mirror of
git://sourceware.org/git/glibc.git
synced 2025-01-30 12:31:53 +08:00
c6c6dd4803
* manual/contrib.texi: Removed licenses, added acknowledgements for contributions by Intel, IBM, Craig Metz. * LICENSES: New file, contains the text of all non-FSF licenses in the distribution that require putting the notice in the accompanying documentation. * README.template, README: Mention LICENSES. * sysdeps/mach/hurd/net/if_ppp.h: Replaced CMU license with a new one modelled on the modern BSD license, per recent letter of permission from CMU. * sysdeps/unix/sysv/linux/net/if_ppp.h: Likewise. * sysdeps/ieee754/dbl-64/MathLib.h: Changed the copyright holder from IBM to FSF, per the recent Software Letter. Changed the distribution terms from GPL to LGPL. * sysdeps/ieee754/dbl-64/asincos.tbl: Added FSF copyright and copying permission notice (Lesser GPL), per recent IBM Software Letter. * sysdeps/ieee754/dbl-64/powtwo.tbl: Likewise. * sysdeps/ieee754/dbl-64/root.tbl: Likewise. * sysdeps/ieee754/dbl-64/sincos.tbl: Likewise. * sysdeps/ieee754/dbl-64/uatan.tbl: Likewise. * sysdeps/ieee754/dbl-64/uexp.tbl: Likewise. * sysdeps/ieee754/dbl-64/ulog.tbl: Likewise. * sysdeps/ieee754/dbl-64/upow.tbl: Likewise. * sysdeps/ieee754/dbl-64/utan.tbl: Likewise. * sysdeps/ieee754/dbl-64/atnat.h: Changed the copyright holder from IBM to FSF, per the recent Software Letter. Corrected the text of the copying permission notice to say Lesser GPL instead of GPL in warranty disclaimer paragraph. * sysdeps/ieee754/dbl-64/atnat2.h: Likewise. * sysdeps/ieee754/dbl-64/branred.h: Likewise. * sysdeps/ieee754/dbl-64/dla.h: Likewise. * sysdeps/ieee754/dbl-64/doasin.h: Likewise. * sysdeps/ieee754/dbl-64/dosincos.h: Likewise. * sysdeps/ieee754/dbl-64/mpa.h: Likewise. * sysdeps/ieee754/dbl-64/mpa2.h: Likewise. * sysdeps/ieee754/dbl-64/mpatan.h: Likewise. * sysdeps/ieee754/dbl-64/mpexp.h: Likewise. * sysdeps/ieee754/dbl-64/mplog.h: Likewise. * sysdeps/ieee754/dbl-64/mpsqrt.h: Likewise. * sysdeps/ieee754/dbl-64/mydefs.h: Likewise. * sysdeps/ieee754/dbl-64/sincos32.h: Likewise. * sysdeps/ieee754/dbl-64/uasncs.h: Likewise. * sysdeps/ieee754/dbl-64/uexp.h: Likewise. * sysdeps/ieee754/dbl-64/ulog.h: Likewise. * sysdeps/ieee754/dbl-64/upow.h: Likewise. * sysdeps/ieee754/dbl-64/urem.h: Likewise. * sysdeps/ieee754/dbl-64/uroot.h: Likewise. * sysdeps/ieee754/dbl-64/usncs.h: Likewise. * sysdeps/ieee754/dbl-64/utan.h: Likewise. * sysdeps/ieee754/dbl-64/branred.c: Corrected the text of the copying permission notice to say Lesser GPL instead of GPL in warranty disclaimer paragraph. * sysdeps/ieee754/dbl-64/doasin.c: Likewise. * sysdeps/ieee754/dbl-64/dosincos.c: Likewise. * sysdeps/ieee754/dbl-64/e_asin.c: Likewise. * sysdeps/ieee754/dbl-64/e_atan2.c: Likewise. * sysdeps/ieee754/dbl-64/e_exp.c: Likewise. * sysdeps/ieee754/dbl-64/e_log.c: Likewise. * sysdeps/ieee754/dbl-64/e_pow.c: Likewise. * sysdeps/ieee754/dbl-64/e_remainder.c: Likewise. * sysdeps/ieee754/dbl-64/e_sqrt.c: Likewise. * sysdeps/ieee754/dbl-64/halfulp.c: Likewise. * sysdeps/ieee754/dbl-64/mpa.c: Likewise. * sysdeps/ieee754/dbl-64/mpatan.c: Likewise. * sysdeps/ieee754/dbl-64/mpatan2.c: Likewise. * sysdeps/ieee754/dbl-64/mpexp.c: Likewise. * sysdeps/ieee754/dbl-64/mplog.c: Likewise. * sysdeps/ieee754/dbl-64/mpsqrt.c: Likewise. * sysdeps/ieee754/dbl-64/mptan.c: Likewise. * sysdeps/ieee754/dbl-64/s_atan.c: Likewise. * sysdeps/ieee754/dbl-64/s_sin.c: Likewise. * sysdeps/ieee754/dbl-64/s_tan.c: Likewise. * sysdeps/ieee754/dbl-64/sincos32.c: Likewise. * sysdeps/ieee754/dbl-64/slowexp.c: Likewise. * sysdeps/ieee754/dbl-64/slowpow.c: Likewise.
