mirror of
git://sourceware.org/git/glibc.git
synced 2025-01-18 12:16:13 +08:00
1337 lines
36 KiB
C
1337 lines
36 KiB
C
/* Floating point output for `printf'.
|
||
Copyright (C) 1995-2015 Free Software Foundation, Inc.
|
||
|
||
This file is part of the GNU C Library.
|
||
Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
|
||
|
||
The GNU C Library is free software; you can redistribute it and/or
|
||
modify it under the terms of the GNU Lesser General Public
|
||
License as published by the Free Software Foundation; either
|
||
version 2.1 of the License, or (at your option) any later version.
|
||
|
||
The GNU C Library is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
Lesser General Public License for more details.
|
||
|
||
You should have received a copy of the GNU Lesser General Public
|
||
License along with the GNU C Library; if not, see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* The gmp headers need some configuration frobs. */
|
||
#define HAVE_ALLOCA 1
|
||
|
||
#include <libioP.h>
|
||
#include <alloca.h>
|
||
#include <ctype.h>
|
||
#include <float.h>
|
||
#include <gmp-mparam.h>
|
||
#include <gmp.h>
|
||
#include <ieee754.h>
|
||
#include <stdlib/gmp-impl.h>
|
||
#include <stdlib/longlong.h>
|
||
#include <stdlib/fpioconst.h>
|
||
#include <locale/localeinfo.h>
|
||
#include <limits.h>
|
||
#include <math.h>
|
||
#include <printf.h>
|
||
#include <string.h>
|
||
#include <unistd.h>
|
||
#include <stdlib.h>
|
||
#include <wchar.h>
|
||
#include <stdbool.h>
|
||
#include <rounding-mode.h>
|
||
|
||
#ifdef COMPILE_WPRINTF
|
||
# define CHAR_T wchar_t
|
||
#else
|
||
# define CHAR_T char
|
||
#endif
|
||
|
||
#include "_i18n_number.h"
|
||
|
||
#ifndef NDEBUG
|
||
# define NDEBUG /* Undefine this for debugging assertions. */
|
||
#endif
|
||
#include <assert.h>
|
||
|
||
/* This defines make it possible to use the same code for GNU C library and
|
||
the GNU I/O library. */
|
||
#define PUT(f, s, n) _IO_sputn (f, s, n)
|
||
#define PAD(f, c, n) (wide ? _IO_wpadn (f, c, n) : _IO_padn (f, c, n))
|
||
/* We use this file GNU C library and GNU I/O library. So make
|
||
names equal. */
|
||
#undef putc
|
||
#define putc(c, f) (wide \
|
||
? (int)_IO_putwc_unlocked (c, f) : _IO_putc_unlocked (c, f))
|
||
#define size_t _IO_size_t
|
||
#define FILE _IO_FILE
|
||
|
||
/* Macros for doing the actual output. */
|
||
|
||
#define outchar(ch) \
|
||
do \
|
||
{ \
|
||
const int outc = (ch); \
|
||
if (putc (outc, fp) == EOF) \
|
||
{ \
|
||
if (buffer_malloced) \
|
||
free (wbuffer); \
|
||
return -1; \
|
||
} \
|
||
++done; \
|
||
} while (0)
|
||
|
||
#define PRINT(ptr, wptr, len) \
|
||
do \
|
||
{ \
|
||
size_t outlen = (len); \
|
||
if (len > 20) \
|
||
{ \
|
||
if (PUT (fp, wide ? (const char *) wptr : ptr, outlen) != outlen) \
|
||
{ \
|
||
if (buffer_malloced) \
|
||
free (wbuffer); \
|
||
return -1; \
|
||
} \
|
||
ptr += outlen; \
|
||
done += outlen; \
|
||
} \
|
||
else \
|
||
{ \
|
||
if (wide) \
|
||
while (outlen-- > 0) \
|
||
outchar (*wptr++); \
|
||
else \
|
||
while (outlen-- > 0) \
|
||
outchar (*ptr++); \
|
||
} \
|
||
} while (0)
|
||
|
||
#define PADN(ch, len) \
|
||
do \
|
||
{ \
|
||
if (PAD (fp, ch, len) != len) \
|
||
{ \
|
||
if (buffer_malloced) \
|
||
free (wbuffer); \
|
||
return -1; \
|
||
} \
|
||
done += len; \
|
||
} \
|
||
while (0)
|
||
|
||
/* We use the GNU MP library to handle large numbers.
|
||
|
||
An MP variable occupies a varying number of entries in its array. We keep
|
||
track of this number for efficiency reasons. Otherwise we would always
|
||
have to process the whole array. */
|
||
#define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size
|
||
|
||
#define MPN_ASSIGN(dst,src) \
|
||
memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
|
||
#define MPN_GE(u,v) \
|
||
(u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0))
|
||
|
||
extern mp_size_t __mpn_extract_double (mp_ptr res_ptr, mp_size_t size,
|
||
int *expt, int *is_neg,
|
||
double value);
|
||
extern mp_size_t __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
|
||
int *expt, int *is_neg,
|
||
long double value);
|
||
extern unsigned int __guess_grouping (unsigned int intdig_max,
|
||
const char *grouping);
|
||
|
||
|
||
static wchar_t *group_number (wchar_t *buf, wchar_t *bufend,
|
||
unsigned int intdig_no, const char *grouping,
|
||
wchar_t thousands_sep, int ngroups)
|
||
internal_function;
|
||
|
||
struct hack_digit_param
|
||
{
|
||
/* Sign of the exponent. */
|
||
int expsign;
|
||
/* The type of output format that will be used: 'e'/'E' or 'f'. */
|
||
int type;
|
||
/* and the exponent. */
|
||
int exponent;
|
||
/* The fraction of the floting-point value in question */
|
||
MPN_VAR(frac);
|
||
/* Scaling factor. */
|
||
MPN_VAR(scale);
|
||
/* Temporary bignum value. */
|
||
MPN_VAR(tmp);
|
||
};
|
||
|
||
static wchar_t
|
||
hack_digit (struct hack_digit_param *p)
|
||
{
|
||
mp_limb_t hi;
|
||
|
||
if (p->expsign != 0 && p->type == 'f' && p->exponent-- > 0)
|
||
hi = 0;
|
||
