mirror of
git://sourceware.org/git/glibc.git
synced 2025-01-24 12:25:35 +08:00
879 lines
24 KiB
ArmAsm
879 lines
24 KiB
ArmAsm
.file "acos.s"
|
|
|
|
|
|
// Copyright (c) 2000 - 2003 Intel Corporation
|
|
// All rights reserved.
|
|
//
|
|
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote
|
|
// products derived from this software without specific prior written
|
|
// permission.
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Intel Corporation is the author of this code, and requests that all
|
|
// problem reports or change requests be submitted to it directly at
|
|
// http://www.intel.com/software/products/opensource/libraries/num.htm.
|
|
|
|
// History
|
|
//==============================================================
|
|
// 02/02/00 Initial version
|
|
// 08/17/00 New and much faster algorithm.
|
|
// 08/30/00 Avoided bank conflicts on loads, shortened |x|=1 and x=0 paths,
|
|
// fixed mfb split issue stalls.
|
|
// 05/20/02 Cleaned up namespace and sf0 syntax
|
|
// 08/02/02 New and much faster algorithm II
|
|
// 02/06/03 Reordered header: .section, .global, .proc, .align
|
|
|
|
// Description
|
|
//=========================================
|
|
// The acos function computes the principal value of the arc cosine of x.
|
|
// acos(0) returns Pi/2, acos(1) returns 0, acos(-1) returns Pi.
|
|
// A doman error occurs for arguments not in the range [-1,+1].
|
|
//
|
|
// The acos function returns the arc cosine in the range [0, Pi] radians.
|
|
//
|
|
// There are 8 paths:
|
|
// 1. x = +/-0.0
|
|
// Return acos(x) = Pi/2 + x
|
|
//
|
|
// 2. 0.0 < |x| < 0.625
|
|
// Return acos(x) = Pi/2 - x - x^3 *PolA(x^2)
|
|
// where PolA(x^2) = A3 + A5*x^2 + A7*x^4 +...+ A35*x^32
|
|
//
|
|
// 3. 0.625 <=|x| < 1.0
|
|
// Return acos(x) = Pi/2 - asin(x) =
|
|
// = Pi/2 - sign(x) * ( Pi/2 - sqrt(R) * PolB(R))
|
|
// Where R = 1 - |x|,
|
|
// PolB(R) = B0 + B1*R + B2*R^2 +...+B12*R^12
|
|
//
|
|
// sqrt(R) is approximated using the following sequence:
|
|
// y0 = (1 + eps)/sqrt(R) - initial approximation by frsqrta,
|
|
// |eps| < 2^(-8)
|
|
// Then 3 iterations are used to refine the result:
|
|
// H0 = 0.5*y0
|
|
// S0 = R*y0
|
|
//
|
|
// d0 = 0.5 - H0*S0
|
|
// H1 = H0 + d0*H0
|
|
// S1 = S0 + d0*S0
|
|
//
|
|
// d1 = 0.5 - H1*S1
|
|
// H2 = H1 + d0*H1
|
|
// S2 = S1 + d0*S1
|
|
//
|
|
// d2 = 0.5 - H2*S2
|
|
// S3 = S3 + d2*S3
|
|
//
|
|
// S3 approximates sqrt(R) with enough accuracy for this algorithm
|
|
//
|
|
// So, the result should be reconstracted as follows:
|
|
// acos(x) = Pi/2 - sign(x) * (Pi/2 - S3*PolB(R))
|
|
//
|
|
// But for optimization purposes the reconstruction step is slightly
|
|
// changed:
|
|
// acos(x) = Cpi + sign(x)*PolB(R)*S2 - sign(x)*d2*S2*PolB(R)
|
|
// where Cpi = 0 if x > 0 and Cpi = Pi if x < 0
|
|
//
|
|
// 4. |x| = 1.0
|
|
// Return acos(1.0) = 0.0, acos(-1.0) = Pi
|
|
//
|
|
// 5. 1.0 < |x| <= +INF
|
|
// A doman error occurs for arguments not in the range [-1,+1]
|
|
//
|
|
// 6. x = [S,Q]NaN
|
|
// Return acos(x) = QNaN
|
|
//
|
|
// 7. x is denormal
|
|
// Return acos(x) = Pi/2 - x,
|
|
//
|
|
// 8. x is unnormal
|
|
// Normalize input in f8 and return to the very beginning of the function
|
|