638 lines
20 KiB
C
638 lines
20 KiB
C
/*
|
|
* IBM Accurate Mathematical Library
|
|
* written by International Business Machines Corp.
|
|
* Copyright (C) 2001 Free Software Foundation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
/******************************************************************/
|
|
/* MODULE_NAME:uasncs.c */
|
|
/* */
|
|
/* FUNCTIONS: uasin */
|
|
/* uacos */
|
|
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h usncs.h */
|
|
/* doasin.c sincos32.c dosincos.c mpa.c */
|
|
/* sincos.tbl asincos.tbl powtwo.tbl root.tbl */
|
|
/* */
|
|
/* Ultimate asin/acos routines. Given an IEEE double machine */
|
|
/* number x, compute the correctly rounded value of */
|
|
/* arcsin(x)or arccos(x) according to the function called. */
|
|
/* Assumption: Machine arithmetic operations are performed in */
|
|
/* round to nearest mode of IEEE 754 standard. */
|
|
/* */
|
|
/******************************************************************/
|
|
#include "endian.h"
|
|
#include "mydefs.h"
|
|
#include "asincos.tbl"
|
|
#include "root.tbl"
|
|
#include "powtwo.tbl"
|
|
#include "MathLib.h"
|
|
#include "uasncs.h"
|
|
#include "math_private.h"
|
|
|
|
void __doasin(double x, double dx, double w[]);
|
|
void __dubsin(double x, double dx, double v[]);
|
|
void __dubcos(double x, double dx, double v[]);
|
|
void __docos(double x, double dx, double v[]);
|
|
double __sin32(double x, double res, double res1);
|
|
double __cos32(double x, double res, double res1);
|
|
|
|
/***************************************************************************/
|
|
/* An ultimate asin routine. Given an IEEE double machine number x */
|
|
/* it computes the correctly rounded (to nearest) value of arcsin(x) */
|
|
/***************************************************************************/
|
|
double __ieee754_asin(double x){
|
|
double x1,x2,xx,s1,s2,res1,p,t,res,r,cor,cc,y,c,z,w[2];
|
|
mynumber u,v;
|
|
int4 k,m,n;
|
|
#if 0
|
|
int4 nn;
|
|
#endif
|
|
|
|
u.x = x;
|
|
m = u.i[HIGH_HALF];
|
|
k = 0x7fffffff&m; /* no sign */
|
|
|
|
if (k < 0x3e500000) return x; /* for x->0 => sin(x)=x */
|
|
/*----------------------2^-26 <= |x| < 2^ -3 -----------------*/
|
|
else
|
|
if (k < 0x3fc00000) {
|
|
x2 = x*x;
|
|
t = (((((f6*x2 + f5)*x2 + f4)*x2 + f3)*x2 + f2)*x2 + f1)*(x2*x);
|
|
res = x+t; /* res=arcsin(x) according to Taylor series */
|
|
cor = (x-res)+t;
|
|
if (res == res+1.025*cor) return res;
|
|
else {
|
|
x1 = x+big;
|
|
xx = x*x;
|
|
x1 -= big;
|
|
x2 = x - x1;
|
|
p = x1*x1*x1;
|
|
s1 = a1.x*p;
|
|
s2 = ((((((c7*xx + c6)*xx + c5)*xx + c4)*xx + c3)*xx + c2)*xx*xx*x +
|
|
((a1.x+a2.x)*x2*x2+ 0.5*x1*x)*x2) + a2.x*p;
|
|
res1 = x+s1;
|
|
s2 = ((x-res1)+s1)+s2;
|
|
res = res1+s2;
|
|
cor = (res1-res)+s2;
|
|
if (res == res+1.00014*cor) return res;