else if (p->scalesize == 0)
|
||
{
|
||
hi = p->frac[p->fracsize - 1];
|
||
p->frac[p->fracsize - 1] = __mpn_mul_1 (p->frac, p->frac,
|
||
p->fracsize - 1, 10);
|
||
}
|
||
else
|
||
{
|
||
if (p->fracsize < p->scalesize)
|
||
hi = 0;
|
||
else
|
||
{
|
||
hi = mpn_divmod (p->tmp, p->frac, p->fracsize,
|
||
p->scale, p->scalesize);
|
||
p->tmp[p->fracsize - p->scalesize] = hi;
|
||
hi = p->tmp[0];
|
||
|
||
p->fracsize = p->scalesize;
|
||
while (p->fracsize != 0 && p->frac[p->fracsize - 1] == 0)
|
||
--p->fracsize;
|
||
if (p->fracsize == 0)
|
||
{
|
||
/* We're not prepared for an mpn variable with zero
|
||
limbs. */
|
||
p->fracsize = 1;
|
||
return L'0' + hi;
|
||
}
|
||
}
|
||
|
||
mp_limb_t _cy = __mpn_mul_1 (p->frac, p->frac, p->fracsize, 10);
|
||
if (_cy != 0)
|
||
p->frac[p->fracsize++] = _cy;
|
||
}
|
||
|
||
return L'0' + hi;
|
||
}
|
||
|
||
int
|
||
___printf_fp (FILE *fp,
|
||
const struct printf_info *info,
|
||
const void *const *args)
|
||
{
|
||
/* The floating-point value to output. */
|
||
union
|
||
{
|
||
double dbl;
|
||
__long_double_t ldbl;
|
||
}
|
||
fpnum;
|
||
|
||
/* Locale-dependent representation of decimal point. */
|
||
const char *decimal;
|
||
wchar_t decimalwc;
|
||
|
||
/* Locale-dependent thousands separator and grouping specification. */
|
||
const char *thousands_sep = NULL;
|
||
wchar_t thousands_sepwc = 0;
|
||
const char *grouping;
|
||
|
||
/* "NaN" or "Inf" for the special cases. */
|
||
const char *special = NULL;
|
||
const wchar_t *wspecial = NULL;
|
||
|
||
/* We need just a few limbs for the input before shifting to the right
|
||
position. */
|
||
mp_limb_t fp_input[(LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB];
|
||
/* We need to shift the contents of fp_input by this amount of bits. */
|
||
int to_shift = 0;
|
||
|
||
struct hack_digit_param p;
|
||
/* Sign of float number. */
|
||
int is_neg = 0;
|
||
|
||
/* Counter for number of written characters. */
|
||
int done = 0;
|
||
|
||
/* General helper (carry limb). */
|
||
mp_limb_t cy;
|
||
|
||
/* Nonzero if this is output on a wide character stream. */
|
||
int wide = info->wide;
|
||
|
||
/* Buffer in which we produce the output. */
|
||
wchar_t *wbuffer = NULL;
|
||
/* Flag whether wbuffer is malloc'ed or not. */
|
||
int buffer_malloced = 0;
|
||
|
||
p.expsign = 0;
|
||
|
||
/* Figure out the decimal point character. */
|
||
if (info->extra == 0)
|
||
{
|
||
decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
|
||
decimalwc = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC);
|
||
}
|
||
else
|
||
{
|
||
decimal = _NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT);
|
||
if (*decimal == '\0')
|
||
decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
|
||
decimalwc = _NL_CURRENT_WORD (LC_MONETARY,
|
||
_NL_MONETARY_DECIMAL_POINT_WC);
|
||
if (decimalwc == L'\0')
|
||
decimalwc = _NL_CURRENT_WORD (LC_NUMERIC,
|
||
_NL_NUMERIC_DECIMAL_POINT_WC);
|
||
}
|
||
/* The decimal point character must not be zero. */
|
||
assert (*decimal != '\0');
|
||
assert (decimalwc != L'\0');
|
||
|
||
if (info->group)
|
||
{
|
||
if (info->extra == 0)
|
||
grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
|
||
else
|
||
grouping = _NL_CURRENT (LC_MONETARY, MON_GROUPING);
|
||
|
||
if (*grouping <= 0 || *grouping == CHAR_MAX)
|
||
grouping = NULL;
|
||
else
|
||
{
|
||
/* Figure out the thousands separator character. */
|
||
if (wide)
|
||
{
|
||
if (info->extra == 0)
|
||
thousands_sepwc =
|
||
_NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_THOUSANDS_SEP_WC);
|
||
else
|
||
thousands_sepwc =
|
||
_NL_CURRENT_WORD (LC_MONETARY,
|
||
_NL_MONETARY_THOUSANDS_SEP_WC);
|
||
}
|
||
else
|
||
{
|
||
if (info->extra == 0)
|
||
thousands_sep = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
|
||
else
|
||
thousands_sep = _NL_CURRENT (LC_MONETARY, MON_THOUSANDS_SEP);
|
||
}
|
||
|
||
if ((wide && thousands_sepwc == L'\0')
|
||
|| (! wide && *thousands_sep == '\0'))
|
||
grouping = NULL;
|
||
else if (thousands_sepwc == L'\0')
|
||
/* If we are printing multibyte characters and there is a
|
||
multibyte representation for the thousands separator,
|
||
we must ensure the wide character thousands separator
|
||
is available, even if it is fake. */
|
||
thousands_sepwc = 0xfffffffe;
|
||
}
|
||
}
|
||
else
|
||
grouping = NULL;
|
||
|
||
/* Fetch the argument value. */
|
||
#ifndef __NO_LONG_DOUBLE_MATH
|
||
if (info->is_long_double && sizeof (long double) > sizeof (double))
|
||
{
|
||
fpnum.ldbl = *(const long double *) args[0];
|
||
|
||
/* Check for special values: not a number or infinity. */
|
||
int res;
|
||
if (__isnanl (fpnum.ldbl))
|
||
{
|
||
is_neg = signbit (fpnum.ldbl);
|
||
if (isupper (info->spec))
|
||
{
|
||
special = "NAN";
|
||
wspecial = L"NAN";
|
||
}
|
||
else
|
||
{
|
||
special = "nan";
|
||
wspecial = L"nan";
|
||
}
|
||
}
|
||
else if ((res = __isinfl (fpnum.ldbl)))
|
||
{
|
||
is_neg = res < 0;
|
||
if (isupper (info->spec))
|
||
{
|
||
special = "INF";
|
||
wspecial = L"INF";
|
||
}
|
||