//
|
|
// Registers used
|
|
//==============================================================
|
|
// Floating Point registers used:
|
|
// f8, input, output
|
|
// f6, f7, f9 -> f15, f32 -> f64
|
|
|
|
// General registers used:
|
|
// r3, r21 -> r31, r32 -> r38
|
|
|
|
// Predicate registers used:
|
|
// p0, p6 -> p14
|
|
|
|
//
|
|
// Assembly macros
|
|
//=========================================
|
|
// integer registers used
|
|
// scratch
|
|
rTblAddr = r3
|
|
|
|
rPiBy2Ptr = r21
|
|
rTmpPtr3 = r22
|
|
rDenoBound = r23
|
|
rOne = r24
|
|
rAbsXBits = r25
|
|
rHalf = r26
|
|
r0625 = r27
|
|
rSign = r28
|
|
rXBits = r29
|
|
rTmpPtr2 = r30
|
|
rTmpPtr1 = r31
|
|
|
|
// stacked
|
|
GR_SAVE_PFS = r32
|
|
GR_SAVE_B0 = r33
|
|
GR_SAVE_GP = r34
|
|
GR_Parameter_X = r35
|
|
GR_Parameter_Y = r36
|
|
GR_Parameter_RESULT = r37
|
|
GR_Parameter_TAG = r38
|
|
|
|
// floating point registers used
|
|
FR_X = f10
|
|
FR_Y = f1
|
|
FR_RESULT = f8
|
|
|
|
|
|
// scratch
|
|
fXSqr = f6
|
|
fXCube = f7
|
|
fXQuadr = f9
|
|
f1pX = f10
|
|
f1mX = f11
|
|
f1pXRcp = f12
|
|
f1mXRcp = f13
|
|
fH = f14
|
|
fS = f15
|
|
// stacked
|
|
fA3 = f32
|
|
fB1 = f32
|
|
fA5 = f33
|
|
fB2 = f33
|
|
fA7 = f34
|
|
fPiBy2 = f34
|
|
fA9 = f35
|
|
fA11 = f36
|
|
fB10 = f35
|
|
fB11 = f36
|
|
fA13 = f37
|
|
fA15 = f38
|
|
fB4 = f37
|
|
fB5 = f38
|
|
fA17 = f39
|
|
fA19 = f40
|
|
fB6 = f39
|
|
fB7 = f40
|
|
fA21 = f41
|
|
fA23 = f42
|
|
fB3 = f41
|
|
fB8 = f42
|
|
fA25 = f43
|
|
fA27 = f44
|
|
fB9 = f43
|
|
fB12 = f44
|
|
fA29 = f45
|
|
fA31 = f46
|
|
fA33 = f47
|
|
fA35 = f48
|
|
fBaseP = f49
|
|
fB0 = f50
|
|
fSignedS = f51
|
|
fD = f52
|
|
fHalf = f53
|
|
fR = f54
|
|
fCloseTo1Pol = f55
|
|
fSignX = f56
|
|
fDenoBound = f57
|
|
fNormX = f58
|
|
fX8 = f59
|
|
fRSqr = f60
|
|
fRQuadr = f61
|
|
fR8 = f62
|
|
fX16 = f63
|
|
fCpi = f64
|
|
|
|
// Data tables
|
|
//==============================================================
|
|
RODATA
|
|
.align 16
|
|
LOCAL_OBJECT_START(acos_base_range_table)
|
|
// Ai: Polynomial coefficients for the acos(x), |x| < .625000
|
|
// Bi: Polynomial coefficients for the acos(x), |x| > .625000
|
|
data8 0xBFDAAB56C01AE468 //A29
|
|
data8 0x3FE1C470B76A5B2B //A31
|
|
data8 0xBFDC5FF82A0C4205 //A33
|
|
data8 0x3FC71FD88BFE93F0 //A35
|
|
data8 0xB504F333F9DE6487, 0x00003FFF //B0
|
|
data8 0xAAAAAAAAAAAAFC18, 0x00003FFC //A3
|
|
data8 0x3F9F1C71BC4A7823 //A9
|
|
data8 0x3F96E8BBAAB216B2 //A11
|
|
data8 0x3F91C4CA1F9F8A98 //A13
|
|
data8 0x3F8C9DDCEDEBE7A6 //A15
|
|
data8 0x3F877784442B1516 //A17
|
|
data8 0x3F859C0491802BA2 //A19
|
|
data8 0x9999999998C88B8F, 0x00003FFB //A5
|
|
data8 0x3F6BD7A9A660BF5E //A21
|
|
data8 0x3F9FC1659340419D //A23
|
|
data8 0xB6DB6DB798149BDF, 0x00003FFA //A7
|
|
data8 0xBFB3EF18964D3ED3 //A25
|
|
data8 0x3FCD285315542CF2 //A27
|
|
data8 0xF15BEEEFF7D2966A, 0x00003FFB //B1
|
|
data8 0x3EF0DDA376D10FB3 //B10
|
|
data8 0xBEB83CAFE05EBAC9 //B11
|
|
data8 0x3F65FFB67B513644 //B4
|
|
data8 0x3F5032FBB86A4501 //B5
|
|
data8 0x3F392162276C7CBA //B6
|
|
data8 0x3F2435949FD98BDF //B7
|
|
data8 0xD93923D7FA08341C, 0x00003FF9 //B2
|
|
data8 0x3F802995B6D90BDB //B3
|
|
data8 0x3F10DF86B341A63F //B8
|
|
data8 0xC90FDAA22168C235, 0x00003FFF // Pi/2