|
|
else {
|
|
__doasin(x,0,w);
|
|
if (w[0]==(w[0]+1.00000001*w[1])) return w[0];
|
|
else {
|
|
y=ABS(x);
|
|
res=ABS(w[0]);
|
|
res1=ABS(w[0]+1.1*w[1]);
|
|
return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*---------------------0.125 <= |x| < 0.5 -----------------------------*/
|
|
else if (k < 0x3fe00000) {
|
|
if (k<0x3fd00000) n = 11*((k&0x000fffff)>>15);
|
|
else n = 11*((k&0x000fffff)>>14)+352;
|
|
if (m>0) xx = x - asncs.x[n];
|
|
else xx = -x - asncs.x[n];
|
|
t = asncs.x[n+1]*xx;
|
|
p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+xx*(asncs.x[n+5]
|
|
+xx*asncs.x[n+6]))))+asncs.x[n+7];
|
|
t+=p;
|
|
res =asncs.x[n+8] +t;
|
|
cor = (asncs.x[n+8]-res)+t;
|
|
if (res == res+1.05*cor) return (m>0)?res:-res;
|
|
else {
|
|
r=asncs.x[n+8]+xx*asncs.x[n+9];
|
|
t=((asncs.x[n+8]-r)+xx*asncs.x[n+9])+(p+xx*asncs.x[n+10]);
|
|
res = r+t;
|
|
cor = (r-res)+t;
|
|
if (res == res+1.0005*cor) return (m>0)?res:-res;
|
|
else {
|
|
res1=res+1.1*cor;
|
|
z=0.5*(res1-res);
|
|
__dubsin(res,z,w);
|
|
z=(w[0]-ABS(x))+w[1];
|
|
if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
|
|
else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
|
|
else {
|
|
y=ABS(x);
|
|
return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1);
|
|
}
|
|
}
|
|
}
|
|
} /* else if (k < 0x3fe00000) */
|
|
/*-------------------- 0.5 <= |x| < 0.75 -----------------------------*/
|
|
else
|
|
if (k < 0x3fe80000) {
|
|
n = 1056+((k&0x000fe000)>>11)*3;
|
|
if (m>0) xx = x - asncs.x[n];
|
|
else xx = -x - asncs.x[n];
|
|
t = asncs.x[n+1]*xx;
|
|
p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+xx*(asncs.x[n+5]
|
|
+xx*(asncs.x[n+6]+xx*asncs.x[n+7])))))+asncs.x[n+8];
|
|
t+=p;
|
|
res =asncs.x[n+9] +t;
|
|
cor = (asncs.x[n+9]-res)+t;
|
|
if (res == res+1.01*cor) return (m>0)?res:-res;
|
|
else {
|
|
r=asncs.x[n+9]+xx*asncs.x[n+10];
|
|
t=((asncs.x[n+9]-r)+xx*asncs.x[n+10])+(p+xx*asncs.x[n+11]);
|
|
res = r+t;
|
|
cor = (r-res)+t;
|
|
if (res == res+1.0005*cor) return (m>0)?res:-res;
|
|
else {
|
|
res1=res+1.1*cor;
|
|
z=0.5*(res1-res);
|
|
__dubsin(res,z,w);
|
|
z=(w[0]-ABS(x))+w[1];
|
|
if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
|
|
else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
|
|
else {
|
|
y=ABS(x);
|
|
return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1);
|
|
}
|
|
}
|
|
}
|
|
} /* else if (k < 0x3fe80000) */
|
|
/*--------------------- 0.75 <= |x|< 0.921875 ----------------------*/
|
|
else
|
|
if (k < 0x3fed8000) {
|
|
n = 992+((k&0x000fe000)>>13)*13;
|
|
if (m>0) xx = x - asncs.x[n];
|
|
else xx = -x - asncs.x[n];
|
|
t = asncs.x[n+1]*xx;
|
|
p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+xx*(asncs.x[n+5]
|
|
+xx*(asncs.x[n+6]+xx*(asncs.x[n+7]+xx*asncs.x[n+8]))))))+asncs.x[n+9];
|
|
t+=p;
|
|
