WORK
-----------

The framework currently only allows a one-time initialization of variables
through environment variables and in some cases, modification of variables via
an API call.  A future goals for this project include:

- Setting system-wide and user-wide defaults for tunables through some
  mechanism like a configuration file.

- Allow tweaking of some tunables at runtime