|
|
data8 0x3EFA3EBD6B0ECB9D //B9
|
|
data8 0x3EDE18BA080E9098 //B12
|
|
LOCAL_OBJECT_END(acos_base_range_table)
|
|
|
|
.section .text
|
|
GLOBAL_LIBM_ENTRY(acos)
|
|
acos_unnormal_back:
|
|
{ .mfi
|
|
getf.d rXBits = f8 // grab bits of input value
|
|
// set p12 = 1 if x is a NaN, denormal, or zero
|
|
fclass.m p12, p0 = f8, 0xcf
|
|
adds rSign = 1, r0
|
|
}
|
|
{ .mfi
|
|
addl rTblAddr = @ltoff(acos_base_range_table),gp
|
|
// 1 - x = 1 - |x| for positive x
|
|
fms.s1 f1mX = f1, f1, f8
|
|
addl rHalf = 0xFFFE, r0 // exponent of 1/2
|
|
}
|
|
;;
|
|
{ .mfi
|
|
addl r0625 = 0x3FE4, r0 // high 16 bits of 0.625
|
|
// set p8 = 1 if x < 0
|
|
fcmp.lt.s1 p8, p9 = f8, f0
|
|
shl rSign = rSign, 63 // sign bit
|
|
}
|
|
{ .mfi
|
|
// point to the beginning of the table
|
|
ld8 rTblAddr = [rTblAddr]
|
|
// 1 + x = 1 - |x| for negative x
|
|
fma.s1 f1pX = f1, f1, f8
|
|
adds rOne = 0x3FF, r0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
andcm rAbsXBits = rXBits, rSign // bits of |x|
|
|
fmerge.s fSignX = f8, f1 // signum(x)
|
|
shl r0625 = r0625, 48 // bits of DP representation of 0.625
|
|
}
|
|
{ .mfb
|
|
setf.exp fHalf = rHalf // load A2 to FP reg
|
|
fma.s1 fXSqr = f8, f8, f0 // x^2
|
|
// branch on special path if x is a NaN, denormal, or zero
|
|
(p12) br.cond.spnt acos_special
|
|
}
|
|
;;
|
|
{ .mfi
|
|
adds rPiBy2Ptr = 272, rTblAddr
|
|
nop.f 0
|
|
shl rOne = rOne, 52 // bits of 1.0
|
|
}
|
|
{ .mfi
|
|
adds rTmpPtr1 = 16, rTblAddr
|
|
nop.f 0
|
|
// set p6 = 1 if |x| < 0.625
|
|
cmp.lt p6, p7 = rAbsXBits, r0625
|
|
}
|
|
;;
|
|
{ .mfi
|
|
ldfpd fA29, fA31 = [rTblAddr] // A29, fA31
|
|
// 1 - x = 1 - |x| for positive x
|
|
(p9) fms.s1 fR = f1, f1, f8
|
|
// point to coefficient of "near 1" polynomial
|
|
(p7) adds rTmpPtr2 = 176, rTblAddr
|
|
}
|
|
{ .mfi
|
|
ldfpd fA33, fA35 = [rTmpPtr1], 16 // A33, fA35
|
|
// 1 + x = 1 - |x| for negative x
|
|
(p8) fma.s1 fR = f1, f1, f8
|
|
(p6) adds rTmpPtr2 = 48, rTblAddr
|
|
}
|
|
;;
|
|
{ .mfi
|
|
ldfe fB0 = [rTmpPtr1], 16 // B0
|
|
nop.f 0
|
|
nop.i 0
|
|
}
|
|
{ .mib
|
|
adds rTmpPtr3 = 16, rTmpPtr2
|
|
// set p10 = 1 if |x| = 1.0
|
|
cmp.eq p10, p0 = rAbsXBits, rOne
|
|
// branch on special path for |x| = 1.0
|
|
(p10) br.cond.spnt acos_abs_1
|
|
}
|
|
;;
|
|
{ .mfi
|
|
ldfe fA3 = [rTmpPtr2], 48 // A3 or B1
|
|
nop.f 0
|
|
adds rTmpPtr1 = 64, rTmpPtr3
|
|
}
|
|
{ .mib
|
|
ldfpd fA9, fA11 = [rTmpPtr3], 16 // A9, A11 or B10, B11
|
|
// set p11 = 1 if |x| > 1.0
|
|
cmp.gt p11, p0 = rAbsXBits, rOne
|
|
// branch on special path for |x| > 1.0
|
|
(p11) br.cond.spnt acos_abs_gt_1
|
|
}
|
|
;;
|
|
{ .mfi
|
|
ldfpd fA17, fA19 = [rTmpPtr2], 16 // A17, A19 or B6, B7
|
|
// initial approximation of 1 / sqrt(1 - x)
|
|
frsqrta.s1 f1mXRcp, p0 = f1mX
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
ldfpd fA13, fA15 = [rTmpPtr3] // A13, A15 or B4, B5
|
|
fma.s1 fXCube = fXSqr, f8, f0 // x^3
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
ldfe fA5 = [rTmpPtr2], 48 // A5 or B2
|
|
// initial approximation of 1 / sqrt(1 + x)
|
|
frsqrta.s1 f1pXRcp, p0 = f1pX
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
ldfpd fA21, fA23 = [rTmpPtr1], 16 // A21, A23 or B3, B8
|
|