res =asncs.x[n+10] +t;
|
|
cor = (asncs.x[n+10]-res)+t;
|
|
if (res == res+1.01*cor) return (m>0)?res:-res;
|
|
else {
|
|
r=asncs.x[n+10]+xx*asncs.x[n+11];
|
|
t=((asncs.x[n+10]-r)+xx*asncs.x[n+11])+(p+xx*asncs.x[n+12]);
|
|
res = r+t;
|
|
cor = (r-res)+t;
|
|
if (res == res+1.0008*cor) return (m>0)?res:-res;
|
|
else {
|
|
res1=res+1.1*cor;
|
|
z=0.5*(res1-res);
|
|
y=hp0.x-res;
|
|
z=((hp0.x-y)-res)+(hp1.x-z);
|
|
__dubcos(y,z,w);
|
|
z=(w[0]-ABS(x))+w[1];
|
|
if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
|
|
else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
|
|
else {
|
|
y=ABS(x);
|
|
return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1);
|
|
}
|
|
}
|
|
}
|
|
} /* else if (k < 0x3fed8000) */
|
|
/*-------------------0.921875 <= |x| < 0.953125 ------------------------*/
|
|
else
|
|
if (k < 0x3fee8000) {
|
|
n = 884+((k&0x000fe000)>>13)*14;
|
|
if (m>0) xx = x - asncs.x[n];
|
|
else xx = -x - asncs.x[n];
|
|
t = asncs.x[n+1]*xx;
|
|
p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+
|
|
xx*(asncs.x[n+5]+xx*(asncs.x[n+6]
|
|
+xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+
|
|
xx*asncs.x[n+9])))))))+asncs.x[n+10];
|
|
t+=p;
|
|
res =asncs.x[n+11] +t;
|
|
cor = (asncs.x[n+11]-res)+t;
|
|
if (res == res+1.01*cor) return (m>0)?res:-res;
|
|
else {
|
|
r=asncs.x[n+11]+xx*asncs.x[n+12];
|
|
t=((asncs.x[n+11]-r)+xx*asncs.x[n+12])+(p+xx*asncs.x[n+13]);
|
|
res = r+t;
|
|
cor = (r-res)+t;
|
|
if (res == res+1.0007*cor) return (m>0)?res:-res;
|
|
else {
|
|
res1=res+1.1*cor;
|
|
z=0.5*(res1-res);
|
|
y=(hp0.x-res)-z;
|
|
z=y+hp1.x;
|
|
y=(y-z)+hp1.x;
|
|
__dubcos(z,y,w);
|
|
z=(w[0]-ABS(x))+w[1];
|
|
if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
|
|
else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
|
|
else {
|
|
y=ABS(x);
|
|
return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1);
|
|
}
|
|
}
|
|
}
|
|
} /* else if (k < 0x3fee8000) */
|
|
|
|
/*--------------------0.953125 <= |x| < 0.96875 ------------------------*/
|
|
else
|
|
if (k < 0x3fef0000) {
|
|
n = 768+((k&0x000fe000)>>13)*15;
|
|
if (m>0) xx = x - asncs.x[n];
|
|
else xx = -x - asncs.x[n];
|
|
t = asncs.x[n+1]*xx;
|
|
p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+
|
|
xx*(asncs.x[n+5]+xx*(asncs.x[n+6]
|
|
+xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+
|
|
xx*(asncs.x[n+9]+xx*asncs.x[n+10]))))))))+asncs.x[n+11];
|
|
t+=p;
|
|
res =asncs.x[n+12] +t;
|
|
cor = (asncs.x[n+12]-res)+t;
|
|
if (res == res+1.01*cor) return (m>0)?res:-res;
|
|
else {
|
|
r=asncs.x[n+12]+xx*asncs.x[n+13];
|
|
t=((asncs.x[n+12]-r)+xx*asncs.x[n+13])+(p+xx*asncs.x[n+14]);
|
|
res = r+t;
|
|
cor = (r-res)+t;
|
|
if (res == res+1.0007*cor) return (m>0)?res:-res;
|
|
else {
|
|
res1=res+1.1*cor;
|
|
z=0.5*(res1-res);
|
|
y=(hp0.x-res)-z;