else
|
||
{
|
||
special = "inf";
|
||
wspecial = L"inf";
|
||
}
|
||
}
|
||
else
|
||
{
|
||
p.fracsize = __mpn_extract_long_double (fp_input,
|
||
(sizeof (fp_input) /
|
||
sizeof (fp_input[0])),
|
||
&p.exponent, &is_neg,
|
||
fpnum.ldbl);
|
||
to_shift = 1 + p.fracsize * BITS_PER_MP_LIMB - LDBL_MANT_DIG;
|
||
}
|
||
}
|
||
else
|
||
#endif /* no long double */
|
||
{
|
||
fpnum.dbl = *(const double *) args[0];
|
||
|
||
/* Check for special values: not a number or infinity. */
|
||
int res;
|
||
if (__isnan (fpnum.dbl))
|
||
{
|
||
union ieee754_double u = { .d = fpnum.dbl };
|
||
is_neg = u.ieee.negative != 0;
|
||
if (isupper (info->spec))
|
||
{
|
||
special = "NAN";
|
||
wspecial = L"NAN";
|
||
}
|
||
else
|
||
{
|
||
special = "nan";
|
||
wspecial = L"nan";
|
||
}
|
||
}
|
||
else if ((res = __isinf (fpnum.dbl)))
|
||
{
|
||
is_neg = res < 0;
|
||
if (isupper (info->spec))
|
||
{
|
||
special = "INF";
|
||
wspecial = L"INF";
|
||
}
|
||
else
|
||
{
|
||
special = "inf";
|
||
wspecial = L"inf";
|
||
}
|
||
}
|
||
else
|
||
{
|
||
p.fracsize = __mpn_extract_double (fp_input,
|
||
(sizeof (fp_input)
|
||
/ sizeof (fp_input[0])),
|
||
&p.exponent, &is_neg, fpnum.dbl);
|
||
to_shift = 1 + p.fracsize * BITS_PER_MP_LIMB - DBL_MANT_DIG;
|
||
}
|
||
}
|
||
|
||
if (special)
|
||
{
|
||
int width = info->width;
|
||
|
||
if (is_neg || info->showsign || info->space)
|
||
--width;
|
||
width -= 3;
|
||
|
||
if (!info->left && width > 0)
|
||
PADN (' ', width);
|
||
|
||
if (is_neg)
|
||
outchar ('-');
|
||
else if (info->showsign)
|
||
outchar ('+');
|
||
else if (info->space)
|
||
outchar (' ');
|
||
|
||
PRINT (special, wspecial, 3);
|
||
|
||
if (info->left && width > 0)
|
||
PADN (' ', width);
|
||
|
||
return done;
|
||
}
|
||
|
||
|
||
/* We need three multiprecision variables. Now that we have the p.exponent
|
||
of the number we can allocate the needed memory. It would be more
|
||
efficient to use variables of the fixed maximum size but because this
|
||
would be really big it could lead to memory problems. */
|
||
{
|
||
mp_size_t bignum_size = ((ABS (p.exponent) + BITS_PER_MP_LIMB - 1)
|
||
/ BITS_PER_MP_LIMB
|
||
+ (LDBL_MANT_DIG / BITS_PER_MP_LIMB > 2 ? 8 : 4))
|
||
* sizeof (mp_limb_t);
|
||
p.frac = (mp_limb_t *) alloca (bignum_size);
|
||
p.tmp = (mp_limb_t *) alloca (bignum_size);
|
||
p.scale = (mp_limb_t *) alloca (bignum_size);
|
||
}
|
||
|
||
/* We now have to distinguish between numbers with positive and negative
|
||
exponents because the method used for the one is not applicable/efficient
|
||
for the other. */
|
||
p.scalesize = 0;
|
||
if (p.exponent > 2)
|
||
{
|
||
/* |FP| >= 8.0. */
|
||
int scaleexpo = 0;
|
||
int explog = LDBL_MAX_10_EXP_LOG;
|
||
int exp10 = 0;
|
||
const struct mp_power *powers = &_fpioconst_pow10[explog + 1];
|
||
int cnt_h, cnt_l, i;
|
||
|
||
if ((p.exponent + to_shift) % BITS_PER_MP_LIMB == 0)
|
||
{
|
||
MPN_COPY_DECR (p.frac + (p.exponent + to_shift) / BITS_PER_MP_LIMB,
|
||
fp_input, p.fracsize);
|
||
p.fracsize += (p.exponent + to_shift) / BITS_PER_MP_LIMB;
|
||
}
|
||
else
|
||
{
|
||
cy = __mpn_lshift (p.frac +
|
||
(p.exponent + to_shift) / BITS_PER_MP_LIMB,
|
||
fp_input, p.fracsize,
|
||
(p.exponent + to_shift) % BITS_PER_MP_LIMB);
|
||
p.fracsize += (p.exponent + to_shift) / BITS_PER_MP_LIMB;
|
||
if (cy)
|
||
p.frac[p.fracsize++] = cy;
|
||
}
|
||
MPN_ZERO (p.frac, (p.exponent + to_shift) / BITS_PER_MP_LIMB);
|
||
|
||
assert (powers > &_fpioconst_pow10[0]);
|
||
do
|
||
{
|
||
--powers;
|
||
|
||
/* The number of the product of two binary numbers with n and m
|
||
bits respectively has m+n or m+n-1 bits. */
|
||
if (p.exponent >= scaleexpo + powers->p_expo - 1)
|
||
{
|
||
if (p.scalesize == 0)
|
||
{
|
||
#ifndef __NO_LONG_DOUBLE_MATH
|
||
if (LDBL_MANT_DIG > _FPIO_CONST_OFFSET * BITS_PER_MP_LIMB
|
||
&& info->is_long_double)
|
||
{
|
||
#define _FPIO_CONST_SHIFT \
|
||
(((LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB) \
|
||
- _FPIO_CONST_OFFSET)
|
||
/* 64bit const offset is not enough for
|
||
IEEE quad long double. */
|
||
p.tmpsize = powers->arraysize + _FPIO_CONST_SHIFT;
|
||
memcpy (p.tmp + _FPIO_CONST_SHIFT,
|
||
&__tens[powers->arrayoff],
|
||
p.tmpsize * sizeof (mp_limb_t));
|
||
MPN_ZERO (p.tmp, _FPIO_CONST_SHIFT);
|
||
/* Adjust p.exponent, as scaleexpo will be this much
|
||
bigger too. */
|
||
p.exponent += _FPIO_CONST_SHIFT * BITS_PER_MP_LIMB;
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
p.tmpsize = powers->arraysize;
|
||
memcpy (p.tmp, &__tens[powers->arrayoff],
|
||
p.tmpsize * sizeof (mp_limb_t));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
cy = __mpn_mul (p.tmp, p.scale, p.scalesize,
|
||
&__tens[powers->arrayoff
|
||
+ _FPIO_CONST_OFFSET],
|
||
powers->arraysize - _FPIO_CONST_OFFSET);
|
||
p.tmpsize = p.scalesize +
|
||
powers->arraysize - _FPIO_CONST_OFFSET;
|
||
if (cy == 0)
|
||
--p.tmpsize;
|
||
}
|
||
|
||
if (MPN_GE (p.frac, p.tmp))
|
||
{
|
||
int cnt;
|
||
MPN_ASSIGN (p.scale, p.tmp);
|
||
count_leading_zeros (cnt, p.scale[p.scalesize - 1]);