fma.s1 fXQuadr = fXSqr, fXSqr, f0 // x^4
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
ldfe fA7 = [rTmpPtr1] // A7 or Pi/2
|
|
fma.s1 fRSqr = fR, fR, f0 // R^2
|
|
nop.i 0
|
|
}
|
|
{ .mfb
|
|
ldfpd fA25, fA27 = [rTmpPtr2] // A25, A27 or B9, B12
|
|
nop.f 0
|
|
(p6) br.cond.spnt acos_base_range;
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
(p9) fma.s1 fH = fHalf, f1mXRcp, f0 // H0 for x > 0
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
(p9) fma.s1 fS = f1mX, f1mXRcp, f0 // S0 for x > 0
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
(p8) fma.s1 fH = fHalf, f1pXRcp, f0 // H0 for x < 0
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
(p8) fma.s1 fS = f1pX, f1pXRcp, f0 // S0 for x > 0
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fRQuadr = fRSqr, fRSqr, f0 // R^4
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fB11 = fB11, fR, fB10
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fB1 = fB1, fR, fB0
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fB5 = fB5, fR, fB4
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fB7 = fB7, fR, fB6
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fB3 = fB3, fR, fB2
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
fnma.s1 fD = fH, fS, fHalf // d0 = 1/2 - H0*S0
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fR8 = fRQuadr, fRQuadr, f0 // R^4
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fB9 = fB9, fR, fB8
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{.mfi
|
|
nop.m 0
|
|
fma.s1 fB12 = fB12, fRSqr, fB11
|
|
nop.i 0
|
|
}
|
|
{.mfi
|
|
nop.m 0
|
|
fma.s1 fB7 = fB7, fRSqr, fB5
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{.mfi
|
|
nop.m 0
|
|
fma.s1 fB3 = fB3, fRSqr, fB1
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fH = fH, fD, fH // H1 = H0 + H0*d0
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fS = fS, fD, fS // S1 = S0 + S0*d0
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{.mfi
|
|
nop.m 0
|
|
(p9) fma.s1 fCpi = f1, f0, f0 // Cpi = 0 if x > 0
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
(p8) fma.s1 fCpi = fPiBy2, f1, fPiBy2 // Cpi = Pi if x < 0
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fB12 = fB12, fRSqr, fB9
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fB7 = fB7, fRQuadr, fB3
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{.mfi
|
|
nop.m 0
|
|
fnma.s1 fD = fH, fS, fHalf // d1 = 1/2 - H1*S1
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fnma.s1 fSignedS = fSignX, fS, f0 // -signum(x)*S1
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fCloseTo1Pol = fB12, fR8, fB7
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fH = fH, fD, fH // H2 = H1 + H1*d1
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fS = fS, fD, fS // S2 = S1 + S1*d1
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
// -signum(x)* S2 = -signum(x)*(S1 + S1*d1)
|
|
fma.s1 fSignedS = fSignedS, fD, fSignedS
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{.mfi
|
|
nop.m 0
|
|
fnma.s1 fD = fH, fS, fHalf // d2 = 1/2 - H2*S2
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
// Cpi + signum(x)*PolB*S2
|
|
fnma.s1 fCpi = fSignedS, fCloseTo1Pol, fCpi
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