|
|
z=y+hp1.x;
|
|
y=(y-z)+hp1.x;
|
|
__dubcos(z,y,w);
|
|
z=(w[0]-ABS(x))+w[1];
|
|
if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
|
|
else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
|
|
else {
|
|
y=ABS(x);
|
|
return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1);
|
|
}
|
|
}
|
|
}
|
|
} /* else if (k < 0x3fef0000) */
|
|
/*--------------------0.96875 <= |x| < 1 --------------------------------*/
|
|
else
|
|
if (k<0x3ff00000) {
|
|
z = 0.5*((m>0)?(1.0-x):(1.0+x));
|
|
v.x=z;
|
|
k=v.i[HIGH_HALF];
|
|
t=inroot[(k&0x001fffff)>>14]*powtwo[511-(k>>21)];
|
|
r=1.0-t*t*z;
|
|
t = t*(rt0+r*(rt1+r*(rt2+r*rt3)));
|
|
c=t*z;
|
|
t=c*(1.5-0.5*t*c);
|
|
y=(c+t24)-t24;
|
|
cc = (z-y*y)/(t+y);
|
|
p=(((((f6*z+f5)*z+f4)*z+f3)*z+f2)*z+f1)*z;
|
|
cor = (hp1.x - 2.0*cc)-2.0*(y+cc)*p;
|
|
res1 = hp0.x - 2.0*y;
|
|
res =res1 + cor;
|
|
if (res == res+1.003*((res1-res)+cor)) return (m>0)?res:-res;
|
|
else {
|
|
c=y+cc;
|
|
cc=(y-c)+cc;
|
|
__doasin(c,cc,w);
|
|
res1=hp0.x-2.0*w[0];
|
|
cor=((hp0.x-res1)-2.0*w[0])+(hp1.x-2.0*w[1]);
|
|
res = res1+cor;
|
|
cor = (res1-res)+cor;
|
|
if (res==(res+1.0000001*cor)) return (m>0)?res:-res;
|
|
else {
|
|
y=ABS(x);
|
|
res1=res+1.1*cor;
|
|
return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1);
|
|
}
|
|
}
|
|
} /* else if (k < 0x3ff00000) */
|
|
/*---------------------------- |x|>=1 -------------------------------*/
|
|
else if (k==0x3ff00000 && u.i[LOW_HALF]==0) return (m>0)?hp0.x:-hp0.x;
|
|
else
|
|
if (k>0x7ff00000 || (k == 0x7ff00000 && u.i[LOW_HALF] != 0)) return x;
|
|
else {
|
|
u.i[HIGH_HALF]=0x7ff00000;
|
|
v.i[HIGH_HALF]=0x7ff00000;
|
|
u.i[LOW_HALF]=0;
|
|
v.i[LOW_HALF]=0;
|
|
return u.x/v.x; /* NaN */
|
|
}
|
|
}
|
|
|
|
/*******************************************************************/
|
|
/* */
|
|
/* End of arcsine, below is arccosine */
|
|
/* */
|
|
/*******************************************************************/
|
|
|
|
double __ieee754_acos(double x)
|
|
{
|
|
double x1,x2,xx,s1,s2,res1,p,t,res,r,cor,cc,y,c,z,w[2],eps;
|
|
#if 0
|
|
double fc;
|
|
#endif
|
|
mynumber u,v;
|
|
int4 k,m,n;
|
|
#if 0
|
|
int4 nn;
|
|
#endif
|
|
u.x = x;
|
|
m = u.i[HIGH_HALF];
|
|
k = 0x7fffffff&m;
|
|
/*------------------- |x|<2.77556*10^-17 ----------------------*/
|
|
if (k < 0x3c880000) return hp0.x;
|
|
|
|
/*----------------- 2.77556*10^-17 <= |x| < 2^-3 --------------*/
|
|
else
|
|
if (k < 0x3fc00000) {
|
|
x2 = x*x;
|
|
t = (((((f6*x2 + f5)*x2 + f4)*x2 + f3)*x2 + f2)*x2 + f1)*(x2*x);
|
|
r=hp0.x-x;
|
|
cor=(((hp0.x-r)-x)+hp1.x)-t;
|
|
res = r+cor;
|
|
cor = (r-res)+cor;
|
|
if (res == res+1.004*cor) return res;
|
|
else {
|
|
x1 = x+big;
|
|
xx = x*x;
|
|
x1 -= big;
|
|
x2 = x - x1;
|
|
p = x1*x1*x1;
|
|
s1 = a1.x*p;
|
|
s2 = ((((((c7*xx + c6)*xx + c5)*xx + c4)*xx + c3)*xx + c2)*xx*xx*x +