|
||
scaleexpo = (p.scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1;
|
||
exp10 |= 1 << explog;
|
||
}
|
||
}
|
||
--explog;
|
||
}
|
||
while (powers > &_fpioconst_pow10[0]);
|
||
p.exponent = exp10;
|
||
|
||
/* Optimize number representations. We want to represent the numbers
|
||
with the lowest number of bytes possible without losing any
|
||
bytes. Also the highest bit in the scaling factor has to be set
|
||
(this is a requirement of the MPN division routines). */
|
||
if (p.scalesize > 0)
|
||
{
|
||
/* Determine minimum number of zero bits at the end of
|
||
both numbers. */
|
||
for (i = 0; p.scale[i] == 0 && p.frac[i] == 0; i++)
|
||
;
|
||
|
||
/* Determine number of bits the scaling factor is misplaced. */
|
||
count_leading_zeros (cnt_h, p.scale[p.scalesize - 1]);
|
||
|
||
if (cnt_h == 0)
|
||
{
|
||
/* The highest bit of the scaling factor is already set. So
|
||
we only have to remove the trailing empty limbs. */
|
||
if (i > 0)
|
||
{
|
||
MPN_COPY_INCR (p.scale, p.scale + i, p.scalesize - i);
|
||
p.scalesize -= i;
|
||
MPN_COPY_INCR (p.frac, p.frac + i, p.fracsize - i);
|
||
p.fracsize -= i;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (p.scale[i] != 0)
|
||
{
|
||
count_trailing_zeros (cnt_l, p.scale[i]);
|
||
if (p.frac[i] != 0)
|
||
{
|
||
int cnt_l2;
|
||
count_trailing_zeros (cnt_l2, p.frac[i]);
|
||
if (cnt_l2 < cnt_l)
|
||
cnt_l = cnt_l2;
|
||
}
|
||
}
|
||
else
|
||
count_trailing_zeros (cnt_l, p.frac[i]);
|
||
|
||
/* Now shift the numbers to their optimal position. */
|
||
if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l)
|
||
{
|
||
/* We cannot save any memory. So just roll both numbers
|
||
so that the scaling factor has its highest bit set. */
|
||
|
||
(void) __mpn_lshift (p.scale, p.scale, p.scalesize, cnt_h);
|
||
cy = __mpn_lshift (p.frac, p.frac, p.fracsize, cnt_h);
|
||
if (cy != 0)
|
||
p.frac[p.fracsize++] = cy;
|
||
}
|
||
else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l)
|
||
{
|
||
/* We can save memory by removing the trailing zero limbs
|
||
and by packing the non-zero limbs which gain another
|
||
free one. */
|
||
|
||
(void) __mpn_rshift (p.scale, p.scale + i, p.scalesize - i,
|
||
BITS_PER_MP_LIMB - cnt_h);
|
||
p.scalesize -= i + 1;
|
||
(void) __mpn_rshift (p.frac, p.frac + i, p.fracsize - i,
|
||
BITS_PER_MP_LIMB - cnt_h);
|
||
p.fracsize -= p.frac[p.fracsize - i - 1] == 0 ? i + 1 : i;
|
||
}
|
||
else
|
||
{
|
||
/* We can only save the memory of the limbs which are zero.
|
||
The non-zero parts occupy the same number of limbs. */
|
||
|
||
(void) __mpn_rshift (p.scale, p.scale + (i - 1),
|
||
p.scalesize - (i - 1),
|
||
BITS_PER_MP_LIMB - cnt_h);
|
||
p.scalesize -= i;
|
||
(void) __mpn_rshift (p.frac, p.frac + (i - 1),
|
||
p.fracsize - (i - 1),
|
||
BITS_PER_MP_LIMB - cnt_h);
|
||
p.fracsize -=
|
||
p.frac[p.fracsize - (i - 1) - 1] == 0 ? i : i - 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else if (p.exponent < 0)
|
||
{
|
||
/* |FP| < 1.0. */
|
||
int exp10 = 0;
|
||
int explog = LDBL_MAX_10_EXP_LOG;
|
||
const struct mp_power *powers = &_fpioconst_pow10[explog + 1];
|
||
|
||
/* Now shift the input value to its right place. */
|
||
cy = __mpn_lshift (p.frac, fp_input, p.fracsize, to_shift);
|
||
p.frac[p.fracsize++] = cy;
|
||
assert (cy == 1 || (p.frac[p.fracsize - 2] == 0 && p.frac[0] == 0));
|
||
|
||
p.expsign = 1;
|
||
p.exponent = -p.exponent;
|
||
|
||
assert (powers != &_fpioconst_pow10[0]);
|
||
do
|
||
{
|
||
--powers;
|
||
|
||
if (p.exponent >= powers->m_expo)
|
||
{
|
||
int i, incr, cnt_h, cnt_l;
|
||
mp_limb_t topval[2];
|
||
|
||
/* The __mpn_mul function expects the first argument to be
|
||
bigger than the second. */
|
||
if (p.fracsize < powers->arraysize - _FPIO_CONST_OFFSET)
|
||
cy = __mpn_mul (p.tmp, &__tens[powers->arrayoff
|
||
+ _FPIO_CONST_OFFSET],
|
||
powers->arraysize - _FPIO_CONST_OFFSET,
|
||
p.frac, p.fracsize);
|
||
else
|
||
cy = __mpn_mul (p.tmp, p.frac, p.fracsize,
|
||
&__tens[powers->arrayoff + _FPIO_CONST_OFFSET],
|
||
powers->arraysize - _FPIO_CONST_OFFSET);
|
||
p.tmpsize = p.fracsize + powers->arraysize - _FPIO_CONST_OFFSET;
|
||
if (cy == 0)
|
||
--p.tmpsize;
|
||
|
||
count_leading_zeros (cnt_h, p.tmp[p.tmpsize - 1]);
|
||
incr = (p.tmpsize - p.fracsize) * BITS_PER_MP_LIMB
|
||
+ BITS_PER_MP_LIMB - 1 - cnt_h;
|
||
|
||
assert (incr <= powers->p_expo);
|
||
|
||
/* If we increased the p.exponent by exactly 3 we have to test
|
||
for overflow. This is done by comparing with 10 shifted
|
||
to the right position. */
|
||
if (incr == p.exponent + 3)
|
||
{
|
||
if (cnt_h <= BITS_PER_MP_LIMB - 4)
|
||
{
|
||
topval[0] = 0;
|
||
topval[1]
|
||
= ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4 - cnt_h);
|
||
}
|
||
else
|
||
{
|
||
topval[0] = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4);
|
||
topval[1] = 0;
|
||
(void) __mpn_lshift (topval, topval, 2,
|
||
BITS_PER_MP_LIMB - cnt_h);
|
||
}
|
||
}
|
||
|
||
/* We have to be careful when multiplying the last factor.