// signum(x)*PolB * S2
|
|
fnma.s1 fCloseTo1Pol = fSignedS, fCloseTo1Pol, f0
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfb
|
|
nop.m 0
|
|
// final result for 0.625 <= |x| < 1
|
|
fma.d.s0 f8 = fCloseTo1Pol, fD, fCpi
|
|
// exit here for 0.625 <= |x| < 1
|
|
br.ret.sptk b0
|
|
}
|
|
;;
|
|
|
|
|
|
// here if |x| < 0.625
|
|
.align 32
|
|
acos_base_range:
|
|
{ .mfi
|
|
ldfe fCpi = [rPiBy2Ptr] // Pi/2
|
|
fma.s1 fA33 = fA33, fXSqr, fA31
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fA15 = fA15, fXSqr, fA13
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fA29 = fA29, fXSqr, fA27
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fA25 = fA25, fXSqr, fA23
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fA21 = fA21, fXSqr, fA19
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fA9 = fA9, fXSqr, fA7
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fA5 = fA5, fXSqr, fA3
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fA35 = fA35, fXQuadr, fA33
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fA17 = fA17, fXQuadr, fA15
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fX8 = fXQuadr, fXQuadr, f0 // x^8
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fA25 = fA25, fXQuadr, fA21
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fA9 = fA9, fXQuadr, fA5
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
fms.s1 fCpi = fCpi, f1, f8 // Pi/2 - x
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fA35 = fA35, fXQuadr, fA29
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fA17 = fA17, fXSqr, fA11
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fX16 = fX8, fX8, f0 // x^16
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fA35 = fA35, fX8, fA25
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fA17 = fA17, fX8, fA9
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 fBaseP = fA35, fX16, fA17
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfb
|
|
nop.m 0
|
|
// final result for |x| < 0.625
|
|
fnma.d.s0 f8 = fBaseP, fXCube, fCpi
|
|
// exit here for |x| < 0.625 path
|
|
br.ret.sptk b0
|
|
}
|
|
;;
|
|
|
|
// here if |x| = 1
|
|
// acos(1) = 0
|
|
// acos(-1) = Pi
|
|
.align 32
|
|
acos_abs_1:
|
|
{ .mfi
|
|
ldfe fPiBy2 = [rPiBy2Ptr] // Pi/2
|
|
nop.f 0
|
|
nop.i 0
|
|
}
|
|
;;
|
|
.pred.rel "mutex", p8, p9
|
|
{ .mfi
|
|
nop.m 0
|
|
// result for x = 1.0
|
|
(p9) fma.d.s0 f8 = f1, f0, f0 // 0.0
|
|
nop.i 0
|
|
}
|
|
{.mfb
|
|
nop.m 0
|
|
// result for x = -1.0
|
|
(p8) fma.d.s0 f8 = fPiBy2, f1, fPiBy2 // Pi
|
|
// exit here for |x| = 1.0
|
|
br.ret.sptk b0
|
|
}
|
|
;;
|
|
|
|
// here if x is a NaN, denormal, or zero
|
|
.align 32
|
|
acos_special:
|
|
{ .mfi
|
|
// point to Pi/2
|
|
adds rPiBy2Ptr = 272, rTblAddr
|
|
// set p12 = 1 if x is a NaN
|
|
fclass.m p12, p0 = f8, 0xc3
|
|
nop.i 0
|
|
}
|
|
{ .mlx
|
|
nop.m 0
|
|
// smallest positive DP normalized number
|
|
movl rDenoBound = 0x0010000000000000
|
|
}
|
|
;;
|
|
{ .mfi
|
|
ldfe fPiBy2 = [rPiBy2Ptr] // Pi/2
|
|
// set p13 = 1 if x = 0.0
|
|
fclass.m p13, p0 = f8, 0x07
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fnorm.s1 fNormX = f8
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfb
|
|
// load smallest normal to FP reg