|
|
((a1.x+a2.x)*x2*x2+ 0.5*x1*x)*x2) + a2.x*p;
|
|
res1 = x+s1;
|
|
s2 = ((x-res1)+s1)+s2;
|
|
r=hp0.x-res1;
|
|
cor=(((hp0.x-r)-res1)+hp1.x)-s2;
|
|
res = r+cor;
|
|
cor = (r-res)+cor;
|
|
if (res == res+1.00004*cor) return res;
|
|
else {
|
|
__doasin(x,0,w);
|
|
r=hp0.x-w[0];
|
|
cor=((hp0.x-r)-w[0])+(hp1.x-w[1]);
|
|
res=r+cor;
|
|
cor=(r-res)+cor;
|
|
if (res ==(res +1.00000001*cor)) return res;
|
|
else {
|
|
res1=res+1.1*cor;
|
|
return __cos32(x,res,res1);
|
|
}
|
|
}
|
|
}
|
|
} /* else if (k < 0x3fc00000) */
|
|
/*---------------------- 0.125 <= |x| < 0.5 --------------------*/
|
|
else
|
|
if (k < 0x3fe00000) {
|
|
if (k<0x3fd00000) n = 11*((k&0x000fffff)>>15);
|
|
else n = 11*((k&0x000fffff)>>14)+352;
|
|
if (m>0) xx = x - asncs.x[n];
|
|
else xx = -x - asncs.x[n];
|
|
t = asncs.x[n+1]*xx;
|
|
p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+
|
|
xx*(asncs.x[n+5]+xx*asncs.x[n+6]))))+asncs.x[n+7];
|
|
t+=p;
|
|
y = (m>0)?(hp0.x-asncs.x[n+8]):(hp0.x+asncs.x[n+8]);
|
|
t = (m>0)?(hp1.x-t):(hp1.x+t);
|
|
res = y+t;
|
|
if (res == res+1.02*((y-res)+t)) return res;
|
|
else {
|
|
r=asncs.x[n+8]+xx*asncs.x[n+9];
|
|
t=((asncs.x[n+8]-r)+xx*asncs.x[n+9])+(p+xx*asncs.x[n+10]);
|
|
if (m>0)
|
|
{p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; }
|
|
else
|
|
{p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); }
|
|
res = p+t;
|
|
cor = (p-res)+t;
|
|
if (res == (res+1.0002*cor)) return res;
|
|
else {
|
|
res1=res+1.1*cor;
|
|
z=0.5*(res1-res);
|
|
__docos(res,z,w);
|
|
z=(w[0]-x)+w[1];
|
|
if (z>1.0e-27) return max(res,res1);
|
|
else if (z<-1.0e-27) return min(res,res1);
|
|
else return __cos32(x,res,res1);
|
|
}
|
|
}
|
|
} /* else if (k < 0x3fe00000) */
|
|
|
|
/*--------------------------- 0.5 <= |x| < 0.75 ---------------------*/
|
|
else
|
|
if (k < 0x3fe80000) {
|
|
n = 1056+((k&0x000fe000)>>11)*3;
|
|
if (m>0) {xx = x - asncs.x[n]; eps=1.04; }
|
|
else {xx = -x - asncs.x[n]; eps=1.02; }
|
|
t = asncs.x[n+1]*xx;
|
|
p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+
|
|
xx*(asncs.x[n+5]+xx*(asncs.x[n+6]+
|
|
xx*asncs.x[n+7])))))+asncs.x[n+8];
|
|
t+=p;
|
|
y = (m>0)?(hp0.x-asncs.x[n+9]):(hp0.x+asncs.x[n+9]);
|
|
t = (m>0)?(hp1.x-t):(hp1.x+t);
|
|
res = y+t;
|
|
if (res == res+eps*((y-res)+t)) return res;
|
|
else {
|
|
r=asncs.x[n+9]+xx*asncs.x[n+10];
|
|
t=((asncs.x[n+9]-r)+xx*asncs.x[n+10])+(p+xx*asncs.x[n+11]);
|
|
if (m>0) {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; eps=1.0004; }
|
|
else {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); eps=1.0002; }
|
|
res = p+t;
|
|
cor = (p-res)+t;
|
|
if (res == (res+eps*cor)) return res;
|
|
else {
|
|
res1=res+1.1*cor;
|
|
z=0.5*(res1-res);
|
|
__docos(res,z,w);
|
|
z=(w[0]-x)+w[1];
|
|
if (z>1.0e-27) return max(res,res1);