|
||
If the result is greater than 1.0 be have to test it
|
||
against 10.0. If it is greater or equal to 10.0 the
|
||
multiplication was not valid. This is because we cannot
|
||
determine the number of bits in the result in advance. */
|
||
if (incr < p.exponent + 3
|
||
|| (incr == p.exponent + 3 &&
|
||
(p.tmp[p.tmpsize - 1] < topval[1]
|
||
|| (p.tmp[p.tmpsize - 1] == topval[1]
|
||
&& p.tmp[p.tmpsize - 2] < topval[0]))))
|
||
{
|
||
/* The factor is right. Adapt binary and decimal
|
||
exponents. */
|
||
p.exponent -= incr;
|
||
exp10 |= 1 << explog;
|
||
|
||
/* If this factor yields a number greater or equal to
|
||
1.0, we must not shift the non-fractional digits down. */
|
||
if (p.exponent < 0)
|
||
cnt_h += -p.exponent;
|
||
|
||
/* Now we optimize the number representation. */
|
||
for (i = 0; p.tmp[i] == 0; ++i);
|
||
if (cnt_h == BITS_PER_MP_LIMB - 1)
|
||
{
|
||
MPN_COPY (p.frac, p.tmp + i, p.tmpsize - i);
|
||
p.fracsize = p.tmpsize - i;
|
||
}
|
||
else
|
||
{
|
||
count_trailing_zeros (cnt_l, p.tmp[i]);
|
||
|
||
/* Now shift the numbers to their optimal position. */
|
||
if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l)
|
||
{
|
||
/* We cannot save any memory. Just roll the
|
||
number so that the leading digit is in a
|
||
separate limb. */
|
||
|
||
cy = __mpn_lshift (p.frac, p.tmp, p.tmpsize,
|
||
cnt_h + 1);
|
||
p.fracsize = p.tmpsize + 1;
|
||
p.frac[p.fracsize - 1] = cy;
|
||
}
|
||
else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l)
|
||
{
|
||
(void) __mpn_rshift (p.frac, p.tmp + i, p.tmpsize - i,
|
||
BITS_PER_MP_LIMB - 1 - cnt_h);
|
||
p.fracsize = p.tmpsize - i;
|
||
}
|
||
else
|
||
{
|
||
/* We can only save the memory of the limbs which
|
||
are zero. The non-zero parts occupy the same
|
||
number of limbs. */
|
||
|
||
(void) __mpn_rshift (p.frac, p.tmp + (i - 1),
|
||
p.tmpsize - (i - 1),
|
||
BITS_PER_MP_LIMB - 1 - cnt_h);
|
||
p.fracsize = p.tmpsize - (i - 1);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
--explog;
|
||
}
|
||
while (powers != &_fpioconst_pow10[1] && p.exponent > 0);
|
||
/* All factors but 10^-1 are tested now. */
|
||
if (p.exponent > 0)
|
||
{
|
||
int cnt_l;
|
||
|
||
cy = __mpn_mul_1 (p.tmp, p.frac, p.fracsize, 10);
|
||
p.tmpsize = p.fracsize;
|
||
assert (cy == 0 || p.tmp[p.tmpsize - 1] < 20);
|
||
|
||
count_trailing_zeros (cnt_l, p.tmp[0]);
|
||
if (cnt_l < MIN (4, p.exponent))
|
||
{
|
||
cy = __mpn_lshift (p.frac, p.tmp, p.tmpsize,
|
||
BITS_PER_MP_LIMB - MIN (4, p.exponent));
|
||
if (cy != 0)
|
||
p.frac[p.tmpsize++] = cy;
|
||
}
|
||
else
|
||
(void) __mpn_rshift (p.frac, p.tmp, p.tmpsize, MIN (4, p.exponent));
|
||
p.fracsize = p.tmpsize;
|
||
exp10 |= 1;
|
||
assert (p.frac[p.fracsize - 1] < 10);
|
||
}
|
||
p.exponent = exp10;
|
||
}
|
||
else
|
||
{
|
||
/* This is a special case. We don't need a factor because the
|
||
numbers are in the range of 1.0 <= |fp| < 8.0. We simply
|
||
shift it to the right place and divide it by 1.0 to get the
|
||
leading digit. (Of course this division is not really made.) */
|
||
assert (0 <= p.exponent && p.exponent < 3 &&
|
||
p.exponent + to_shift < BITS_PER_MP_LIMB);
|
||
|
||
/* Now shift the input value to its right place. */
|
||
cy = __mpn_lshift (p.frac, fp_input, p.fracsize, (p.exponent + to_shift));
|
||
p.frac[p.fracsize++] = cy;
|
||
p.exponent = 0;
|
||
}
|
||
|
||
{
|
||
int width = info->width;
|
||
wchar_t *wstartp, *wcp;
|
||
size_t chars_needed;
|
||
int expscale;
|
||
int intdig_max, intdig_no = 0;
|
||
int fracdig_min;
|
||
int fracdig_max;
|
||
int dig_max;
|
||
int significant;
|
||
int ngroups = 0;
|
||
char spec = _tolower (info->spec);
|
||
|
||
if (spec == 'e')
|
||
{
|
||
p.type = info->spec;
|
||
intdig_max = 1;
|
||
fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
|
||
chars_needed = 1 + 1 + (size_t) fracdig_max + 1 + 1 + 4;
|
||
/* d . ddd e +- ddd */
|
||
dig_max = INT_MAX; /* Unlimited. */
|
||
significant = 1; /* Does not matter here. */
|
||
}
|
||
else if (spec == 'f')
|
||
{
|
||
p.type = 'f';
|
||
fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
|
||
dig_max = INT_MAX; /* Unlimited. */
|
||
significant = 1; /* Does not matter here. */
|
||
if (p.expsign == 0)
|
||
{
|
||
intdig_max = p.exponent + 1;
|
||
/* This can be really big! */ /* XXX Maybe malloc if too big? */
|
||
chars_needed = (size_t) p.exponent + 1 + 1 + (size_t) fracdig_max;
|
||
}
|
||
else
|
||
{
|
||
intdig_max = 1;
|
||
chars_needed = 1 + 1 + (size_t) fracdig_max;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec);
|
||
if ((p.expsign == 0 && p.exponent >= dig_max)
|
||
|| (p.expsign != 0 && p.exponent > 4))
|
||
{
|
||
if ('g' - 'G' == 'e' - 'E')
|
||
p.type = 'E' + (info->spec - 'G');
|
||
else
|
||
p.type = isupper (info->spec) ? 'E' : 'e';
|
||
fracdig_max = dig_max - 1;
|
||
intdig_max = 1;
|
||
chars_needed = 1 + 1 + (size_t) fracdig_max + 1 + 1 + 4;
|
||
}
|
||
else
|
||
{
|
||
p.type = 'f';
|
||
intdig_max = p.expsign == 0 ? p.exponent + 1 : 0;
|
||
fracdig_max = dig_max - intdig_max;
|
||
/* We need space for the significant digits and perhaps
|
||
for leading zeros when < 1.0. The number of leading
|
||
zeros can be as many as would be required for
|
||
exponential notation with a negative two-digit
|
||
p.exponent, which is 4. */
|
||
chars_needed = (size_t) dig_max + 1 + 4;
|
||
}
|
||
fracdig_min = info->alt ? fracdig_max : 0;
|
||
significant = 0; /* We count significant digits. */
|
||
}
|
||
|
||
if (grouping)
|
||
{
|
||
/* Guess the number of groups we will make, and thus how
|
||
many spaces we need for separator characters. */
|
||
ngroups = __guess_grouping (intdig_max, grouping);
|
||
/* Allocate one more character in case rounding increases the
|
||
number of groups. */
|
||
chars_needed += ngroups + 1;
|
||
}
|
||
|
||
/* Allocate buffer for output. We need two more because while rounding
|
||
it is possible that we need two more characters in front of all the
|
||
other output. If the amount of memory we have to allocate is too
|
||
large use `malloc' instead of `alloca'. */
|
||
if (__builtin_expect (chars_needed >= (size_t) -1 / sizeof (wchar_t) - 2
|
||
|| chars_needed < fracdig_max, 0))
|
||
{
|
||
/* Some overflow occurred. */
|
||
__set_errno (ERANGE);
|
||
return -1;
|
||
}
|
||
size_t wbuffer_to_alloc = (2 + chars_needed) * sizeof (wchar_t);
|
||
buffer_malloced = ! __libc_use_alloca (wbuffer_to_alloc);
|
||
if (__builtin_expect (buffer_malloced, 0))
|
||
{
|
||
wbuffer = (wchar_t *) malloc (wbuffer_to_alloc);
|
||
if (wbuffer == NULL)
|
||
/* Signal an error to the caller. */
|
||
return -1;
|
||
}
|
||
else
|
||
wbuffer = (wchar_t *) alloca (wbuffer_to_alloc);
|
||
wcp = wstartp = wbuffer + 2; /* Let room for rounding. */
|
||
|
||
/* Do the real work: put digits in allocated buffer. */
|
||
if (p.expsign == 0 || p.type != 'f')
|
||
{
|
||
assert (p.expsign == 0 || intdig_max == 1);
|
||
while (intdig_no < intdig_max)
|
||
{
|
||
++intdig_no;
|
||
*wcp++ = hack_digit (&p);
|
||
}
|
||
significant = 1;
|
||
if (info->alt
|
||
|| fracdig_min > 0
|
||
|| (fracdig_max > 0 && (p.fracsize > 1 || p.frac[0] != 0)))
|
||
*wcp++ = decimalwc;
|
||
}
|
||
else
|
||
{
|
||
/* |fp| < 1.0 and the selected p.type is 'f', so put "0."
|
||
in the buffer. */
|
||
*wcp++ = L'0';
|
||
--p.exponent;
|
||
*wcp++ = decimalwc;
|
||
}
|
||
|
||
/* Generate the needed number of fractional digits. */
|
||
int fracdig_no = 0;
|
||
int added_zeros = 0;
|
||
while (fracdig_no < fracdig_min + added_zeros
|
||
|| (fracdig_no < fracdig_max && (p.fracsize > 1 || p.frac[0] != 0)))
|
||
{
|
||
++fracdig_no;
|
||
*wcp = hack_digit (&p);
|
||
if (*wcp++ != L'0')
|
||
significant = 1;
|
||
else if (significant == 0)
|
||
{
|
||
++fracdig_max;
|
||
if (fracdig_min > 0)
|
||
++added_zeros;
|
||
}
|
||
}
|
||
|
||
/* Do rounding. */
|
||
wchar_t last_digit = wcp[-1] != decimalwc ? wcp[-1] : wcp[-2];
|
||
wchar_t next_digit = hack_digit (&p);
|
||
bool more_bits;
|
||
if (next_digit != L'0' && next_digit != L'5')
|
||
more_bits = true;
|
||
else if (p.fracsize == 1 && p.frac[0] == 0)
|
||
/* Rest of the number is zero. */
|
||
more_bits = false;