|
|
setf.d fDenoBound = rDenoBound
|
|
// answer if x is a NaN
|
|
(p12) fma.d.s0 f8 = f8,f1,f0
|
|
// exit here if x is a NaN
|
|
(p12) br.ret.spnt b0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
// absolute value of normalized x
|
|
fmerge.s fNormX = f1, fNormX
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfb
|
|
nop.m 0
|
|
// final result for x = 0
|
|
(p13) fma.d.s0 f8 = fPiBy2, f1, f8
|
|
// exit here if x = 0.0
|
|
(p13) br.ret.spnt b0
|
|
}
|
|
;;
|
|
// if we still here then x is denormal or unnormal
|
|
{ .mfi
|
|
nop.m 0
|
|
// set p14 = 1 if normalized x is greater than or
|
|
// equal to the smallest denormalized value
|
|
// So, if p14 is set to 1 it means that we deal with
|
|
// unnormal rather than with "true" denormal
|
|
fcmp.ge.s1 p14, p0 = fNormX, fDenoBound
|
|
nop.i 0
|
|
}
|
|
;;
|
|
{ .mfi
|
|
nop.m 0
|
|
(p14) fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag if x unnormal
|
|
nop.i 0
|
|
}
|
|
{ .mfb
|
|
nop.m 0
|
|
// normalize unnormal input
|
|
(p14) fnorm.s1 f8 = f8
|
|
// return to the main path
|
|
(p14) br.cond.sptk acos_unnormal_back
|
|
}
|
|
;;
|
|
// if we still here it means that input is "true" denormal
|
|
{ .mfb
|
|
nop.m 0
|
|
// final result if x is denormal
|
|
fms.d.s0 f8 = fPiBy2, f1, f8 // Pi/2 - x
|
|
// exit here if x is denormal
|
|
br.ret.sptk b0
|
|
}
|
|
;;
|
|
|
|
// here if |x| > 1.0
|
|
// error handler should be called
|
|
.align 32
|
|
acos_abs_gt_1:
|
|
{ .mfi
|
|
alloc r32 = ar.pfs, 0, 3, 4, 0 // get some registers
|
|
fmerge.s FR_X = f8,f8
|
|
nop.i 0
|
|
}
|
|
{ .mfb
|
|
mov GR_Parameter_TAG = 58 // error code
|
|
frcpa.s0 FR_RESULT, p0 = f0,f0
|
|
// call error handler routine
|
|
br.cond.sptk __libm_error_region
|
|
}
|
|
;;
|
|
GLOBAL_LIBM_END(acos)
|
|
|
|
|
|
|
|
LOCAL_LIBM_ENTRY(__libm_error_region)
|
|
.prologue
|
|
{ .mfi
|
|
add GR_Parameter_Y=-32,sp // Parameter 2 value
|
|
nop.f 0
|
|
.save ar.pfs,GR_SAVE_PFS
|
|
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
|
|
}
|
|
{ .mfi
|
|
.fframe 64
|
|
add sp=-64,sp // Create new stack
|
|
nop.f 0
|
|
mov GR_SAVE_GP=gp // Save gp
|
|
};;
|
|
{ .mmi
|
|
stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
|
|
add GR_Parameter_X = 16,sp // Parameter 1 address
|
|
.save b0, GR_SAVE_B0
|
|
mov GR_SAVE_B0=b0 // Save b0
|
|
};;
|
|
.body
|
|
{ .mib
|
|
stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
|
|
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
|
|
nop.b 0
|
|
}
|
|
{ .mib
|
|
stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
|
|
add GR_Parameter_Y = -16,GR_Parameter_Y
|
|
br.call.sptk b0=__libm_error_support# // Call error handling function
|
|
};;
|
|
{ .mmi
|
|
add GR_Parameter_RESULT = 48,sp
|
|
nop.m 0
|
|
nop.i 0
|
|
};;
|
|
{ .mmi
|
|
ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
|
|
.restore sp
|
|
add sp = 64,sp // Restore stack pointer
|
|
mov b0 = GR_SAVE_B0 // Restore return address
|
|
};;
|
|
{ .mib
|
|
mov gp = GR_SAVE_GP // Restore gp
|
|
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
|
|
br.ret.sptk b0 // Return
|
|
};;
|
|
|
|
LOCAL_LIBM_END(__libm_error_region)
|
|
.type __libm_error_support#,@function
|
|
.global __libm_error_support#
|