mirror of
git://sourceware.org/git/glibc.git
synced 2025-01-12 12:07:12 +08:00
b7c83ca30e
Remove the slow paths from log. Like several other double precision math functions, log is exactly rounded. This is not required from math functions and causes major overheads as it requires multiple fallbacks using higher precision arithmetic if a result is close to 0.5ULP. Ridiculous slowdowns of up to 100000x have been reported when the highest precision path triggers. Interestingly removing the slow paths makes hardly any difference in practice: the worst case error is still ~0.502ULP, and exp(log(x)) shows identical results before/after on many millions of random cases. All GLIBC math tests pass on AArch64 and x64 with no change in ULP error. A simple test over a few hundred million values shows log is now 18% faster on average. * manual/probes.texi (slowlog): Delete documentation of removed probe. (slowlog_inexact): Likewise * sysdeps/ieee754/dbl-64/e_log.c (__ieee754_log): Remove slow paths. * sysdeps/ieee754/dbl-64/ulog.h: Remove unused declarations.
168 lines
5.3 KiB
C
168 lines
5.3 KiB
C
/*
|
|
* IBM Accurate Mathematical Library
|
|
* written by International Business Machines Corp.
|
|
* Copyright (C) 2001-2018 Free Software Foundation, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2.1 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*********************************************************************/
|
|
/* */
|
|
/* MODULE_NAME:ulog.c */
|
|
/* */
|
|
/* FUNCTION:ulog */
|
|
/* */
|
|
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h ulog.h */
|
|
/* ulog.tbl */
|
|
/* */
|
|
/* An ultimate log routine. Given an IEEE double machine number x */
|
|
/* it computes the rounded (to nearest) value of log(x). */
|
|
/* Assumption: Machine arithmetic operations are performed in */
|
|
/* round to nearest mode of IEEE 754 standard. */
|
|
/* */
|
|
/*********************************************************************/
|
|
|
|
|
|
#include "endian.h"
|
|
#include <dla.h>
|
|
#include "mpa.h"
|
|
#include "MathLib.h"
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
|
|
#ifndef SECTION
|
|
# define SECTION
|
|
#endif
|
|
|
|
/*********************************************************************/
|
|
/* An ultimate log routine. Given an IEEE double machine number x */
|
|
/* it computes the rounded (to nearest) value of log(x). */
|
|
/*********************************************************************/
|
|
double
|
|
SECTION
|
|
__ieee754_log (double x)
|
|
{
|
|
int i, j, n, ux, dx;
|
|
double dbl_n, u, p0, q, r0, w, nln2a, luai, lubi, lvaj, lvbj,
|
|
sij, ssij, ttij, A, B, B0, polI, polII, t8, a, aa, b, bb, c;
|
|
#ifndef DLA_FMS
|
|
double t1, t2, t3, t4, t5;
|
|
#endif
|
|
number num;
|
|
|
|
#include "ulog.tbl"
|
|
#include "ulog.h"
|
|
|
|
/* Treating special values of x ( x<=0, x=INF, x=NaN etc.). */
|
|
|
|
num.d = x;
|
|
ux = num.i[HIGH_HALF];
|
|
dx = num.i[LOW_HALF];
|
|
n = 0;
|
|
if (__glibc_unlikely (ux < 0x00100000))
|
|
{
|
|
if (__glibc_unlikely (((ux & 0x7fffffff) | dx) == 0))
|
|
return MHALF / 0.0; /* return -INF */
|
|
if (__glibc_unlikely (ux < 0))
|
|
return (x - x) / 0.0; /* return NaN */
|
|
n -= 54;
|
|
x *= two54.d; /* scale x */
|
|
num.d = x;
|
|
}
|
|
if (__glibc_unlikely (ux >= 0x7ff00000))
|
|
return x + x; /* INF or NaN */
|
|
|
|
/* Regular values of x */
|
|
|
|
w = x - 1;
|
|
if (__glibc_likely (fabs (w) > U03))
|
|
goto case_03;
|
|
|
|
/* log (1) is +0 in all rounding modes. */
|
|
if (w == 0.0)
|
|
return 0.0;
|
|
|
|
/*--- The case abs(x-1) < 0.03 */
|
|
|
|
t8 = MHALF * w;
|
|
EMULV (t8, w, a, aa, t1, t2, t3, t4, t5);
|
|
EADD (w, a, b, bb);
|
|
/* Evaluate polynomial II */
|
|
polII = b7.d + w * b8.d;
|
|
polII = b6.d + w * polII;
|
|
polII = b5.d + w * polII;
|
|
polII = b4.d + w * polII;
|
|
polII = b3.d + w * polII;
|
|
polII = b2.d + w * polII;
|
|
polII = b1.d + w * polII;
|
|
polII = b0.d + w * polII;
|
|
polII *= w * w * w;
|
|
c = (aa + bb) + polII;
|
|
|
|
/* Here b contains the high part of the result, and c the low part.
|
|
Maximum error is b * 2.334e-19, so accuracy is >61 bits.
|
|
Therefore max ULP error of b + c is ~0.502. */
|
|
return b + c;
|
|
|
|
/*--- The case abs(x-1) > 0.03 */
|
|
case_03:
|
|
|
|
/* Find n,u such that x = u*2**n, 1/sqrt(2) < u < sqrt(2) */
|
|
n += (num.i[HIGH_HALF] >> 20) - 1023;
|
|
num.i[HIGH_HALF] = (num.i[HIGH_HALF] & 0x000fffff) | 0x3ff00000;
|
|
if (num.d > SQRT_2)
|
|
{
|
|
num.d *= HALF;
|
|
n++;
|
|
}
|
|
u = num.d;
|
|
dbl_n = (double) n;
|
|
|
|
/* Find i such that ui=1+(i-75)/2**8 is closest to u (i= 0,1,2,...,181) */
|
|
num.d += h1.d;
|
|
i = (num.i[HIGH_HALF] & 0x000fffff) >> 12;
|
|
|
|
/* Find j such that vj=1+(j-180)/2**16 is closest to v=u/ui (j= 0,...,361) */
|
|
num.d = u * Iu[i].d + h2.d;
|
|
j = (num.i[HIGH_HALF] & 0x000fffff) >> 4;
|
|
|
|
/* Compute w=(u-ui*vj)/(ui*vj) */
|
|
p0 = (1 + (i - 75) * DEL_U) * (1 + (j - 180) * DEL_V);
|
|
q = u - p0;
|
|
r0 = Iu[i].d * Iv[j].d;
|
|
w = q * r0;
|
|
|
|
/* Evaluate polynomial I */
|
|
polI = w + (a2.d + a3.d * w) * w * w;
|
|
|
|
/* Add up everything */
|
|
nln2a = dbl_n * LN2A;
|
|
luai = Lu[i][0].d;
|
|
lubi = Lu[i][1].d;
|
|
lvaj = Lv[j][0].d;
|
|
lvbj = Lv[j][1].d;
|
|
EADD (luai, lvaj, sij, ssij);
|
|
EADD (nln2a, sij, A, ttij);
|
|
B0 = (((lubi + lvbj) + ssij) + ttij) + dbl_n * LN2B;
|
|
B = polI + B0;
|
|
|
|
/* Here A contains the high part of the result, and B the low part.
|
|
Maximum abs error is 6.095e-21 and min log (x) is 0.0295 since x > 1.03.
|
|
Therefore max ULP error of A + B is ~0.502. */
|
|
return A + B;
|
|
}
|
|
|
|
#ifndef __ieee754_log
|
|
strong_alias (__ieee754_log, __log_finite)
|
|
#endif
|