|
||
else if (p.scalesize == 0)
|
||
{
|
||
/* Here we have to see whether all limbs are zero since no
|
||
normalization happened. */
|
||
size_t lcnt = p.fracsize;
|
||
while (lcnt >= 1 && p.frac[lcnt - 1] == 0)
|
||
--lcnt;
|
||
more_bits = lcnt > 0;
|
||
}
|
||
else
|
||
more_bits = true;
|
||
int rounding_mode = get_rounding_mode ();
|
||
if (round_away (is_neg, (last_digit - L'0') & 1, next_digit >= L'5',
|
||
more_bits, rounding_mode))
|
||
{
|
||
wchar_t *wtp = wcp;
|
||
|
||
if (fracdig_no > 0)
|
||
{
|
||
/* Process fractional digits. Terminate if not rounded or
|
||
radix character is reached. */
|
||
int removed = 0;
|
||
while (*--wtp != decimalwc && *wtp == L'9')
|
||
{
|
||
*wtp = L'0';
|
||
++removed;
|
||
}
|
||
if (removed == fracdig_min && added_zeros > 0)
|
||
--added_zeros;
|
||
if (*wtp != decimalwc)
|
||
/* Round up. */
|
||
(*wtp)++;
|
||
else if (__builtin_expect (spec == 'g' && p.type == 'f' && info->alt
|
||
&& wtp == wstartp + 1
|
||
&& wstartp[0] == L'0',
|
||
0))
|
||
/* This is a special case: the rounded number is 1.0,
|
||
the format is 'g' or 'G', and the alternative format
|
||
is selected. This means the result must be "1.". */
|
||
--added_zeros;
|
||
}
|
||
|
||
if (fracdig_no == 0 || *wtp == decimalwc)
|
||
{
|
||
/* Round the integer digits. */
|
||
if (*(wtp - 1) == decimalwc)
|
||
--wtp;
|
||
|
||
while (--wtp >= wstartp && *wtp == L'9')
|
||
*wtp = L'0';
|
||
|
||
if (wtp >= wstartp)
|
||
/* Round up. */
|
||
(*wtp)++;
|
||
else
|
||
/* It is more critical. All digits were 9's. */
|
||
{
|
||
if (p.type != 'f')
|
||
{
|
||
*wstartp = '1';
|
||
p.exponent += p.expsign == 0 ? 1 : -1;
|
||
|
||
/* The above p.exponent adjustment could lead to 1.0e-00,
|
||
e.g. for 0.999999999. Make sure p.exponent 0 always
|
||
uses + sign. */
|
||
if (p.exponent == 0)
|
||
p.expsign = 0;
|
||
}
|
||
else if (intdig_no == dig_max)
|
||
{
|
||
/* This is the case where for p.type %g the number fits
|
||
really in the range for %f output but after rounding
|
||
the number of digits is too big. */
|
||
*--wstartp = decimalwc;
|
||
*--wstartp = L'1';
|
||
|
||
if (info->alt || fracdig_no > 0)
|
||
{
|
||
/* Overwrite the old radix character. */
|
||
wstartp[intdig_no + 2] = L'0';
|
||
++fracdig_no;
|
||
}
|
||
|
||
fracdig_no += intdig_no;
|
||
intdig_no = 1;
|
||
fracdig_max = intdig_max - intdig_no;
|
||
++p.exponent;
|
||
/* Now we must print the p.exponent. */
|
||
p.type = isupper (info->spec) ? 'E' : 'e';
|
||
}
|
||
else
|
||
{
|
||
/* We can simply add another another digit before the
|
||
radix. */
|
||
*--wstartp = L'1';
|
||
++intdig_no;
|
||
}
|
||
|
||
/* While rounding the number of digits can change.
|
||
If the number now exceeds the limits remove some
|
||
fractional digits. */
|
||
if (intdig_no + fracdig_no > dig_max)
|
||
{
|
||
wcp -= intdig_no + fracdig_no - dig_max;
|
||
fracdig_no -= intdig_no + fracdig_no - dig_max;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now remove unnecessary '0' at the end of the string. */
|
||
while (fracdig_no > fracdig_min + added_zeros && *(wcp - 1) == L'0')
|
||
{
|
||
--wcp;
|
||
--fracdig_no;
|
||
}
|
||
/* If we eliminate all fractional digits we perhaps also can remove
|
||
the radix character. */
|
||
if (fracdig_no == 0 && !info->alt && *(wcp - 1) == decimalwc)
|
||
--wcp;
|
||
|
||
if (grouping)
|
||
{
|
||
/* Rounding might have changed the number of groups. We allocated
|
||
enough memory but we need here the correct number of groups. */
|
||
if (intdig_no != intdig_max)
|
||
ngroups = __guess_grouping (intdig_no, grouping);
|
||
|
||
/* Add in separator characters, overwriting the same buffer. */
|
||
wcp = group_number (wstartp, wcp, intdig_no, grouping, thousands_sepwc,
|
||
ngroups);
|
||
}
|
||
|
||
/* Write the p.exponent if it is needed. */
|
||
if (p.type != 'f')
|
||
{
|
||
if (__glibc_unlikely (p.expsign != 0 && p.exponent == 4 && spec == 'g'))
|
||
{
|
||
/* This is another special case. The p.exponent of the number is
|
||
really smaller than -4, which requires the 'e'/'E' format.