|
|
else if (z<-1.0e-27) return min(res,res1);
|
|
else return __cos32(x,res,res1);
|
|
}
|
|
}
|
|
} /* else if (k < 0x3fe80000) */
|
|
|
|
/*------------------------- 0.75 <= |x| < 0.921875 -------------*/
|
|
else
|
|
if (k < 0x3fed8000) {
|
|
n = 992+((k&0x000fe000)>>13)*13;
|
|
if (m>0) {xx = x - asncs.x[n]; eps = 1.04; }
|
|
else {xx = -x - asncs.x[n]; eps = 1.01; }
|
|
t = asncs.x[n+1]*xx;
|
|
p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+
|
|
xx*(asncs.x[n+5]+xx*(asncs.x[n+6]+xx*(asncs.x[n+7]+
|
|
xx*asncs.x[n+8]))))))+asncs.x[n+9];
|
|
t+=p;
|
|
y = (m>0)?(hp0.x-asncs.x[n+10]):(hp0.x+asncs.x[n+10]);
|
|
t = (m>0)?(hp1.x-t):(hp1.x+t);
|
|
res = y+t;
|
|
if (res == res+eps*((y-res)+t)) return res;
|
|
else {
|
|
r=asncs.x[n+10]+xx*asncs.x[n+11];
|
|
t=((asncs.x[n+10]-r)+xx*asncs.x[n+11])+(p+xx*asncs.x[n+12]);
|
|
if (m>0) {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; eps=1.0032; }
|
|
else {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); eps=1.0008; }
|
|
res = p+t;
|
|
cor = (p-res)+t;
|
|
if (res == (res+eps*cor)) return res;
|
|
else {
|
|
res1=res+1.1*cor;
|
|
z=0.5*(res1-res);
|
|
__docos(res,z,w);
|
|
z=(w[0]-x)+w[1];
|
|
if (z>1.0e-27) return max(res,res1);
|
|
else if (z<-1.0e-27) return min(res,res1);
|
|
else return __cos32(x,res,res1);
|
|
}
|
|
}
|
|
} /* else if (k < 0x3fed8000) */
|
|
|
|
/*-------------------0.921875 <= |x| < 0.953125 ------------------*/
|
|
else
|
|
if (k < 0x3fee8000) {
|
|
n = 884+((k&0x000fe000)>>13)*14;
|
|
if (m>0) {xx = x - asncs.x[n]; eps=1.04; }
|
|
else {xx = -x - asncs.x[n]; eps =1.005; }
|
|
t = asncs.x[n+1]*xx;
|
|
p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+
|
|
xx*(asncs.x[n+5]+xx*(asncs.x[n+6]
|
|
+xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+
|
|
xx*asncs.x[n+9])))))))+asncs.x[n+10];
|
|
t+=p;
|
|
y = (m>0)?(hp0.x-asncs.x[n+11]):(hp0.x+asncs.x[n+11]);
|
|
t = (m>0)?(hp1.x-t):(hp1.x+t);
|
|
res = y+t;
|
|
if (res == res+eps*((y-res)+t)) return res;
|
|
else {
|
|
r=asncs.x[n+11]+xx*asncs.x[n+12];
|
|
t=((asncs.x[n+11]-r)+xx*asncs.x[n+12])+(p+xx*asncs.x[n+13]);
|
|
if (m>0) {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; eps=1.0030; }
|
|
else {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); eps=1.0005; }
|
|
res = p+t;
|
|
cor = (p-res)+t;
|
|
if (res == (res+eps*cor)) return res;
|
|
else {
|
|
res1=res+1.1*cor;
|
|
z=0.5*(res1-res);
|
|
__docos(res,z,w);
|
|
z=(w[0]-x)+w[1];
|
|
if (z>1.0e-27) return max(res,res1);
|
|
else if (z<-1.0e-27) return min(res,res1);
|
|
else return __cos32(x,res,res1);
|
|
}
|
|
}
|
|
} /* else if (k < 0x3fee8000) */
|
|
|
|
/*--------------------0.953125 <= |x| < 0.96875 ----------------*/
|
|
else
|
|
if (k < 0x3fef0000) {
|
|
n = 768+((k&0x000fe000)>>13)*15;
|
|
if (m>0) {xx = x - asncs.x[n]; eps=1.04; }
|
|
else {xx = -x - asncs.x[n]; eps=1.005;}
|
|
t = asncs.x[n+1]*xx;
|
|
p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+
|
|
xx*(asncs.x[n+5]+xx*(asncs.x[n+6]
|
|
+xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+xx*(asncs.x[n+9]+
|
|
xx*asncs.x[n+10]))))))))+asncs.x[n+11];
|
|
t+=p;
|
|
y = (m>0)?(hp0.x-asncs.x[n+12]):(hp0.x+asncs.x[n+12]);
|
|
t = (m>0)?(hp1.x-t):(hp1.x+t);
|
|
res = y+t;
|
|
if (res == res+eps*((y-res)+t)) return res;
|
|
else {
|
|
r=asncs.x[n+12]+xx*asncs.x[n+13];
|
|
t=((asncs.x[n+12]-r)+xx*asncs.x[n+13])+(p+xx*asncs.x[n+14]);
|
|
if (m>0) {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; eps=1.0030; }
|
|
else {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); eps=1.0005; }
|
|
res = p+t;
|
|
cor = (p-res)+t;
|
|
if (res == (res+eps*cor)) return res;
|
|
else {
|
|
res1=res+1.1*cor;
|
|
z=0.5*(res1-res);
|
|
__docos(res,z,w);
|
|
z=(w[0]-x)+w[1];
|
|
if (z>1.0e-27) return max(res,res1);
|
|
else if (z<-1.0e-27) return min(res,res1);
|
|
else return __cos32(x,res,res1);
|
|
}
|
|
}
|
|
} /* else if (k < 0x3fef0000) */
|
|
/*-----------------0.96875 <= |x| < 1 ---------------------------*/
|
|
|
|
else
|
|
if (k<0x3ff00000) {
|
|
z = 0.5*((m>0)?(1.0-x):(1.0+x));
|
|
v.x=z;
|
|
k=v.i[HIGH_HALF];
|
|
t=inroot[(k&0x001fffff)>>14]*powtwo[511-(k>>21)];
|
|
r=1.0-t*t*z;
|
|
t = t*(rt0+r*(rt1+r*(rt2+r*rt3)));
|
|
c=t*z;
|
|
t=c*(1.5-0.5*t*c);
|
|
y = (t27*c+c)-t27*c;
|
|
cc = (z-y*y)/(t+y);
|
|
p=(((((f6*z+f5)*z+f4)*z+f3)*z+f2)*z+f1)*z;
|
|
if (m<0) {
|
|
cor = (hp1.x - cc)-(y+cc)*p;
|
|
res1 = hp0.x - y;
|
|
res =res1 + cor;
|
|
if (res == res+1.002*((res1-res)+cor)) return (res+res);
|
|
else {
|
|
c=y+cc;
|
|
cc=(y-c)+cc;
|
|
__doasin(c,cc,w);
|
|
res1=hp0.x-w[0];
|
|
cor=((hp0.x-res1)-w[0])+(hp1.x-w[1]);
|
|
res = res1+cor;
|
|
cor = (res1-res)+cor;
|
|
if (res==(res+1.000001*cor)) return (res+res);
|
|
else {
|
|
res=res+res;
|
|
res1=res+1.2*cor;
|
|
return __cos32(x,res,res1);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
cor = cc+p*(y+cc);
|
|
res = y + cor;
|
|
if (res == res+1.03*((y-res)+cor)) return (res+res);
|
|
else {
|
|
c=y+cc;
|
|
cc=(y-c)+cc;
|
|
__doasin(c,cc,w);
|
|
res = w[0];
|
|
cor=w[1];
|
|
if (res==(res+1.000001*cor)) return (res+res);
|
|
else {
|
|
res=res+res;
|
|
res1=res+1.2*cor;
|
|
return __cos32(x,res,res1);
|
|
}
|
|
}
|
|
}
|
|
} /* else if (k < 0x3ff00000) */
|
|
|
|
/*---------------------------- |x|>=1 -----------------------*/
|
|
else
|
|
if (k==0x3ff00000 && u.i[LOW_HALF]==0) return (m>0)?0:2.0*hp0.x;
|
|
else
|
|
if (k>0x7ff00000 || (k == 0x7ff00000 && u.i[LOW_HALF] != 0)) return x;
|
|
else {
|
|
u.i[HIGH_HALF]=0x7ff00000;
|
|
v.i[HIGH_HALF]=0x7ff00000;
|
|
u.i[LOW_HALF]=0;
|
|
v.i[LOW_HALF]=0;
|
|
return u.x/v.x;
|
|
}
|
|
}
|