|
||
But after rounding the number has an p.exponent of -4. */
|
||
assert (wcp >= wstartp + 1);
|
||
assert (wstartp[0] == L'1');
|
||
__wmemcpy (wstartp, L"0.0001", 6);
|
||
wstartp[1] = decimalwc;
|
||
if (wcp >= wstartp + 2)
|
||
{
|
||
__wmemset (wstartp + 6, L'0', wcp - (wstartp + 2));
|
||
wcp += 4;
|
||
}
|
||
else
|
||
wcp += 5;
|
||
}
|
||
else
|
||
{
|
||
*wcp++ = (wchar_t) p.type;
|
||
*wcp++ = p.expsign ? L'-' : L'+';
|
||
|
||
/* Find the magnitude of the p.exponent. */
|
||
expscale = 10;
|
||
while (expscale <= p.exponent)
|
||
expscale *= 10;
|
||
|
||
if (p.exponent < 10)
|
||
/* Exponent always has at least two digits. */
|
||
*wcp++ = L'0';
|
||
else
|
||
do
|
||
{
|
||
expscale /= 10;
|
||
*wcp++ = L'0' + (p.exponent / expscale);
|
||
p.exponent %= expscale;
|
||
}
|
||
while (expscale > 10);
|
||
*wcp++ = L'0' + p.exponent;
|
||
}
|
||
}
|
||
|
||
/* Compute number of characters which must be filled with the padding
|
||
character. */
|
||
if (is_neg || info->showsign || info->space)
|
||
--width;
|
||
width -= wcp - wstartp;
|
||
|
||
if (!info->left && info->pad != '0' && width > 0)
|
||
PADN (info->pad, width);
|
||
|
||
if (is_neg)
|
||
outchar ('-');
|
||
else if (info->showsign)
|
||
outchar ('+');
|
||
else if (info->space)
|
||
outchar (' ');
|
||
|
||
if (!info->left && info->pad == '0' && width > 0)
|
||
PADN ('0', width);
|
||
|
||
{
|
||
char *buffer = NULL;
|
||
char *buffer_end = NULL;
|
||
char *cp = NULL;
|
||
char *tmpptr;
|
||
|
||
if (! wide)
|
||
{
|
||
/* Create the single byte string. */
|
||
size_t decimal_len;
|
||
size_t thousands_sep_len;
|
||
wchar_t *copywc;
|
||
size_t factor = (info->i18n
|
||
? _NL_CURRENT_WORD (LC_CTYPE, _NL_CTYPE_MB_CUR_MAX)
|
||
: 1);
|
||
|
||
decimal_len = strlen (decimal);
|
||
|
||
if (thousands_sep == NULL)
|
||
thousands_sep_len = 0;
|
||
else
|
||
thousands_sep_len = strlen (thousands_sep);
|
||
|
||
size_t nbuffer = (2 + chars_needed * factor + decimal_len
|
||
+ ngroups * thousands_sep_len);
|
||
if (__glibc_unlikely (buffer_malloced))
|
||
{
|
||
buffer = (char *) malloc (nbuffer);
|
||
if (buffer == NULL)
|
||
{
|
||
/* Signal an error to the caller. */
|
||
free (wbuffer);
|
||
return -1;
|
||
}
|
||
}
|
||
else
|
||
buffer = (char *) alloca (nbuffer);
|
||
buffer_end = buffer + nbuffer;
|
||
|
||
/* Now copy the wide character string. Since the character
|
||
(except for the decimal point and thousands separator) must
|
||
be coming from the ASCII range we can esily convert the
|
||
string without mapping tables. */
|
||
for (cp = buffer, copywc = wstartp; copywc < wcp; ++copywc)
|
||
if (*copywc == decimalwc)
|
||
cp = (char *) __mempcpy (cp, decimal, decimal_len);
|
||
else if (*copywc == thousands_sepwc)
|
||
cp = (char *) __mempcpy (cp, thousands_sep, thousands_sep_len);
|
||
else
|
||
*cp++ = (char) *copywc;
|
||
}
|
||
|
||
tmpptr = buffer;
|
||
if (__glibc_unlikely (info->i18n))
|
||
{
|
||
#ifdef COMPILE_WPRINTF
|
||
wstartp = _i18n_number_rewrite (wstartp, wcp,
|
||
wbuffer + wbuffer_to_alloc);
|
||
wcp = wbuffer + wbuffer_to_alloc;
|
||
assert ((uintptr_t) wbuffer <= (uintptr_t) wstartp);
|
||
assert ((uintptr_t) wstartp
|
||
< (uintptr_t) wbuffer + wbuffer_to_alloc);
|
||
#else
|
||
tmpptr = _i18n_number_rewrite (tmpptr, cp, buffer_end);
|
||
cp = buffer_end;
|
||
assert ((uintptr_t) buffer <= (uintptr_t) tmpptr);
|
||
assert ((uintptr_t) tmpptr < (uintptr_t) buffer_end);
|
||
#endif
|
||
}
|
||
|
||
PRINT (tmpptr, wstartp, wide ? wcp - wstartp : cp - tmpptr);
|
||
|
||
/* Free the memory if necessary. */
|
||
if (__glibc_unlikely (buffer_malloced))
|
||
{
|
||
free (buffer);
|
||
free (wbuffer);
|
||
}
|
||
}
|
||
|
||
if (info->left && width > 0)
|
||
PADN (info->pad, width);
|
||
}
|
||
return done;
|
||
}
|
||
ldbl_hidden_def (___printf_fp, __printf_fp)
|
||
ldbl_strong_alias (___printf_fp, __printf_fp)
|
||
|
||
/* Return the number of extra grouping characters that will be inserted
|
||
into a number with INTDIG_MAX integer digits. */
|
||
|
||
unsigned int
|
||
__guess_grouping (unsigned int intdig_max, const char *grouping)
|
||
{
|
||
unsigned int groups;
|
||
|
||
/* We treat all negative values like CHAR_MAX. */
|
||
|
||
if (*grouping == CHAR_MAX || *grouping <= 0)
|
||
/* No grouping should be done. */
|
||
return 0;
|
||
|
||
groups = 0;
|
||
while (intdig_max > (unsigned int) *grouping)
|
||
{
|
||
++groups;
|
||
intdig_max -= *grouping++;
|
||
|
||
if (*grouping == CHAR_MAX
|
||
#if CHAR_MIN < 0
|
||
|| *grouping < 0
|
||
#endif
|
||
)
|
||
/* No more grouping should be done. */
|
||
break;
|
||
else if (*grouping == 0)
|
||
{
|
||
/* Same grouping repeats. */
|
||
groups += (intdig_max - 1) / grouping[-1];
|
||
break;
|
||
}
|
||
}
|
||
|
||
return groups;
|
||
}
|
||
|
||
/* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
|
||
There is guaranteed enough space past BUFEND to extend it.
|
||
Return the new end of buffer. */
|
||
|
||
static wchar_t *
|
||
internal_function
|
||
group_number (wchar_t *buf, wchar_t *bufend, unsigned int intdig_no,
|
||
const char *grouping, wchar_t thousands_sep, int ngroups)
|
||
{
|
||
wchar_t *p;
|
||
|
||
if (ngroups == 0)
|
||
return bufend;
|
||
|
||
/* Move the fractional part down. */
|
||
__wmemmove (buf + intdig_no + ngroups, buf + intdig_no,
|
||
bufend - (buf + intdig_no));
|
||
|
||
p = buf + intdig_no + ngroups - 1;
|
||
do
|
||
{
|
||
unsigned int len = *grouping++;
|
||
do
|
||
*p-- = buf[--intdig_no];
|
||
while (--len > 0);
|
||
*p-- = thousands_sep;
|
||
|
||
if (*grouping == CHAR_MAX
|
||
#if CHAR_MIN < 0
|
||
|| *grouping < 0
|
||
#endif
|
||
)
|
||
/* No more grouping should be done. */
|
||
break;
|
||
else if (*grouping == 0)
|
||
/* Same grouping repeats. */
|
||
--grouping;
|
||
} while (intdig_no > (unsigned int) *grouping);
|
||
|
||
/* Copy the remaining ungrouped digits. */
|
||
do
|
||
*p-- = buf[--intdig_no];
|
||
while (p > buf);
|
||
|
||
return bufend + ngroups;
|
||
}
|